НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ

УДК 541.136

МОДИФИКАЦИЯ ПОВЕРХНОСТИ УГОЛЬНЫХ ЭЛЕКТРОДОВ НАНОЧАСТИЦАМИ ОКСИДА МАРГАНЦА

© 2022 г. В. В. Чернявина^{*a*, *}, А. Г. Бережная^{*a*}, Я. А. Дышловая^{*a*}

^аЮжный федеральный университет, ул. Зорге, 7, Ростов-на-Дону, 344090 Россия *e-mail: vchernyavina@yandex.ru Поступила в редакцию 08.12.2021 г. После доработки 10.02.2022 г. Принята к публикации 11.02.2022 г.

Композит MnO_2/C получен методом катодного электрохимического осаждения в различных условиях. Исследованы структурные характеристики и элементный состав MnO_2/C методом энергодисперсионного микроанализа с использованием комплексного аналитического прибора на сканирующем электронном микроскопе VEGA II LMU и системой микроанализа INCA ENERGY450/XT с детектором X-Act DDD. Электрохимические характеристики электродов определены методами циклической вольт-амперометрии, гальваностатического заряда-разряда и импедансной спектроскопии. Показано, что активированный уголь марки Norit DLS SUPRA 50 можно использовать в качестве материала подложки для электродов MnO_2/C от условий электрохимического осаждения. Емкостные характеристики композита MnO_2/C на 30% больше по сравнению с угольным электродом, что делает его перспективным материалом электрода для электрохимических конденсаторов на водном электролите.

Ключевые слова: электрохимический конденсатор, активированный уголь, водный нейтральный электролит, оксид марганца

DOI: 10.31857/S0044457X22080074

ВВЕДЕНИЕ

Постоянно растущий спрос на энергию способствует поиску новых материалов, а также разработке и усовершенствованию технических характеристик устройств накопления заряда. Среди таких систем выделяют электрохимические конденсаторы (ЭХК) из-за их способности к быстрому заряду-разряду, высокой удельной мощности и циклической стабильности. В настоящее время ЭХК используются совместно с аккумуляторами для обеспечения дополнительной мощности в электромобилях, локомотивах, системах бесперебойного электропитания и т.д. ЭХК не могут использоваться в качестве автономных устройств, поскольку их удельная энергия ниже, чем у батарей [1]. Удельная мощность и срок службы электрохимических конденсаторов намного больше, чем литий-ионных аккумуляторов. Повысить энергию и удельную мощность ЭХК можно за счет использования новых электродных материалов и разных электролитов, а также путем разработки оригинальной конструкции устройства в зависимости от сферы использования [2].

Для изготовления электродов ЭХК используют разные типы материалов: углеродистые мате-

риалы, оксиды/гидроксиды переходных металлов и проводящие полимеры [3–8]. Главным недостатком углеродных материалов является их небольшая емкость, что ограничивает их применение.

Емкостные свойства углеродных материалов повышают за счет введения проводящих полимеров или оксидов металлов. Среди оксидов переходных металлов выделяют MnO_2 благодаря низкой стоимости, экологичности и высокой теоретической удельной емкости (1370 Ф/г) [9]. Кроме того, он обладает широким рабочим потенциалом в нейтральных водных электролитах по сравнению с другими оксидами переходных металлов, используемыми в кислотных и щелочных электролитах [10]. Однако MnO_2 имеет низкую удельную электропроводность ($10^{-5}-10^{-6}$ См/см), что ограничивает достижение высокой теоретической емкости [11].

Перспективным подходом к решению этой проблемы является включение MnO₂ в электропроводящие каркасы, такие как графен, углеродные нанотрубки, проводящие полимеры и мезопористые угли. Углеродные каркасы формируют пористую структуру, которая обеспечивает диффузию ионов электролита и увеличение электрической емкости. Кроме того, снижается сопротивление переноса электронов, что компенсирует низкую проводимость оксида марганца. Механизм накопления заряда в композитных электродах MnO_2/C основан на сочетании двойнослойного процесса и фарадеевских окислительно-восстановительных реакций, которые наблюдаются на границе раздела между оксидом и раствором электролита, обеспечивая, таким образом, псевдоемкость [12, 13].

Электрохимические свойства MnO₂ определяются химической структурой, морфологией поверхности, пористостью и электрической проводимостью [14, 15].

