ТЕОРЕТИЧЕСКАЯ НЕОРГАНИЧЕСКАЯ ХИМИЯ

УДК 539.183.3:546.796

ПРИРОДА ХИМИЧЕСКОЙ СВЯЗИ И СТРУКТУРА РЕНТГЕНОВСКОГО ФОТОЭЛЕКТРОННОГО СПЕКТРА РаО₂

© 2022 г. Ю. А. Тетерин^{*a, b, **}, М. В. Рыжков^{*c*}, А. Е. Путков^{*a, b*}, К. И. Маслаков^{*a*}, А. Ю. Тетерин^{*b*}, К. Е. Иванов^{*b*}, С. Н. Калмыков^{*a*}, В. Г. Петров^{*a*}

^а Московского государственного университета им. М.В. Ломоносова, Химический факультет, Ленинские горы, 1, Москва, 119991 Россия ^bНациональный исследовательский центр "Курчатовский институт", пл. Акад. Курчатова, 1, Москва, 123182 Россия ^cИнститут химии твердого тела УрО РАН, ул. Первомайская, 91, Екатеринбург, 620990 Россия *e-mail: Teterin_YA@nrcki.ru Поступила в редакцию 03.01.2022 г. После доработки 14.02.2022 г.

Принята к публикации 22.02.2022 г.

Релятивистским методом дискретного варьирования рассчитаны плотность состояний и спектр рентгеновской фотоэлектронной спектроскопии валентных электронов в диапазоне энергий связи электронов от 0 до ~50 эВ в PaO_2 . Построена схема молекулярных орбиталей. Наблюдаются значительные эффекты ковалентности в PaO_2 , связанные с перекрыванием не только атомных орбиталей Pa6d, но и Pa6p, и Pa5f с орбиталями кислорода. Найдено, что электроны внутренних валентных молекулярных орбиталей ослабляют химическую связь, обусловленную электронами внешних валентных молекулярных орбиталей.

Ключевые слова: диоксид протактиния, электронная структура, полностью релятивистский кластерный расчет, структура спектра РФЭС валентных электронов **DOI:** 10.31857/S0044457X22060289

ВВЕДЕНИЕ

Протактиний ²³¹Ра ($\tau_{1/2} = 3.28 \times 10^4$ лет, α -распад) – природный изотоп, но на практике большое значение имеет и искусственный изотоп ²³³Ра $(\tau_{1/2} = 27 \text{ сут}, \beta$ -распад) — промежуточный продукт в производстве ²³³U в реакторах-размножителях, работающих на тории. Поскольку имеются доступные количества (~0.5 г) протактиния, то многие его физико-химические свойства и его соединений изучены [1]. Черный РаО₂ получается восстановлением P₂O₅ водородом при 1550°C с гранецентрированной решеткой ГЦК (CaF₂) с a == 0.5509 нм [2] (a = 0.5505 нм [3]). Методом рентфотоэлектронной спектроскопии геновской (РФЭС) получен только спектр остовных Pa4fэлектронов Ра₂О₅ [4].

При расчете электронной структуры PaO_2 основное внимание уделялось электронам внешних валентных молекулярных орбиталей (**BMO**) с энергиями от 0 до ~15 эВ [5, 6] и не рассматривалась область от ~15 до ~50 эВ внутренних валентных МО (**BBMO**). Установлено, что структура спектров РФЭС валентных электронов ThO₂ и UO₂ в диапазоне от 0 до ~50 эВ в основном связана с электронами валентных MO, что подтверждено результатами рентгеновских эмиссионных и конверсионных исследований и релятивистских расчетов [7, 8]. Аналогичные заключения сделаны для AnO_2 (An = Np-Bk) [9–14].

В настоящей работе впервые выполнен полностью релятивистский расчет электронного строения PaO_2 релятивистским методом дискретного варьирования (**РДВ**), определена плотность состояний валентных электронов PaO_2 и рассчитан спектр рентгеновской фотоэлектронной спектроскопии (**РФЭС**) в диапазоне энергий связи от 0 до ~50 эВ с целью изучения особенностей химической связи в PaO_2 и сравнения полученных результатов со спектральными характеристиками диоксидов других актиноидов.

