СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕЛИНЕНИЙ

УДК 547.1+546.46+546.62+546.83

Zr(Hf)-ОКСАНМАГНИЙОКСАНАЛЮМОКСАНЫ — ПРЕДШЕСТВЕННИКИ МОДИФИЦИРОВАННОЙ АЛЮМОМАГНИЕВОЙ КЕРАМИКИ

© 2022 г. Г. И. Щербакова^{а, *}, А. С. Похоренко^а, П. А. Стороженко^а, М. С. Варфоломеев^{а, b}, А. И. Драчев^а, Д. Д. Титов^c, А. А. Ашмарин^c

^а Государственный научно-исследовательский институт химии и технологии элементоорганических соединений, ш. Энтузиастов, 38, Москва, 105118 Россия

> ^b Московский авиационный институт (национальный исследовательский университет), Волоколамское ш., 4, Москва, 125080 Россия

^c Институт металлургии и материаловедения им. А.А. Байкова, Ленинский пр-т, 49, Москва, 119991 Россия *e-mail: galina7479@mail.ru

> Поступила в редакцию 30.09.2021 г. После доработки 10.11.2021 г. Принята к публикации 15.11.2021 г.

Синтезированы Zr(Hf)-оксанмагнийоксаналюмоксановые олигомеры — предшественники модифицированной алюмомагниевой керамики. Изучены физико-химические свойства Zr(Hf)-оксанмагнийоксаналюмоксанов и образцов керамики на их основе. Предложены расчетные модели группового и элементного состава олигомерных молекул Zr(Hf)-содержащих магнийоксаналюмоксанов. Методами рентгенофазового анализа и сканирующей электронной микроскопии доказано, что пиролиз металлоксанмагнийоксаналюмоксанов при 1500°С приводит к образованию высокочистой мелкокристаллической керамики шпинельного состава, модифицированной оксидами тугоплавких металлов. Показано, что Zr(Hf)-оксанмагнийоксаналюмоксаны являются предшественниками высокочистой, высокотермостойкой алюмомагниевой керамики, модифицированной оксидами циркония или гафния.

Ключевые слова: органоалюмоксаны, ацетилацетонаты циркония и гафния, керамообразующая и волокнообразующая керамика, шпинель

DOI: 10.31857/S0044457X22050166

ВВЕДЕНИЕ

Керамика на основе алюмомагниевой шпинели $\mathrm{MgAl}_2\mathrm{O}_4$ широко применяется для создания оптически прозрачных [1–5], термостойких [6], каталитически активных [7], электротехнических [8, 9], химически, коррозионно и радиационно стойких изделий [10]. При этом чем выше чистота используемых сырьевых материалов, тем более уникальными свойствами обладают получаемые на их основе керамокомпозиты [11–13].

Получение высокочистой алюмомагниевой шпинели с высокой реакционной способностью методом обжига механических смесей оксидов и/или солей [14] имеет ряд недостатков: высокие температуры синтеза и большое количество операций (измельчение, смешивание, последовательный обжиг) [15—17], что загрязняет получаемые материалы [18—20]. Механическая активация инициирует механохимическую реакцию и приводит к образованию шпинели при гораздо более

низких температурах, чем в неактивированных порошках [21].

Шпинель $MgAl_2O_4$ получают и по золь-гель технологии [22–24], однако в настоящее время наиболее перспективными считаются керамообразующие элементоорганические поли(олиго)меры, позволяющие получать высокочистую керамику по "полимерной" технологии [25, 26].

Соконденсацией органоалюмоксанов и (асас) $_2$ Мg синтезированы гидролитически устойчивые на воздухе и растворимые в органических растворителях керамообразующие органомагнийоксаналюмоксаны с мольным соотношением Al : Mg \sim \sim 2 : 1, термотрансформация которых уже при 900°C приводит к образованию алюмомагниевой шпинели MgAl $_2$ O $_4$ [27].

Известно, что ZrO_2 как основная или второстепенная фаза повышает вязкость разрушения и прочность на изгиб $MgAl_2O_4$. В целом такой мате-

№	Доля, %	Вещество	Химический состав, мас. %				с, мас. % (ТГА)
			С	Н	Al	ОН	Al_2O_3
Этилацетоацетатэтоксигидроксиалюмоксан			38.08	6.78	18.52	6.20	35.09
Вычисленные эмпирические формулы							
1	50	$C_{20}H_{40}O_{14}Al_4$	39.22	6.54	17.65	5.56	33.33
2	50	$C_{22}H_{45}O_{16}Al_5$	37.71	6.43	19.29	4.86	36.43
Усредненное значение		38.47	6.49	18.47	5.21	34.89	

Таблица 1. Результаты элементного и термогравиметрического анализа этилацетоацетатэтоксигидроксиалюмоксана и эмпирические формулы основных олигомерных фрагментов

риал проявляет лучшую термостойкость и химическую инертность, чем чистая алюмомагниевая шпинель [28].