Авторами [16] методом химического осаждения получены α -, β -, γ - и δ -MnO₂. Установлено, что емкостные характеристики любой фазы MnO₂ снижаются с увеличением кристалличности, а слабокристаллизованный α -MnO₂ обладает самой высокой удельной емкостью (200 Φ/Γ) при плотности тока 1 А/г.

В работе [17] получен композит MnO₂/C методами анодного и катодного электроосаждения оксида марганца на подложку мезопористого углерода с высокой удельной площадью поверхности. Согласно результатам рентгенофазового анализа, MnO₂ эффективно осаждается на подложку как при анодном, так и при катодном электроосаждении. Электрохимические измерения показали, что емкостное поведение композита зависит от метода получения оксида марганца. При анодном осаждении наблюдается равномерная пленка α -MnO₂, а при катодном осаждении частицы γ -MnO₂ имеют игольчатое строение. Композитный электрод γ-MnO₂/C, полученный в результате катодного осаждения, демонстрирует высокую удельную емкость и циклическую стабильность.

Наночастицы оксида марганца с различной морфологией были получены методом анодного электроосаждения путем регулирования концентрации серной кислоты и плотности тока осаждения [18]. Композитные электроды с наносферами, нанолистами, наноцветками, наностержнями имели удельные емкости 134, 226, 235 и 362.5 Ф/г при скорости заряда-разряда 0.5 А/г соответственно.

Оксид марганца синтезирован методом электрохимического осаждения при плотности тока 0.5 А/г с изменением частоты вращения от 0 до 4000 об/мин при 25°С в течение 90 мин [19]. Установлено, что удельная емкость (C_{ya}) и удельная площадь поверхности зависят от частоты вращения. Максимальное значение $C_{ya} = 277.9 \ \Phi/r$ было получено для электродного материала MnO_2 при частоте вращения 3000 об/мин.

Цель настоящей работы – исследование характеристик композитных электродов MnO₂/C, полученных методом электрохимического осаждения в разных условиях.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Рабочие электроды изготавливали путем смешивания активированного угля, поливинилиденфторида в N-метилпирролидоне до образования суспензии, которую наносили на никелевую фольгу и сушили при 60°С до постоянного веса. Удельная масса активного материала на электроде составляла 5–6 мг/см².

Исследование микроструктуры и элементного состава образцов выполняли на растровом электронном микроскопе Vega II LMU (фирмы Tescan) с системой энергодисперсионного микроанализа Inca Energy 450/XT (детектор Silicon Drift).

Электрохимическое осаждение и измерения проводили на потенциостате-гальваностате P-30J (ООО "Элинс", Россия) в стандартной трехэлектродной ячейке. В качестве электрода сравнения использовали насыщенный хлорсеребряный электрод, противоэлектродом служил стеклоуглерод. Стеклоуглеродный электрод представлял собой стеклоуглеродную пластину (стеклоуглерод марки СУ-2000) площадью 1 см² с медным токоподводом.

Оксид марганца получали методом катодного электроосаждения на угольных электродах, изготовленных из активированного угля марки Norit DLS Supra 50. Электрохимическое осаждение проводили в диапазоне потенциалов -0.2-0.3 В в течение 15 мин в растворе следующего состава: 0.01 М KMnO₄ + 0.1 М Na₂SO₄. В результате протекания окислительно-восстановительной реакции на поверхности угольного электрода осаждался оксид марганца:

$$MnO_4^- + 2H_2O + 3e \rightarrow MnO_2 + 4OH^-$$
.

Электрохимические измерения проводили в 1 М водном растворе сульфата натрия. По результатам циклической вольт-амперометрии рассчитывали удельную емкость:

$$C_{y_{\rm H}} = \frac{1}{m\nu(E_k - E_{\rm H})} \int_{E_{\rm H}}^{E_k} I(E) dE, \qquad (1)$$

где m — масса электрода, v — скорость развертки потенциала, I(E) — ток, $E_{\rm H}$ и $E_{\rm K}$ — пределы интегрирования на вольт-амперной кривой.

Расчет удельной емкости по гальваностатическому методу заряда-разряда проводили по формуле:

$$C_{\rm yg} = \frac{I\Delta\tau}{\Delta Em},\tag{2}$$

Рис. 1. Циклические вольт-амперные кривые, снятые со скоростью развертки потенциала v = 5 мB/c для угольного электрода и композитов MnO₂/C, полученных при E = 0.2 В и разном времени электрохимического осаждения

где $I, \Delta E, \Delta \tau$ — ток, интервал напряжений и время заряда или разряда соответственно.