МЕТОД РАСЧЕТА

Кластер PaO_8^{12-} точечной группы симметрии D_{4h} , отражающий ближайшее окружение протактиния в PaO_2 , представляет объемно-центрированный куб, в центре которого находится протактиний, а в вершинах 8 кислородов с длиной связи

Рис. 1. Схема МО РаО₂. Стрелками отмечены некоторые разности энергий уровней. Слева приведены рассчитанные значения энергий связи электронов (эВ). Энергетический масштаб не выдержан. В скобках приведены номера групп орбиталей, отмеченных в тексте. Величина $\Delta E_{\rm Pa}^{\rm T} = 314.46$ эВ [24].

 $r_{\rm Pa=0} = 0.2385$ нм [2] (0.2384 нм [3]). Расчеты такого кластера впервые проведены в настоящей работе с использованием оригинальной программы, реализующей неэмпирический метод РДВ [15, 16]. Метод РДВ основан на решении уравнения Дирака-Слэтера для 4-компонентных спиноров с обменно-корреляционным потенциалом [17]. Расширенный базис численных атомных орбиталей, полученных при решении уравнения Дирака-Слэтера для изолированных нейтральных атомов, включал, помимо полностью и частично заполненных, вакантные состояния $Pa7p_{1/2}$, $7p_{3/2}$. В настоящей работе ограничились расчетами минимального фрагмента решетки, поскольку, как было показано в работах [10, 11], основные характеристики МО больших кластеров Ри₆₃О₂₁₆ и Ат₆₃О₂₁₆ оказались близкими к данным, полученным для минимальных кластеров плутония и америция. Необходимо отметить, что

указанный в обозначении кластера РаО₈¹²⁻ формальный заряд –12 означал, что в схеме расчета О2р-полоса поддерживалась полностью заполненной. Однако используемая в расчетах минимальных кластеров процедура перенормировки заселенностей внешних орбиталей граничных атомов и псевдопотенциала, моделировавшего влияние окружающего кристалла, обеспечивала положение верхних заполненных уровней в пределах 10 эВ ниже нуля используемой в расчетах энергетической шкалы [9]. Отсутствие muffin-tin аппроксимации потенциала в методе РДВ является его преимуществом, поскольку нет ограничений на симметрию исследуемого соединения. Любые типы кластеров (в том числе вообще не имеющие симметрии) могут быть рассчитаны с одинаковой точностью. Также результаты расчета, полученные в приближении молекулярные орбитали как линейные комбинации атомных орбиталей, позволяют анализировать роль атомных состояний в электронной структуре. химической связи, спектральных и других свойствах твердофазных соединений.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Схема валентных МО РаО₂. Деление валентных МО на ВМО и ВВМО носит условный характер (рис. 1). ВМО в основном образованы внешними валентными (недозаполненными) атомными орбиталями (AO), а ВВМО в большой степени – внутренними валентными (заполненными) АО. Структура спектров РФЭС электронов ВВМО, как правило, хорошо разрешена, что позволяет делать качественные и количественные заключения о строении ближайшего окружения центрального атома в кластере и длине связи от него до ближайших соседей [18].

При построении схемы MO PaO₂ учитывалось, что экспериментальные значения энергии связи O1s-электронов в AnO₂ должны быть равны 529.9 эВ, а разность энергий O1s- и O2s- в атоме кислорода равна 508.3 эВ [9, 10]. Поэтому разность энергий O1s-электронов и квазиатомной $12\gamma_7^-$ BBMO должна равняться 508.3 эВ, а энергия $12\gamma_7^-$ BBMO равна 21.60 эВ, которая отличается от величины 21.17 эВ, приведенной в табл. S1. Такая величина удовлетворительно согласуется со

структурой экспериментальных спектров РФЭС диоксидов других актиноидов и позволяет с малой погрешностью определить энергии связи валентных электронов.

На схеме МО РаО₂ вакантные МО приведены в виде штрихов, а занятые МО – сплошных горизонтальных линий (рис. 1). Рассчитанные значения энергий связи электронов валентных МО

приведены слева от МО. Над горизонтальными прямыми МО дан состав в %. Справа от МО даны их обозначения (табл. S1), а в скобках — номера групп МО. Эти номера необходимы для простоты обсуждения рассматриваемой схемы. Разности энергий валентных и остовных МО приведены на схеме в виде вертикальных прямых со стрелками. Эти разности могут быть измерены экспериментально в случае получения спектров РФЭС валентных и остовных электронов РаО₂. Внизу схемы даны значения этих разностей в эВ.