Нами впервые синтезированы растворимые в органических растворителях керамообразующие Zr(Hf)-оксанмагнийоксаналюмоксановые олигомеры, термотрансформация которых приводит к образованию высокочистой нанокристаллической многокомпонентной керамики шпинельного состава, модифицированной оксидами тугоплавких металлов [29].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Соконденсацией этилацетоацетатэтоксигидроксиалюмоксана (основные олигомерные фрагменты представлены в табл. 1 [30, 31]), ацетилацетоната магния и ацетилацетоната тугоплавкого металла (Zr или Hf) в среде органического растворителя синтезировали олигомерные Zr(Hf)-оксанмагнийоксаналюмоксаны с мольным отношением Al/Mg ~ 2 и Al/Zr(Hf) ~ 40—400 по реакции (1):

$$\left[\text{Al} \left(\text{OR} \right)_{s} \left(\text{OR*} \right)_{x} \left(\text{OH} \right)_{p} \text{O}_{q} \right]_{m} + k(\text{R**O})_{2} \text{Mg} + p(\text{R**O})_{4} \text{M} \rightarrow \\ \rightarrow \left[\left(\text{R**O} \right) \text{MgO} \right]_{k} \cdot \left[\text{Al} \left(\text{OR} \right)_{l} \left(\text{OR**} \right)_{g} \left(\text{OR*} \right)_{x} \left(\text{OH} \right)_{z} \text{O}_{y} \right]_{m} \cdot \left[\left(\text{R**O})_{3} \text{MO} \right]_{p} + \left(s - l \right) \text{ROH},$$

где k = 2-3, p = 0.01-0.1, m = 4-6; k/m + p/m + l + g + x + 2y + z = 3;

$$M = Zr, Hf; R = C_2H_5;$$

 $R^* = C(CH_3) = CHC(O)OC_2H_5;$ (1)
 $R^{**} = C(CH_3) = CHC(O)CH_3.$

Синтез осуществляли следующим образом: к раствору олигомерного этилацетоацетатэтоксигидроксиалюмоксана [31] в органическом растворителе (этиловый спирт, толуол) порционно добавляли заданное количество (асас)₂Мg в течение 1 ч при постоянном перемешивании и температуре 70—80°С. Далее реакционную массу выдерживали при постоянном перемешивании в течение 1—2 ч при 70—80°С. Затем порционно при перемешивании добавляли заданное количество ацетилацетоната металла (Zr или Hf) и выдерживали 1—1.5 ч при температуре 70—80°С. Потом отгоняли растворитель сначала при атмосферном давлении, а затем при пониженном давлении и температуре до 100°С, охлаждали до комнатной температуре до 100°С, охлаждали до комнатной темпе

ратуры и отбирали пробы металлоксанмагнийоксаналюмоксана на анализ (ЯМР, ИК, ТГА, СЭМ и элементный анализ).

Содержание алюминия определяли трилонометрически, содержание магния — спектрофотометрически на атомно-абсорбционном спектрофотометре Spectr AA 240 FS KBr, содержание тугоплавкого металла (Zr или Hf) — рентгенофлуоресцентным методом на приборе Спектроскан Макс-GVM. Содержание углерода и водорода определяли гравиметрическим методом — сожжением навески в токе кислорода на газоанализаторе Eurovector EA3000, количество гидроксильных групп — газометрическим методом.

ИК-спектры Zr(Hf)-оксанмагнийоксаналюмоксанов регистрировали на приборе Nicolet iS50R в интервале 400-4000 см $^{-1}$ с помощью универсальной приставки однократного $H\Pi BO$ Smart iTR (кристалл — алмаз).

Спектры ЯМР на ядрах 1 H, 13 C, 27 Al измеряли для растворов Zr(Hf)-оксанмагнийоксаналюмоксанов в дейтерохлороформе (CDCl₃) на спектрометре ЯМР Avance-600 фирмы Bruker. Рабочая частота на протонах 600.13 МГц, внешний эталон — $[Al(H_2O)_6]_3^+$.

Термогравиметрический анализ (TTA) Zr(Hf)оксанмагнийоксаналюмоксанов проводили на приборе TGA/SDTA 851 Mettler Toledo при нагревании до 1100°C со скоростью 10 град/мин в атмосфере воздуха.

Пиролиз Zr(Hf)-оксанмагнийоксаналюмоксанов проводили в электропечи сопротивления СНОЛ 12/16 при 700, 900 и 1500°С в атмосфере воздуха.

Изучение морфологии поверхности и элементного состава Zr(Hf)-оксанмагнийоксаналюмоксанов и образцов керамики на их основе осуществляли с использованием сканирующих электронных микроскопов FEI Quanta 250 и Philips SEM505, последний оснащен энергодисперсионным детектором SAPHIRE Si(Li) SEM10 и системой захвата изображения Micro Capture SEM3.0M. В связи с высокими диэлектрическими свойствами исследуемых образцов проводили их напыление золотом.