Импедансные измерения проводили на импедансметре Z-500P (Electrochemical Instruments, Россия) в двухэлектродной ячейке с одинаковыми электродами при потенциале 0 В в интервале частот от 50 мГц до 500 кГц.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Получение композитных материалов методом электрохимического осаждения в разных условиях позволяет контролировать морфологию и микроструктуру поверхности. В связи с этим композиты MnO₂/C получали при изменении времени или потенциала электроосаждения, далее методом циклической вольтамперометрии определяли удельную емкость угольного электрода до и после электрохимического осаждения.

На рис. 1 представлены циклические кривые для угольного и композитных электродов MnO₂/C, полученных электроосаждением при потенциале 0.2 В и разном времени. Вид циклической кривой для композитов отличается от таковой для угольного электрода.

Для композита MnO₂/C, полученного при времени электрохимического осаждения 15 мин, наблюдается наибольшее увеличение удельного тока на циклических кривых. Реализуется максимальное увеличение удельной емкости (C_{ya}) на 30–35 Ф/г по сравнению с C_{ya} угольного электрода, которая составляет 90–95 Ф/г. При увеличении времени осаждения до 20 мин наблюдается снижение площади, ограниченной кривой ЦВА, что свидетельствует об уменьшении удельной емкости. Вероятно, в этих условиях электроосажде-

Рис. 2. Вольт-фарадные циклические кривые, снятые со v = 5 мB/c для угольного и композитных электродов MnO_2/C , полученных при электрохимическом осаждении в течение 15 мин при разных потенциалах.

ния образуется более плотный слой диоксида марганца, что приводит к уменьшению активной площади поверхности и препятствует доступу ионов внутрь пористой структуры композита.

Исследованы электрохимические свойства композитных электродов MnO_2/C , полученных при одинаковом времени электроосаждения 15 мин, но разном потенциале *E*. Вид циклических кривых для композитов (рис. 2) показывает, что в диапазоне *E* электрохимического осаждения от -0.1 до 0.2 В сохраняется прямоугольная рабочая область потенциалов и максимальное значение C_{va} .

На основании предварительных исследований были подобраны оптимальные условия электроосаждения с целью получения MnO₂/C с высокими электрохимическими свойствами. Дальнейшие исследования проводили с композитами, полученными при времени осаждения 15 мин и постоянном потенциале 0.2 В.

Для уточнения поверхностного химического состава и однородности распределения соответствующих элементов проводили СЭМ-EDX исследование в разных точках поверхности (рис. 3). Морфология поверхности изменяется после осаждения оксида марганца на угольный электрод (рис. 3а, 3б). В присутствии оксида марганца на СЭМ-микрофотографии наблюдаются более светлые фазы и участки (рис. 36). Спектры EDX показывают присутствие элемента Mn в случае композитного электрода, в отличие от угольного электрода (рис. 3в, 3г).

Ранее [20] установлено, что углеродный материал Norit DLC Supra 50 представляет собой совокупность частиц, близких к сферической форме, размером 30–50 нм. В процессе электрохимического осаждения наночастицы оксида марганца

Рис. 3. СЭМ-микрофотографии и спектры EDX для электродов С (а, в) и композита MnO₂/C (б, г).

равномерно распределяются по поверхности и закрепляются на сферических частицах активированного угля.

Изменение формы циклических кривых и удельной емкости композитных электродов по сравнению с угольным электродом связано как с увеличением активной площади поверхности, так и с псевдоемкостью MnO_2 (рис. 4, табл. 1). Удельная емкость композита MnO_2/C больше, чем C_{yg} угольного электрода при всех скоростях развертки потенциала.