На схеме пунктиром выделены формально "разрыхляющие" $17\gamma_6^-$, $13\gamma_7^-$ (5) и $16\gamma_6^-$ (6) и соответствующие им "связывающие" $15\gamma_6^-$, $11\gamma_7^-$ (8) и $14\gamma_6^-$ (9) BBMO, а также – "квазиатомные" $12\gamma_7^-$, $13\gamma_7^+$, $16\gamma_6^+$, $12\gamma_7^+$, и $15\gamma_6^+$ (7) BBMO, обусловленные в основном O2s AO.

Схема МО PaO₂ позволяет понять природу формирования химической связи в этом диоксиде и может быть использована при интерпретации сложной структуры других его рентгеновских (эмиссионных, поглощения, конверсионных и др.) спектров.

Электронное строение PaO_2 . Валентная электронная конфигурация основного состояния протактиния — $Pa6s^26p^65f^26d^{1}7s^2$, ${}^4K_{9/2}$. Эти оболочки протактиния могут принимать участие в образовании МО в его оксидах [18, 19]. Результаты расчета электронного строения PaO_2 методом РДВ приведены на рис. 1 и в табл. S1.

Наибольшее участие в образовании МО принимают Рабр, 6d, 5f AO. Найдено, что Рабs AO в малой степени участвует в образовании МО как и Pa7s и 7p AO. Верхнюю заполненную $20\gamma_7$ MO, содержащую 93% Pa5f AO, можно формально pacсматривать как "квазиатомную", а такие Pa5fэлектроны – локализованными вблизи уровня Ферми. Остальные Pa5f-электроны делокализованы в основном в пределах области ВМО. Делокализованные Pa5f-электроны увеличивают ковалентную составляющую химической связи за счет перекрывания Pa5f AO с O2p орбиталями кислорода. Участие Pa5f, 6d и O2p AO в образовании BMO согласуется с результатами для AnO₂ более тяжелых актиноидов [8-13]. При этом ковалентные вклады Pa5f AO в MO O2s-типа отсутствуют.

В РаО₂ так же, как для диоксидов других актиноидов, Раб*р* АО участвуют в образовании как ВМО, так и ВВМО. В наибольшей степени перекрываются Раб*р*_{3/2} и O2*s* АО соседних атомов. В результате этого возникают "разрыхляющие" $17\gamma_{6}^{-}$, $13\gamma_{7}^{-}$ (5) и $16\gamma_{6}^{-}$ (6), а также "связывающие" $15\gamma_{6}^{-}$, $11\gamma_{7}^{-}$ (8) и $14\gamma_{6}^{-}$ (9) ВВМО. Эффекты ковалентности свя-

зи в PaO_2 являются существенными, что обусловлено перекрыванием Pa6d и Pa5f AO с AO лигандов.

Эффективный заряд протактиния в PaO₂. Сраввалентную атомную конфигурацию нивая Ра $6s^26p^65f^26d^17s^2$ и рассчитанную в настоящей работе ионную конфигурацию $Pa6s^26p^65f^{1.61}6d^{1.64}7s^{0.24}7p^{0.41}$ для PaO2 можно найти, что эффективный заряд протактиния равен $Q_{\text{Pa}} = +1.10\text{e}^-$, что меньше значения $(Q_{Pa} = +4e^{-})$ в ионном приближении. Это связано с существенными ковалентными эффектами в диоксиде протактиния. Например, химическая связь в диоксиде протактиния более ионная, чем в диоксиде нептуния, поскольку эффективный заряд нептуния $Q_{Np} = +0.80e^{-1}$ [9] меньше, чем $Q_{Pa} =$ = +1.10e⁻ в РаО₂. Эти результаты качественно согласуются с данными для диоксидов и других актиноидов [20, 21]. Величина такого небольшого эффективного заряда протактиния в РаО2 также согласуется с данными для химических сдвигов линий актиноидов по отношению к металлам в спектрах РФЭС. Так, для Np 4 $f_{7/2}$ -электронов при переходе от металлического Np к NpO2 наблюдается сдвиг, равный $\Delta E_b = 3.9$ эВ [9]. Если бы эффективный заряд был равен $Q_{\rm Pa} = +4e^-$, то это приводило бы к сдвигу в десятки эВ. Например, возникновение вакансии на квазиостовном уровне в СеО₂ приводит к сдвигу линий, например, Се3*d*-электронов на ~16.0 эВ [22].

Структура спектра РФЭС валентных электронов РаО₂. Спектр РФЭС валентных электронов РаО₂ отсутствует в литературе. Для Pa_2O_5 , как отмечалось, имеется только спектр РФЭС остовных $Pa4f_{7/2,5/2}$ -электронов с большой погрешностью [4].