Кроме того, морфологию поверхности и картирование по элементному составу с наложением элементов на одной карте проводили на сканирующем электронном микроскопе Tescan Mira LMU, оснащенном энергодисперсионным рентгеновским спектрометром INCA X_MAX-50 Oxford Instruments. Учитывая высокие диэлектрические свойства синтезированных олигомеров, их исследование проводили в режиме низкого вакуума (азот, давление паров 30 Па). Изучение керамических образцов осуществляли в режиме высокого вакуума без напыления, используя низкие значения токов зонда и ускоряющих напряжений (до 5—10 кВ).

Исследование поверхности и пористости порошков, полученных в результате пиролиза олигомеров при 700°С, проводили на установке TriStar 3000 фирмы Micromeritics по кривым адсорбции—десорбции азота. Удельную поверхность определяли методом Брунаура—Эммета-Теллера (БЭТ).

Рентгенофазовый анализ образцов керамики проводили на вертикальном рентгеновском дифрактометре Shimadzu XRD-6000 при комнатной температуре в монохроматизированном медном излучении с длиной волны $\lambda_{\text{Коср}} = (2\lambda_{\text{Ко1}} + \lambda_{\text{Ко2}})/3 = 1.54178$ Å. Кристаллические фазы идентифицировали по банку данных ICDD PDF-2 2003 г.

Определение характеристических температур (размягчения (t_1) , волокнообразования (t_2) , рас-

плава (t_3)) проводили по методу, разработанному в ГНИИХТЭОС [32].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

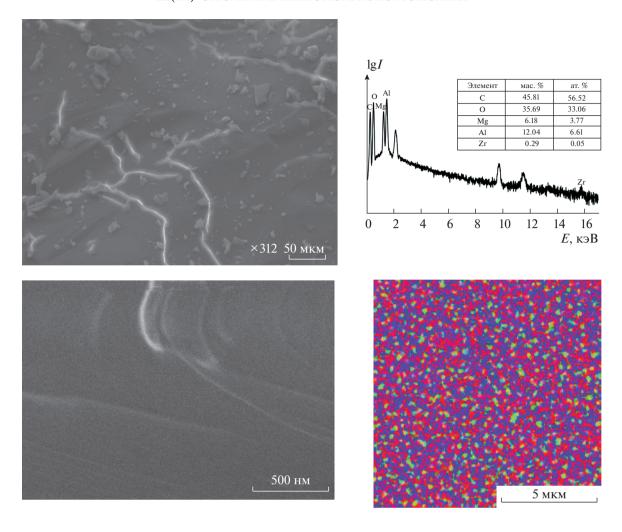
Проведен синтез олигомерных Zr(Hf)-оксанмагнийоксаналюмоксанов — предшественников модифицированной алюмомагниевой керамики шпинельного состава, модифицированной оксидами тугоплавких металлов, с мольным отношением $Al/Mg \sim 2$ и $Al/Zr(Hf) \sim 50-250$.

Zr(Hf)-оксанмагнийоксаналюмоксаны в зависимости от вводимого металла и мольного отношения Al/M (M=Zr,Hf) представляют собой хрупкие стеклообразные вещества от светло-желтого до красно-оранжевого цвета.

Zr(Hf)-оксанмагнийоксаналюмоксановые олигомеры рентгеноаморфны, поэтому невозможно установить реальную молекулярную структуру их олигомерных фрагментов, однако наличие приведенных структурных единиц в общей формуле (1) подтверждается данными ИК, ЯМР ¹H, ¹³C, ²⁷Al, СЭМ, ТГА и элементного анализа.

Данные элементного анализа приведены в табл. 2. Они достаточно хорошо совпадают с вычисленными значениями по элементному составу для рассчитанных эмпирических формул.

Интерпретация наблюдаемых полос поглощения в ИК-спектрах Zr(Hf)-оксанмагнийоксаналюмоксанов несколько затруднена из-за схожести ИК-спектров исходных этилацетоацетат-этоксигидроксиалюмоксана [30, 31] и ацетилацетонатов магния [33], циркония и гафния [34, 35].


Однако в ИК-спектрах Zr(Hf)-оксанмагний-оксаналюмоксанов наблюдается целый ряд полос поглощения в области $400-700~{\rm cm^{-1}}$, которые можно отнести к колебаниям связей M-O, Mg-O, Al-O и, возможно, M-O-Al или Mg-O-Al, в отличие от ИК-спектра этилацето-ацетатэтоксигидроксиалюмоксана [30, 31], в котором в области $400-700~{\rm cm^{-1}}$ наблюдается одна широкая полоса с максимумом при \sim 619 см $^{-1}$, характерная для ν (Al-O₆).