Существует два механизма, объясняющих псевдоемкостное поведение композитных электродов, одним из основных компонентов которых является оксид марганца. Первый основан на интеркаляции-деинтеркаляции протонов и катионов щелочных металлов в мезопоры оксида марганца при восстановлении и окислении [21], который можно представить как

$$MnO_2 + Z^+ + e \leftrightarrow MnOOZ (Z^+ = H_3O^+, Na^+),$$

второй — на поверхностной адсорбции-десорбции катионов (Z^+) на электроде из MnO₂ [9]:

Таблица 1. Удельная емкость C_{yg} (Φ /г) угольного и композитного электродов при скорости развертки потенциала v, мB/c

Электрод	Удельная емкость <i>C</i> _{уд} (Ф/г) композитных электродов при скорости развертки потенциала v, мВ/с					
	2	5	10	25	50	100
С	124	95	85	74	69	62
MnO ₂ /C	153	126	112	98	87	75

Рис. 4. Циклические вольт-амперные кривые для C (1) и MnO_2/C (2), снятые при v = 5 (a), 25 (6), 50 мB/c (в).

$$(MnO_2)_{surface} + Z^+ + e \iff$$

$$\leftrightarrow (MnOOZ)_{surface} (Z^+ = H_3O^+, Na^+).$$

На рис. 5 при удельных токах заряда-разряда $I_{3/p} = 0.7$ и 1.4 А/г для всех электродов наблюдаются симметричные кривые заряда-разряда, что указывает на обратимость процессов. Для ком-

позита MnO_2/C (рис. 5, кривая 2) реализуется более длительный по времени заряд-разряд по сравнению с угольным электродом C (рис. 5, кривая I).

Удельная емкость композита MnO_2/C при небольших токах заряда-разряда ($I_{yg} = 0.4 \text{ A/r}$) увеличивается на 45 Φ/r по сравнению с C_{yg} угольного электрода, которая составляет 98 Φ/r (рис. 6).

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 8 2022

ЧЕРНЯВИНА и др.

Рис. 5. Заряд-разрядные кривые для C (1) и MnO_2/C (2) при $I_{va} = 0.7$ и 1.4 А/г.

Рис. 6. Зависимость удельной емкости для электродов С (1) и MnO₂/C (2) от тока заряда-разряда.

При $I_{yg} = 1.8 \text{ A/r}$ увеличение C_{yg} для композита составляет всего 19 Φ /г, что связано с диффузионными ограничениями, возникающими при высоких токах заряда-разряда.

Для определения сопротивления были проанализированы спектры импеданса методом подбора эквивалентной схемы с помощью программы EIS Spectrum Analyser. Эквивалентная схема включает CPE1-элемент постоянного сдвига фаз, эквивалентное последовательное сопротивление электролита R_1 , сопротивление переноса заряда R_2 , сопротивление Варбурга W_1 (рис. 7).

Кривые для электродов С (1) и MnO_2/C (2) имеют одинаковый вид (рис. 7). В области высоких частот наблюдается полукруг, который определяет сопротивление переноса заряда R_2 на границе раздела электрод/электролит. Сопротивление R_2 зависит от пористости электрода. Пересечение графика Найквиста с действительной осью представляет собой эквивалентное последовательное сопротивление электролита R_1 , контактное сопротивление активного материала к токоотводу и внутреннее сопротивление активного материала.

Анализ результатов импедансных измерений показывает, что сопротивление композитного электрода немного увеличивается по сравнению с угольным электродом. В случае композитного электрода $MnO_2/CR_1 = 33.4 \text{ Om}, R_2 = 3.5 \text{ Om}, а для угольного электрода <math>R_1 = 30.4 \text{ Om}, R_2 = 2.8 \text{ Om}.$ Несмотря на небольшое увеличение сопротивления для MnO_2/C , наклонная линия в области низких частот имеет почти вертикальное расположение, свидетельствующее о хорошем емкостном поведении материалов.

ЗАКЛЮЧЕНИЕ

Таким образом, активированный уголь марки Norit DLS Supra 50 можно использовать в каче-

2022

Рис. 7. Диаграммы Найквиста, полученные при 50 мГц-500 кГц в 1 М растворе Na₂SO₄ для электродов С (1) и MnO₂/С (2).