Методика получения теоретических спектров РФЭС диоксидов актиноидов на основе данных расчета электронной структуры описана в работах [9, 10]. В настоящей работе для сравнения теоретического спектра валентных электронов PaO_2 со спектрами диоксидов других актиноидов была проведена калибровка по энергии связи электронов. Для того, чтобы сравнивать экспериментальные и теоретические спектры в ряду AnO_2 (An = Th-Cf), их необходимо представить в единой энергетической шкале. В этой шкале энергии для экспериментальной E_b (O1s) и теоретической

 $E(17\gamma_6^-(5))$ равны 529.9 и 21.60 эВ соответственно. Поэтому теоретические значения энергий (табл. S1) были увеличены по абсолютной вели-

чине на 0.48 эВ так, чтобы энергия $17\gamma_6^-$, $13\gamma_7^-$ (5) МО была равна величине 17.82 эВ, а энергия ква-

зиатомной $12\gamma_7^-$ (6) MO, связанной с O2s AO, была равна 21.6 эВ. С учетом состава MO и сечений фотоэффекта [23] были определены теоретические

Рис. 2. Гистограмма рассчитанного (РДВ) спектра РФЭС валентных электронов РаО₂: черным отмечен вклад Ра5*f*-электронов; штрихами – вклад Раб*p*-электронов; горизонтальными прямыми – вклад Раб*s*электронов в интенсивность. В скобках приведены номера групп орбиталей, отмеченных в тексте.

интенсивности спектра РФЭС валентных электронов PaO_2 (рис. 2).

Теоретический спектр РФЭС валентных электронов PaO_2 можно условно разделить на две области. Структура, связанная с электронами ВМО, наблюдается в области спектра от 0 до ~15 эВ. Интенсивность этого спектра в большой степени связана с Pa5f- и 6*d*-электронами, так как сечение

Таблица 1. Заселенности перекрывания орбиталей в кластере PaO_8 (в расчете на одну связь Pa-O, все значения умножены на 10^3)

ienner gamenen	DI 114 10)		
Связь в РаО ₂	РДВ	Связь в РаО ₂	РДВ
Pa5 <i>f</i> _{5/2} -O2 <i>p</i>	25	Pa6 <i>d</i> _{3/2} -O2 <i>s</i>	13
Pa5 <i>f</i> _{7/2} -O2 <i>p</i>	47	Pa6 <i>d</i> _{5/2} -O2 <i>s</i>	22
$Pa5f_{5/2}-O2s$	4	$\Sigma^*_{ m BMO}$	436
Pa5 <i>f</i> _{7/2} -O2 <i>s</i>	8		
Pa7 <i>p</i> _{1/2} -O2 <i>p</i>	17	Pa6 <i>p</i> _{1/2} -O2 <i>p</i>	-20
Pa7 <i>p</i> _{3/2} -O2 <i>p</i>	24	Pa6 <i>p</i> _{3/2} -O2 <i>p</i>	-73
$Pa7p_{1/2}-O2s$	14	Pa6 <i>p</i> _{1/2} -O2 <i>s</i>	-2
Pa7 <i>p</i> _{3/2} -O2 <i>s</i>	22	Pa6 <i>p</i> _{3/2} -O2 <i>s</i>	-25
Pa7 <i>s</i> –O2 <i>p</i>	23	Pa6s–O2p	-22
Pa7s–O2s	21	Pa6s–O2s	-2
Pa6 <i>d</i> _{3/2} -O2 <i>p</i>	80	$\Sigma^*_{ m BBMO}$	-144
Pa6 <i>d</i> _{5/2} -O2 <i>p</i>	116	$\Sigma_{\rm MO}^*$	292

* Сумма заселенностей перекрывания для ВМО, ВВМО и МО.

фотоэффекта этих электронов существенно больше, чем у Ра7*s*-, 7*p*- и О2*p*-электронов.

Структура, обусловленная электронами BBMO (от ~15 до 50 эВ), возникает из-за сильного перекрывания Рабр и O2s AO ближайших атомов. Спектр этой области может быть разделен на пять

(5–9) компонент: $17\gamma_{6}^{-}$, $13\gamma_{7}^{-}$ (5) и $16\gamma_{6}^{-}$ (6) – "разрыхляющие" BBMO; $12\gamma_{7}^{-}$, $13\gamma_{7}^{+}$, $12\gamma_{7}^{+}$ и $16\gamma_{6}^{+}$ (7) – BBMO, содержащие квазиатомные O2s AO; $15\gamma_{6}^{-}$, $11\gamma_{7}^{-}$ (8) и $14\gamma_{6}^{-}$ (9) – формально "связывающие" BBMO.