В спектрах ЯМР 1 Н растворов Zr(Hf)-оксанмагнийоксаналюмоксанов в $CDCl_{3}$ наблюдаются сигналы метильных протонов этокси- и ацетоксигрупп при $0.9{-}1.5$ и $1.7{-}2.3$ м.д. соответственно, метиленовых протонов этоксигрупп при $3.4{-}4.3$ м.д. и метиновых протонов (CH=)-групп при $4.9{-}5.5$ м.д.

Спектры ЯМР 13 С растворов Zr(Hf)-оксанмагнийоксаналюмоксанов в CDCl₃ содержат сигналы метильных атомов углерода этокси- и ацетоксигрупп при 13-21 и 24-30 м.д. соответственно,

Таблица 2. Результаты элементного и термогравиметрического анализа Zr(Hf)-оксанмагний оксаналюмок санов

Доля, \Re Betweethouse and the control of the control		табинца 2. гозультаты элементного и термогравиметрического анализа 2. гозультаты пиновеаналюмовсанов Xимический состав, мас. %	равимстричество	хого анализа д	Химический состав, мас. %	octab, Mac. %	acarron of the state of the sta		с, мас. % (ТГА)
не формулы 43.10 6.03 12.04 6.18 0.29 4.20 Al ₄ Mg ₂ 39.22 6.54 17.65 — — 5.56 Al ₄ Mg ₂ 42.29 5.29 1.89 5.29 — 5.56 Al ₄ Mg ₂ 42.29 5.34 12.65 — 8.53 1.59 no characenne 42.20 5.36 12.07 4.92 0.26 3.74 anantowoxcari 45.90 6.70 11.14 4.25 0.39 0.90 no chomystal 45.90 6.70 11.14 4.25 0.39 0.90 Al ₄ Mg ₂ 44.81 5.81 11.20 4.98 — 5.56 Al ₄ Mg ₂ 44.81 5.84 11.41 4.53 0.43 0.30 Al ₄ Mg ₂ 44.81 5.84 11.41 4.53 0.43 0.30 Al ₄ Mg ₂ 45.9 6.40 12.40 3.78 1.07 1.08 Al ₄ Mg ₂ 38.7	Доля, %	Вещество	C	Н	Al	Mg	Zr	НО	$Al_2O_3 + MgO + + ZrO_2$
не формулы 39.22 6.54 17.65 — — 5.56 Ал,Ма ₂ 42.29 5.29 11.89 5.29 — 5.56 Ал,Ма ₂ 42.20 5.34 12.65 — 8.53 1.59 но е эначение 42.20 5.36 12.07 4.92 0.26 3.75 не формулы 45.90 6.70 11.14 4.25 0.39 0.90 не формулы 39.22 6.54 17.65 — 8.64 1.59 не формулы 44.51 5.84 11.41 4.53 0.43 0.30 иго оначение 44.51 5.81 11.20 4.98 — 5.66 Ал,Ма ₂ 33.74 4.94 11.69 — 8.64 1.08 Ал,Ма ₂ 37.4 4.98 — 0.43 0.30 не формулы 43.30 5.60 10.88 4.85 0.27 3.74 Ад,Ма ₂ 42.29 5.29 —	Цирконийоксан c Al/Mg ~ 2; Al/.	нмагнийоксаналюмоксан $Zr \sim 150 (1)$	43.10	6.03	12.04	6.18	0.29	4.20	29.95
Λ1 ₄ 39.22 6.54 17.65 — — 5.56 Λ1 ₄ Mg ₂ 42.29 5.29 11.89 5.29 — 5.56 Λ1 ₅ Zr 40.49 5.34 12.65 — 8.53 1.59 noe эначение 42.20 5.36 12.07 4.92 0.26 3.75 аналюмоксан 45.90 6.70 11.14 4.25 0.39 0.90 ne формульы 39.22 6.54 17.65 — — 5.56 Al ₄ Mg ₂ 44.81 5.81 11.20 4.98 — 5.56 Ninowokcaн 42.90 6.40 12.40 3.78 1.07 1.08 Al ₄ Mg ₂ 44.81 5.81 11.2 4.98 — 6.56 Al ₄ Mg ₂ 44.81 5.81 11.2 4.98 — 6.56 Al ₄ Mg ₂ 44.81 5.81 11.69 — 6.79 — 5.56 Al ₄ Mg ₂ 42.29 <	Вычисленные э	мпирические формулы	_	_	-	-	-		_