стве материала подложки для электроосаждения MnO_2 . Установлена зависимость электрохимических свойств композитных электродов MnO_2/C от условий электрохимического осаждения. Показано, что емкостные характеристики композита MnO_2/C выше по сравнению с таковыми для угольного электрода. Композитный электрод MnO_2/C , полученный методом электрохимического осаждения, является перспективным материалом для использования в качестве электродов электрохимических конденсаторов.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Simon P., Gogotsi Y. // Nature Mater. 2008. V. 7. № 11. P. 845. https://doi.org/10.1038/nmat2297
- Вольфкович Ю.М. // Электрохимия. 2021. Т. 57. № 4. С. 197. [Volfkovich Yu.M. // Russ. J. Electrochem. 2021. V. 57. № 4. Р. 311.] https://doi.org/10.1134/S1023193521040108
- Нижегородова А.О., Кондратьев В.В. // Электрохимия. 2014. Т. 50. № 12. С. 1292. [Nizhegorodova A.O., Kondratiev V.V. // Russ. J. Electrochem. 2014. V. 50. № 12. Р. 1157.] https://doi.org/10.1134/S1023193514120052

- Шабалина А.В., Шарко Д.О., Корсакова Д.Р. и др. // Журн. неорган. химии. 2020. Т. 65. № 2. С. 271. [Shabalina A.V., Sharko D.O., Korsakova D.R. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 2. Р. 271.] https://doi.org/10.1134/S003602362002014X
- 5. *Kornilov D.Yu., Gubin S.P.* // Russ. J. Inorg. Chem. 2020. V. 65. № 13. P. 1965. https://doi.org/10.1134/S0036023620130021
- Huang M., Zhang Y., Li F. et al. // J. Power Sources. 2014. V. 252. P. 98. https://doi.org/10.1016/j.jpowsour.2013.12.030
- 7. *Chen L.-F., Huang Z.-H., Liang H.-W. et al.* // Adv. Mater. 2013. V. 25. № 34. P. 4746. https://doi.org/10.1002/adma.201204949
- Иванова А.Г., Карасев Л.В., Масалович М.С. и др. // Физика и химия стекла. 2020. Т. 46. № 1. С. 99. [Ivanova A.G., Masalovich M.S., Zagrebelny O.A. et al. // Glass Phys. Chem. 2020. V. 46. № 1. Р. 96.] https://doi.org/10.1134/S1087659620010101
- 9. Toupin M., Brousse T., Belanger D. // Chem. Mater. 2004. V. 16. № 16. P. 3184. https://doi.org/10.1021/cm049649j
- Dai Y, Chen L., Babayan V. et al. // J. Mater. Chem. A. 2015. V. 3. P. 21337. https://doi.org/10.1039/C5TA06958K
- 11. *Bailey M., Denman J., King B. et al.* // J. Electrochem. Soc. 2011. V. 159. № 2. P. A158. https://doi.org/10.1149/2.080202jes
- Hatzell K.B., Fan L., Beidaghi M. et al. // Appl. Mater. Interf. 2014. V. 6. P. 8886. https://doi.org/10.1021/am501650q

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 8 2022

- Huang Z.H., Song Y., Xu X.X. et al. // Appl. Mater. Interf. 2015. V. 7. P. 25506. https://doi.org/10.1021/acsami.5b08830
- Subramanian V., Zhu H., Wei B. // Chem. Phys. Lett. 2008. V. 453. P. 242. https://doi.org/10.1016/j.cplett.2008.01.042
- Wang X., Wang X., Huang W. // J. Power Sources. 2005. V. 140. P. 211. https://doi.org/10.1016/j.jpowsour.2004.07.033
- Zhang Y., Sun C., Lu P. et al. // CrystEngComm. 2012. V. 14. P. 5892. https://doi.org/10.1039/C2CE25610J
- Kim I.-T., Kouda N., Yoshimoto N. et al. // J. Power Sources. 2015. V. 298. P. 123. https://doi.org/10.1016/j.jpowsour.2015.08.046

- Ye Z., Li T., Ma G. et al. // J Power Sources. 2017. V. 351. P. 51. https://doi.org/10.1016/j.jpowsour.2017.03.104
- Du J., Shao G., Qin X. et al. // Mater. Lett. 2012. V. 84.
 P. 13. https://doi.org/10.1016/j.matlet.2012.06.059
- Чернявина В.В., Бережная А.Г. // Электрохимия. 2018. Т. 54. № 11. С. 1. [Chernyavina V.V., Berezhnaya A.G. // Russ. J. Electrochem. 2018. V. 54. № 11. P. 835.] https://doi.org/10.1134/S1023193518110022
- Devaraj S., Munichandraiah N. // J. Phys. Chem. C. 2008. V. 112. № 11. P. 4406. https://doi.org/10.1021/jp7108785

1182