Эти результаты лежат в основе понимания природы и особенностей химической связи и построения схемы МО для PaO₂.

Ковалентный вклад электронов валентных МО в химическую связь в PaO₂. Для оценки вклада электронов различных МО в химическую связь PaO₂ в приближении Малликена в работе методам РДВ были рассчитаны величины заселенностей перекрывания различных МО [20, 25] (табл. 1). Положительные величины заселенностей характеризуют усиление (связывание) связи, а отрицательные величины – ослабление (разрыхление) связи.

Суммарный вклад ВМО в заселенность связей PaO_2 равен 436 (как и в табл. 1, приводятся значения заселенностей связей, умноженные на 10^3 для наглядности). Наибольший вклад в усиление связи вносят электроны Pa6d-O2p (196), Pa7p-O2p (41), Pa6d-O2s (35), Pa5f-O2p (72). Электроны BBMO протактиния разрыхляют связь в PaO_2 и их общий вклад в заселенность равен -144. Наибольший вклад в разрыхление такой связи вносят электроны Pa6p-O2p (-93). В совокупности электроны BBMO (-144) на 33% ослабляют связь, обусловленную электронами BMO (436). В результате суммарный вклад валентных электронов в связь в PaO_2 в единицах заселенностей перекрывания равен 292.

Атомные валентные орбитали актиноидов и кислорода. Энергии E (эВ) валентных АО актиноидов от ₉₀Th до ₁₀₃Lr, рассчитанные методом РДВ для конфигураций основных состояний An $6s^26p^65f^{n}6d^m7s^27p^0$ (m = 0, 1, 2), за исключением An 6s AO, отражены на huc. 3. Для сравнения приведены энергии AO атома кислорода ₈O: $E(O2p_{3/2}) = 9.48$ эВ, $E(O2p_{1/2}) = 9.52$ эВ, $\Delta E_{sl}(O2p) = 0.04$ эВ; E(O2s) = 24.06 эВ, где $\Delta E_{sl}(O2p)$ – расщепление, связанное со спин-орбитальным взаимодействием O2p-электронов.

Энергии An7*s* и 7*p* AO слабо изменяются для всего ряда актиноидов, за исключением Lr, что характеризует их валентный характер. В несколько большей степени наблюдаются изменения для An6*d*, 5*f* и 6 $p_{3/2}$ AO, за исключением Lr, что также характеризует их валентный характер и эти AO

		BM	10			BB	МО		1		ОМО	
_z AnO ₂	-	B3MO**	$17\gamma_6^+$	$\frac{17\gamma_6^-13\gamma_7^-}{(5)}$	$16\gamma_6^-(7)$	$12\gamma_7^-$ (6)	$15\gamma_{6}^{-}11\gamma_{7}^{-}$ (8)	$\begin{array}{c} 14\gamma_6^- \\ (9) \end{array}$	$14\gamma_{6}^{+}$ (10)	An4 $f_{7/2}$	$\Delta E_{ m sl}({ m An4})^{***}$	Источ- ник
$_{90}$ ThO ₂	Расч.	6.44	9.26	16.98	21.39	21.60	22.79	25.50	40.84			[7]
	Экс.	4.1	9.0	16.5	21.6	21.8	23.5	25.3	41.6	334.1	9.3	
₉₁ PaO ₂	Расч.	0.48	9.20	17.82	21.62	21.60	22.97	27.20	43.71			
	Интер	I	(9.0)****	(16.7)	(20.8)	(22.1)	(23.4)	(26.7)	(44.3)	(356.8)	(10.1)	
$_{92}$ UO ₂	Расч.	1.61	9.26	18.38	21.77	21.60	23.09	28.49	45.90			[8]
	Экс.	1.1	8.9	17.2	20.0	22.3	23.3	28.0	46.9	379.7	10.8	
$_{93}NpO_2$	Расч.	3.07	9.33	18.77	21.94	21.60	23.25	29.66	47.88			[6]
	Экс.	1.9	9.1	17.2	21.0	21.9	25.7	29.1	46.9	402.8	11.7	
$_{94}$ PuO ₂	Расч.	4.01	9.31	19.21	21.95	21.60	23.38	31.18	50.45			[10]
	Экс.	2.4	9.6	17.7	19.9	22.2	24.3	29.9	49.9	425.9	12.7	
$_{95}AmO_2$	Расч.	4.67	9.32	19.50	22.01	21.60	23.49	32.27	52.30			[11]
	Экс.	3.1	9.7	18.2	20.3	21.9	25.0	31.7	50.7	449.1	14.0	
₉₆ CmO ₂	Расч.	4.72	9.43	19.74	22.08	21.60	23.65	33.10	53.64			[12]
	Экс.	4.7	9.4	18.2	22.5	22.5	25.3	34.6	I	472.5	14.7	[14]
$_{97}\mathrm{BkO}_2$	Расч.	4.10	9.45	19.94	22.13	21.60	23.79	34.19	55.48			[13]
	Экс.	4.1	9.4	18.7	22.1	22.8	25.4	34.4	I	498.9	15.9	[14]
₉₈ CfO ₂ ****	Расч.	5.10	9.38	20.05	22.05	21.60	23.78	35.36	57.65			[28]
	Экс.	I	I	20.0	I	21.6	25.3	35.5	I	523.9	(16.7)	[14]
* Энергии	4 OTHOCK	ительно $E_h(O1)$.	s = 529.9 B.									