А14М82 42.29 5.29 11.89 5.29 — 3.74 А14Дг 40.49 5.34 12.65 — 8.53 1.59 пое значение 42.20 5.34 12.65 — 8.53 1.59 пое значение 45.90 6.70 11.14 4.25 0.26 3.75 не формулы 39.22 6.54 17.65 — 8.64 1.59 А14Мг 43.30 5.89 10.26 — 8.64 1.59 пое значение 44.51 5.81 11.41 4.53 0.43 0.30 пое значение 44.51 5.84 11.41 4.53 0.43 0.30 пое значение 44.51 5.84 11.41 4.53 0.43 0.30 А14Мг 3.74 4.94 11.69 — 4.98 — 0.30 А14Мг 3.74 4.94 11.69 — 4.88 0.27 3.74 А14Мг 3.22	4	$C_{20}H_{40}O_{14}AI_{4}$	39.22	6.54	17.65	ı	ı	5.56	33.34
AlyZr 40.49 5.34 12.65 — 8.53 1.59 ное значение 42.20 5.36 12.07 4.92 0.26 3.75 аналюмоксан 45.90 6.70 11.14 4.25 0.39 0.90 ке формулы 39.22 6.54 17.65 — 8.64 1.59 AlyMes 44.81 5.81 11.20 4.98 — 8.64 1.59 AlyMes 44.51 5.84 11.41 4.53 0.43 0.30 AlyMes 44.51 5.84 11.41 4.53 0.43 0.30 AlyMes 44.51 5.84 11.41 4.53 0.43 0.30 AlyMes 44.81 5.81 11.20 4.98 — 0 0 AlyMes 44.81 5.81 11.69 — 8.64 1.09 1.10 AlyMes 43.30 5.60 10.88 4.88 0.27 3.74 AlyMes	93	$C_{32}H_{48}O_{20}AI_4Mg_2$	42.29	5.29	11.89	5.29	I	3.74	31.28
метромоксан 45.20 5.36 12.07 4.92 0.26 3.75 аналюмоксан 45.90 6.70 11.14 4.25 0.39 0.90 п. 4.2 м. 4.81 5.81 11.20 4.98 — 6.40 1.59 0.30 п. 4.2 м. 4.81 5.81 11.2 4.98 — 6.40 1.07 1.08 п. 4.3 м. 4.81 5.81 11.2 4.98 — 0 1.35 1.47 1.09 1.10 1.10 1.10 1.10 1.10 1.10 1.1	3	$C_{36}H_{57}O_{22}AI_5Zr$	40.49	5.34	12.65	I	8.53	1.59	35.41
аналюмоксан формулы 45.90 6.70 11.14 4.25 0.39 0.90 Re формулы Al ₄ M& ₂ 39.22 6.54 17.65 — — 5.56 Al ₄ M& ₂ 44.81 5.81 11.20 4.98 — 0.0 Al ₄ M& ₂ 44.81 5.84 11.20 4.98 — 0.30 Al ₄ AZr 44.51 5.84 11.41 4.53 0.43 0.30 Al ₄ AZr 44.51 5.84 11.41 4.53 0.43 0.30 Al ₄ AZr 42.90 6.40 12.40 3.78 1.07 1.08 Al ₄ M& ₂ 38.71 6.3 19.79 — — 0 Al ₄ M& ₂ 37.4 4.94 11.69 — 15.5 1.47 Al ₄ M& ₂ 35.8 12.40 3.74 1.09 1.10 Al ₄ M& ₂ 39.22 6.54 17.65 — — 5.56 Al ₄ M& ₂ 39.22 6.54<	100	Усредненное значение	42.20	5.36	12.07	4.92	0.26	3.75	31.35
Al ₄ ME ₂ 39.22 6.54 17.65 — — 5.56 Al ₄ ME ₂ 44.81 5.81 11.20 4.98 — 0 Al ₄ Zr 43.30 5.89 10.26 — 8.64 1.59 Al ₄ Zr 43.30 5.89 10.26 — 8.64 1.59 Al ₄ Zr 44.51 5.84 11.41 4.53 0.43 0.30 Al ₄ Me ₂ 44.51 5.84 11.41 4.53 0.43 0.30 Al ₄ Me ₂ 44.81 5.81 11.24 3.78 1.07 1.08 Al ₄ Me ₂ 44.81 5.81 11.69 — — 0 Al ₄ Me ₂ 44.81 5.88 12.40 3.74 1.09 1.10 Al ₄ Me ₂ 43.30 5.60 10.88 4.85 0.27 3.85 Al ₄ Me ₂ 44.81 5.81 11.20 4.98 — 0 Al ₄ Me ₂ 44.81 5.81	Цирконийоксан $cAl/Mg \sim 2$; Al/	нагнийоксаналюмоксан $Z_{\rm r} \sim 50$ (2)	45.90	6.70	11.14	4.25	0.39	0.90	26.02
Al ₄ Mg ₂ 39.22 6.54 17.65 - - 5.56 Al ₄ Mg ₂ 44.81 5.81 11.20 4.98 - 0 Al ₄ Zr 43.30 5.89 10.26 - 8.64 1.59 toc значение 44.51 5.84 11.41 4.53 0.43 0.30 stroomoncal 42.90 6.40 12.40 3.78 1.07 1.08 Al ₅ Mg ₂ 38.71 6.3 19.79 - - 0 Al ₄ Mg ₂ 44.81 5.81 11.2 4.98 - 0 Al ₄ Mg ₂ 44.81 5.81 11.69 - 1.69 - Al ₄ Mg ₂ 43.29 5.60 10.88 4.85 0.27 3.85 Al ₄ Mg ₂ 42.29 5.29 - - 5.56 - Al ₄ Mg ₂ 44.81 5.81 11.20 4.98 - 0 Al ₄ Mg ₂ 44.81 5.83 11.89	Вычисленные э	мпирические формулы	-	-	_	_	-		_