Таблица 2. Рассчитанные (РДВ) и экспериментальные (РФЭС) энергии E* (эВ) валентных и остовных MO AnO₂

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ

том 67

№ 6 2022

ПРИРОДА ХИМИЧЕСКОЙ СВЯЗИ

821

**** В скобках приведены величины, полученные в результате интерполяции и экстраполяции соответствующих экспериментальных данных. ***** Энергии связи для CfO_2 оценены с учетом данных для Cf_2O_3 [14].

*** $\Delta E_{s}(An4f)$ – спин-орбитальное расщепление.

** B3MO – верхняя заполненная MO.

ТЕТЕРИН и др.

 ${}_{90}Th_{91}Pa_{92}U_{93}Np_{94}Pu_{95}Am_{96}Cm_{97}Bk_{98}Cf_{99}Es_{100}Fm_{101}Md_{102}No_{103}Lr$

Рис. 3. Энергии (-E, эВ) валентных АО актиноидов от ₉₀Th до ₁₀₃Lr, рассчитанные методом РДВ для конфигураций основных состояний _ZAn6s²6p⁶5fⁿ6d^m7s²7p⁰ (m = 0, 1, 2) и атома кислорода ₈O2s²2p⁴.

могут участвовать в образовании МО в диоксидах актиноидов. При этом энергия An6s AO изменяется от 45.90 эВ для Th до 70.68 эВ для Lr. Поскольку энергии $O2p_{3/2,1/2}$ и O2s уровней равны 9.48, 9.52 и 24.06 эВ соответственно, то не следует ожидать существенного участия An6s AO в образовании MO с AO кислорода. То же можно ожидать для An6 $p_{1/2}$ AO второй половины ряда актиноидов. Эти результаты находятся в согласии с данными энергий связи актиноидов, найденных в релятивистском приближении [24, 26].

Валентные и остовные (An4*f*) MO AnO₂ (An = Th-Cf). Для сравнения известных экспериментальных и теоретических спектров РФЭС валентных электронов [1–9] необходимо было провести новую одинаковую калибровку их энергий связи. Такая калибровка проведена относительно энергии связи O1*s*-электронов $E_b(O1s) = 529.9$ эВ. Поскольку разность энергий $\Delta E_b = E_b(O1s) - E_b(O2s)$ равна 508.3 эВ для атома [26], то линия электронов квазиатомной 12*g*⁻ ВВМО должна наблюдаться при 21.6 эВ. В пределах ошибки измерения

(±0.1 эВ) линия O1s-электронов должна наблюдаться при $E_b(O1s) = 529.9$ эВ в шкале, в которой для калибровочной линии C 1s-электронов насыщенных углеводородов принято значение $E_b(C 1s) = 285.0$ эВ. Соответствующие экспериментальные значения энергий связи электронов для CfO_2 получены в результате оценки с учетом данных РФЭС для Cf_2O_3 [14] путем увеличения на 1 эВ. Экспериментальные значения энергий связи валентных электронов PaO_2 получены интерполяцией, а An4*f* -электронов $Pa(Cf)O_2$ – экстраполяцией известных экспериментальных величин для AnO_2 (An = Th, U–Bk) с использованием уравнений:

$$E_{h}(\operatorname{An} 4 f_{7/2}) = 0.21255Z^{2} - 16.43351Z + 92.16, (1)$$

$$\Delta E_{\rm sl} \,({\rm An}\,4f) = 0.99Z - 76.425,\tag{2}$$

где E_b — энергия связи электронов, ΔE_{sl} —величина спин-орбитального расщепления, Z — атомный номер актиноида, а $R^2 = 0.99991$ (*R*-коэффициент корреляции).