Al ₄ Mg ₂ 44.81 5.81 11.20 4.98 — 0 Al ₄ Zr 43.30 5.89 10.26 — 8.64 1.59 toe значение 44.51 5.84 11.41 4.53 0.43 0.30 sunomokcah 42.90 6.40 12.40 3.78 1.07 1.08 Al ₅ Mg ₂ 38.71 6.3 19.79 — — 0 Al ₄ Mg ₂ 44.81 5.81 11.2 4.98 — 0 Al ₅ Hf 37.4 4.94 11.69 — 15.5 1.47 noe значение 43.29 5.88 12.40 3.74 1.09 1.10 Al ₄ Mg ₂ 39.22 6.54 17.65 — — 6.56 Al ₄ Mg ₂ 44.81 5.81 11.20 4.98 — 0 Al ₄ Mg ₂ 39.96 5.29 — 6.54 0.71 3.74 Al ₄ Mg ₂ 39.96 5.58 11.91	4	$C_{20}H_{40}O_{14}AI_{4}$	39.22	6.54	17.65	1	1	5.56	33.34
Аl ₄ Zr 43.30 5.89 10.26 — 8.64 1.59 ное значение ное значение формулы се формулы се формулы в формулы 44.51 5.84 11.41 4.53 0.43 0.30 не формулы се формулы се формулы се формулы зниомоксан дам дение в за	91	$C_{36}H_{56}O_{20}AI_4Mg_2$	44.81	5.81	11.20	4.98	I	0	29.46
осе значение 44.51 5.84 11.41 4.53 0.43 0.30 лиомоксан 42.90 6.40 12.40 3.78 1.07 1.08 Als 4.90 - - - 0 - Als Mb2 44.81 5.81 11.2 4.98 - 0 0 Als Mb2 44.81 5.81 11.29 - 15.5 1.47 0 Als Mb2 33.4 4.94 11.69 - 15.5 1.47 1.09 Als Mb2 5.60 10.88 4.85 0.27 3.85 1.10 Als Mb2 42.29 5.50 11.89 5.29 - 5.56 Als Mb2 44.81 5.81 11.20 4.98 - 0 1.49 Als Mb2 5.59 4.78 0.31 2.31 2.31 2.31 Als Mb2 5.59 - - 0.31 2.31 3.34 Als Mb2 5.58<	5	$C_{38}H_{62}O_{21}AI_4Zr$	43.30	5.89	10.26	I	8.64	1.59	35.41
антомоксан ве формулы 42.90 6.40 12.40 3.78 1.07 1.08 Als 38.71 6.3 19.79 — — 0 Als Mb2 44.81 5.81 11.2 4.98 — 0 Als Mb2 44.81 5.81 11.2 4.98 — 0 Als Hf 37.4 4.94 11.69 — 15.5 1.47 Als Mb2 5.88 12.40 3.74 1.09 1.10 Als Mb2 43.30 5.60 10.88 4.85 0.27 3.85 Als Mb2 42.29 5.29 11.89 5.29 — 5.56 Als Mb2 44.81 5.81 11.20 4.98 — 0 Als Mb2 5.39 5.47 — 0 1.49 Als Mb2 5.58 11.91 4.74 0.31 2.31	100	Усредненное значение	44.51	5.84	11.41	4.53	0.43	0.30	29.68
Als 38.71 6.3 19.79 — — — 0 Al ₄ Mg ₂ 44.81 5.81 11.2 4.98 — 0 Al ₄ Mg ₂ 44.81 5.81 11.69 — 15.5 1.47 Hoe значение 43.29 5.88 12.40 3.74 1.09 1.10 Alue значение 43.30 5.60 10.88 4.85 0.27 3.85 Al ₄ 39.22 6.54 17.65 — — 5.56 Al ₄ Mg ₂ 42.29 5.29 11.89 5.29 — 0 Al ₄ Mg ₂ 44.81 5.81 11.20 4.98 — 0 Al ₄ Mg ₂ 43.96 5.43 9.47 — 15.69 1.49 Al ₄ Hf 39.96 5.58 11.91 4.74 0.31 2.31	Γ афнийоксанме c Al/Mg ~ 2 ; Al/	тнийоксаналюмоксан Нf ~ 80 (3)	42.90	6.40	12.40	3.78	1.07	1.08	33.21
Al ₅ 38.71 6.3 19.79 — — 0 Al ₄ Mg ₂ 44.81 5.81 11.2 4.98 — 0 Al ₅ Hf 37.4 4.94 11.69 — 15.5 1.47 ное значение 43.29 5.88 12.40 3.74 1.09 1.10 вотомомскан 43.30 5.60 10.88 4.85 0.27 3.85 Al ₄ 39.22 6.54 17.65 — — 5.56 Al ₄ Mg ₂ 42.29 5.29 11.89 5.29 — 0 Al ₄ Mg ₂ 44.81 5.81 11.20 4.98 — 0 Al ₄ Mg ₂ 5.43 9.47 — 15.69 1.49 ное значение 43.07 5.58 11.91 4.74 0.31 2.31	Вычисленные э	мпирические формулы	-	-	_	_	_		_