В некоторых случаях экспериментальные величины энергий связи заметно отличаются от соответствующих теоретических значений (табл. 2). Это в большой степени связано с погрешностью (трудностью) экспериментального определения энергий связи валентных электронов, в частности

электронов 12 γ_7^- BBMO. Несмотря на это, можно заключить, что эти величины находятся в удовлетворительном качественном согласии с соответствующими рассчитанными значениями. Это

822

позволяет предположить, что рассчитанные методом РДВ теоретические спектры РФЭС валентных электронов AnO₂ (An = Pa, Es–Lr) будут удовлетворительно отражать структуру экспериментальных спектров. Величины E_b (An $4f_{7/2}$) и ΔE_{sl} (An4f) этих диоксидов будут близки реальным значениям. Поскольку погрешность определения по уравнениям (1), (2) этих величин $\leq \pm 1.0$ эВ, то они будут являться наиболее точными значениями из всех известных ранее величин [27].

ЗАКЛЮЧЕНИЕ

На основе результатов полностью релятивистского расчета электронного строения PaO_2 определена плотность состояний валентных электронов и рассчитан теоретический спектр $P\Phi \ni C$ этих электронов в диапазоне энергий связи от 0 до ~50 эВ.

Проведен анализ этого спектра с учетом экспериментальных и теоретических данных $P\Phi \ni C$ для валентных и остовных электронов AnO_2 (An = Th, U–Cf) и построена схема MO электронов PaO_2 . Эта схема необходима для понимания особенностей химической связи в PaO_2 , а также для выяснения общих закономерностей и особенностей формирования химической связи в ряду AnO_2 (An = Th–Cf).

Приведены результаты расчета энергий электронов атомных орбиталей актиноидов, из которых следует качественный вывод, что AO An 6*p*электронов имеют валентный характер и могут участвовать в образовании MO в диоксидах актиноидов.

На основании результатов сравнительного анализа характеристик теоретических и экспериментальных спектров РФЭС валентных электронов AnO₂ (An = Th-Cf) установлено удовлетворительное согласие между такими спектрами. Это позволяет предположить, что рассчитанные методом РДВ спектры РФЭС валентных электронов AnO₂ (An = Pa, Es-Lr) также будут отражать сложную структуру их экспериментальных спектров.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа поддержана грантом РФФИ № 20-03-00333.

ДОПОЛНИТЕЛЬНЫЕ МАТЕРИАЛЫ

Таблица S1. Заселенности и энергии E_0 (эВ) МО

кластера PaO_8^{12-} (D_{4h}) для $r_{Pa-O} = 0.2385$ нм (РДВ) и сечения фотоэффекта σ_i .