Аl ₄ Mg ₂ 44.81 5.81 11.2 4.98 — 0 Al ₅ Hf 37.4 4.94 11.69 — 15.5 1.47 ное значение 43.29 5.88 12.40 3.74 1.09 1.10 ное значение 43.29 5.60 10.88 4.85 0.27 3.85 Al ₄ 39.22 6.54 17.65 — — 5.56 Al ₄ Mg ₂ 42.29 5.29 11.89 5.29 — 37.4 Al ₄ Mg ₂ 44.81 5.81 11.20 4.98 — 0 Al ₄ Hf 39.96 5.43 9.47 — 15.69 1.49 Al ₄ Hf 43.07 5.58 11.91 4.74 0.31 2.31	18	$C_{22}H_{43}O_{15}AI_{5}$	38.71	6.3	19.79	ı	ı	0	37.38
Al ₅ Hf 37.4 4.94 11.69 — 15.5 1.47 ное значение 43.29 5.88 12.40 3.74 1.09 1.10 влюмоксан 43.30 5.60 10.88 4.85 0.27 3.85 Al ₄ 39.22 6.54 17.65 — — 5.56 Al ₄ Mg ₂ 42.29 5.29 11.89 5.29 — 3.74 Al ₄ Mg ₂ 44.81 5.81 11.20 4.98 — 0 Al ₄ Hf 39.96 5.43 9.47 — 15.69 1.49 Al ₄ Hf 43.07 5.58 11.91 4.74 0.31 2.31	75	$C_{36}H_{56}O_{20}Al_4Mg_2$	44.81	5.81	11.2	4.98	I	0	29.46
ное значение 43.29 5.88 12.40 3.74 1.09 1.10 элюмоксан 43.30 5.60 10.88 4.85 0.27 3.85 не формулы 39.22 6.54 17.65 — — 5.56 Al ₄ Mg ₂ 42.29 5.29 11.89 5.29 — 5.56 Al ₄ Mg ₂ 44.81 5.81 11.20 4.98 — 0 Al ₄ Mg ₂ 39.96 5.43 9.47 — 15.69 1.49 Al ₄ Hf 39.96 5.58 11.91 4.74 0.31 2.31	7	$C_{36}H_{57}O_{22}AI_5Hf$	37.4	4.94	11.69	I	15.5	1.47	40.32
аномоксан 43.30 5.60 10.88 4.85 0.27 3.85 4 46.81 4 42.30 5 5.60 4 10.88 4 4.85 4 6.54 4 17.65 4 $^{$	100	Усредненное значение	43.29	5.88	12.40	3.74	1.09	1.10	30.92
39.22 6.54 17.65 — — 5.56 42.29 5.29 11.89 5.29 — 3.74 44.81 5.81 11.20 4.98 — 0 39.96 5.43 9.47 — 15.69 1.49 a 43.07 5.58 11.91 4.74 0.31 2.31	Γ афнийоксанме c Al/Mg ~ 2 ; Al/	тнийоксаналюмоксан Нf ~ 250 (4)	43.30	5.60	10.88	4.85	0.27	3.85	28.60
C ₂₀ H ₄₀ O ₁₄ Al ₄ 39.22 6.54 17.65 — — 5.56 C ₃₀ H ₄₈ O ₂₀ Al ₄ Mg ₂ 42.29 5.29 11.89 5.29 — 3.74 C ₃₆ H ₅₆ O ₂₀ Al ₄ Mg ₂ 44.81 5.81 11.20 4.98 — 0 C ₃₈ H ₆₂ O ₂₁ Al ₄ Hf 39.96 5.43 9.47 — 15.69 1.49 Усредненное значение 43.07 5.58 11.91 4.74 0.31 2.31	Вычисленные э	мпирические формулы	-	-	_	_	_		_
$C_{32}H_{48}O_{20}Al_4Mg_2$ 42.295.2911.895.29—3.74 $C_{36}H_{56}O_{20}Al_4Mg_2$ 44.815.8111.204.98—0 $C_{38}H_{62}O_{2l}Al_4Hf$ 39.965.439.47—15.691.49Усредненное значение43.075.5811.914.740.312.31	6	$C_{20}H_{40}O_{14}AI_4$	39.22	6.54	17.65	ı	ı	5.56	33.34
$C_{36}H_{56}O_{20}Al_4Mg_2$ 44.815.8111.204.98—0 $C_{38}H_{62}O_{21}Al_4Hf$ 39.965.439.47—15.691.49Усредненное значение43.075.5811.914.740.312.31	45	$\mathrm{C}_{32}\mathrm{H}_{48}\mathrm{O}_{20}\mathrm{Al}_4\mathrm{Mg}_2$	42.29	5.29	11.89	5.29	I	3.74	31.28
$C_{38}H_{62}O_{21}Al_4Hf$ 39.965.439.47–15.691.49Усредненное значение43.075.5811.914.740.312.31	44	$C_{36}H_{56}O_{20}AI_4Mg_2$	44.81	5.81	11.20	4.98	I	0	29.46
Усредненное значение 43.07 5.58 11.91 4.74 0.31 2.31	2	$C_{38}H_{62}O_{21}Al_4Hf$	39.96	5.43	9.47	I	15.69	1.49	36.70
	100	Усредненное значение	43.07	5.58	11.91	4.74	0.31	2.31	30.77