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Химия актинидов. Т. 1. / Под ред. Кац Дж., Сиборг Г., Морсс Л. Пер. на рус. под ред. Мясоедова Б.Ф., М.: Мир, 1991.
- Roberts L.E.J., Walter A.J. // Physico-Chimie du Protactinium / Eds. Bouissieres G., Mixart R. Orsay. 2–8 July 1965. Centre National de la Recherche Scientifique. Paris, 1966. P. 51.
- Sellers P.A., Fried S., Elson R.E., Zachariasen W.H. // J. Am. Chem. Soc. 1954. V. 76. № 23. P. 5935. https://doi.org/10.1021/ja01652a011
- Krause M.O., Haire R.G., Keski-Rahkonen O., Peterson J.R. // J. Electr. Spectrosc. Relat. Phenom. 1988. V. 47. P. 215. https://doi.org/10.1016/0368-2048(88)85013-8
- Prodan I.D., Scuseria G.E., Martin R.L. // Phys. Rev. B. 2007. V. 76. P. 033101. https://doi.org/10.1103/PhysRevB.76.033101
- Wen X.-D., Martin R.L., Henderson T.M., Scuseria G.E. // Chem. Rev. 2013. V. 113. P. 1063. https://doi.org/10.1021/cr300374y
- Teterin A.Y., Ryzhkov M.V., Teterin Y.A. et al. // Radiochemistry. 2009. V. 51. P. 560. [Тетерин А.Ю., Рыжков М.В., Тетерин Ю.А. и др. // Радиохимия. 2009. Т. 51. № 6. С. 489]. https://doi.org/10.1134/ S1066362209060022
- Maslakov K.I., Teterin Yu.A., Ryzhkov M.V. et al. // Int. J. Quantum Chem. 2019. V. 119. № 24. P. e26040. https://doi.org/10.1002/qua.26040
- Teterin Yu.A., Teterin A.Yu., Ivanov K.E. et al. // Phys. Rev. B. 2014. V. 89. P. 035102. https://doi.org/10.1103/PhysRevB.89.035102
- Teterin Yu.A., Maslakov K.I., Teterin A.Yu. et al. // Phys. Rev. B. 2013. V. 87. P. 245108. https://doi.org/10.1103/PhysRevB.87.245108
- 11. Teterin Y.A., Maslakov K.I., Ryzhkov M.V. et al. // Nuclear Technol. Radiation Protection. 2015. V. 30. № 2. P. 83. https://doi.org/10.2298/NTRP1502083T
- Putkov A.E., Teterin Y.A., Ryzhkov M.V. et al. // Radiochemistry. 2021. V. 63. № 4. Р. 401. [Путков. А.Е., Тетерин Ю.А., Рыжков М.В., и др. // Радиохимия. 2021. Т. 63. № 4. С. 309] https://doi.org/10.1134/S1066362221040020
- Putkov A.E., Teterin Y.A., Ryzhkov M.V. et al. // Russ. J. Phys. Chem. A. 2021. V. 95. № 6. Р. 1169. [Путков А.Е., Тетерин Ю.А., Рыжков М.В. и др. // Журн. физ. химии. 2021. Т. 95. № 6. С. 908] https://doi.org/10.1134/S0036024421060212
- 14. Veal B.W., Lam D.J., Diamond H., Hoekstra H.R. // Phys. Rev. B. 1977. V. 15. № 6 P. 2929. https://doi.org/10.1103/PhysRevB.15.2929
- Rosen A., Ellis D.E. // J. Chem. Phys. 1975. V. 62. P. 3039. https://doi.org/10.1063/1.430892

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 6 2022

- Ellis D.E., Goodman G.L. // Int. J. Quant. Chem. 1984.
 V. 25. P. 185. https://doi.org/10.1002/qua.560250115
- Gunnarsson O., Lundqvist B.I. // Phys. Rev. B. 1976.
 V. 13. P. 4274. https://doi.org/10.1103/PhysRevB.13.4274
- Teterin Yu.A., Gagarin S.G. // Russ. Chem. Rev. 1996. V. 65. P. 825.
- Teterin Yu.A., Teterin A.Yu. // Russ. Chem. Rev. 2004. V. 73. P. 541.
- Kelly P.J., Brooks M.S., Allen R. // J. Physique. 1979.
 V. 40. № C4. P. 184. https://doi.org/10.1051/jphyscol:1979458
- Gubanov V.A., Rosen A., Ellis D.E. // J. Phys. Chem. Solids. 1979. V. 40. P. 17. https://doi.org/10.1016/0022-3697(79)90090-8
- Maslakov K.I., Teterin Yu.A., Ryzhkov M.V. et al. // Phys. Chem. Chem. Phys. 2018. V. 20. № 23. P. 16167. https://doi.org/10.1039/C8CP01442F

- 23. Yarzhemsky V.G., Teterin A.Yu., Teterin Yu.A., Trzhaskovskaya M.B. // Nuclear Technol. Radiation Protection. 2012. V. 27. P. 103. https://doi.org/10.2298/NTRP1202103Y
- 24. Huang K.N., Aoyagi M., Chen M.N., Crasemann B., Mark H. // At. Data Nucl. Data Tables. 1976. V. 18. P. 243. https://doi.org/10.1016/0092-640X(76)90027-9
- 25. *Mulliken R.S.* // Annu. Rev. Phys. Chem. 1978. V. 29. P. 1.
- https://doi.org/10.1146/annurev.pc.29.100178.000245 26. *Trzhaskovskaya M.B., Yarzhemsky V.G. //* Atom. Data
- Nucl. Data. 2018. V. 119. P. 99. https://doi.org/10.1016/j.adt.2017.04.003
- Sevier K.D. // Atomic Data and Nuclear Data Tables. 1979. V. 24. P. 323. https://doi.org/10.1016/0092-640X(79)90012-3
- 28. Путков А.Е., Маслаков К.И., Тетерин Ю.А. и др. // Журн. структ. химии. 2021. V. 62 № 12. Р. 1963. https://doi.org/10.26902/JSC_id83848