Рис. 1. СЭМ-изображение, результаты рентгеновского элементного микроанализа и картирование по элементному составу с наложением элементов (Al — красный, Mg — синий, Zr — зеленый) цирконийоксанмагнийоксаналюмоксана (вещество 1 в табл. 2).

метиленовых атомов углерода этоксигрупп при 55—61 м.д., метиновых атомов углерода (СН=)-групп при 99—102 м.д., карбоксильных и карбонильных атомов углерода при 172—175 и 183—193 м.д. соответственно.

В спектрах ЯМР 27 Аl концентрированных растворов Zr(Hf)-оксанмагнийоксаналюмоксанов в CDCl₃ зарегистрированы три типа сигналов: 60.0-80.0 м.д. (4-координационный), 30.0-45.0 (5-координационный), 1.8-20.0 м.д. (6-координационный).

В спектрах ЯМР 27 Аl разбавленных растворов Zr(Hf)-оксанмагнийоксаналюмоксанов в CDCl₃ наблюдается интенсивный сигнал при 30.0-90.0 м.д. (4-координационный) и слабый сигнал в интервале 0.0-10.0 м.д. (6-координационный). Это, по-видимому, обусловлено разрывом коор-

динационных связей между атомом алюминия и карбонильными группами.

Типичные результаты СЭМ Zr(Hf)-оксанмагнийоксаналюмоксанов — фотографии морфологии поверхности, элементный состав и картирование по распределению элементов — приведены на рис. 1 для олигомера 1 (табл. 2). Олигомеры однородны, а по химическому составу близки к заданному отношению Al : Mg \sim 2 и Al : M \sim 50—250 (рис. 1).

Необходимо отметить, что Zr(Hf)-оксанмагнийоксаналюмоксаны могут обладать волокнообразующими свойствами (характеристические температуры приведены в табл. 3). На рис. 2 представлена фотография полимерных волокон, сформованных вручную.

На рис. 3a, 3б представлены термограммы Zr(Hf)-оксанмагнийоксаналюмоксанов. Кривая

Рис. 2. Фото сформованных вручную полимерных волокон.

ТГА показывает, что при нагревании выше 50° С в атмосфере воздуха олигомеры начинают терять массу (\sim 0.03-0.13 мас. %). На термограммах (кривые ТГА) наблюдается двухступенчатое уменьшение массы (общая убыль массы \sim 70 мас. %), причем основная потеря массы происходит в интервале температур $150-500^{\circ}$ С, далее остаток изменяется мало, что связано с удалением остаточных гидроксильных групп в виде паров H_2 О. Керамический остаток составляет \sim 30 мас. %, что

соответствует суммарному содержанию Al_2O_3 , MgO, ZrO_2 или HfO_2 .

Исследован процесс термотрансформации олигомерных Zr(Hf)-оксанмагнийоксаналюмоксанов в керамические фазы в атмосфере воздуха при температуре до 1500°C.

Методами РФА и СЭМ показано, что при 900°С образец полностью теряет органическую составляющую и начинается процесс кристаллизации (рис. 4, 5).

Таблица 3. Характеристические температуры $(t_1$ — размягчения, t_2 — волокнообразования, t_3 — плавления) волокнообразующих Zr(Hf)-оксанмагнийоксаналюмоксанов

№ олигомера	<i>t</i> ₁	<i>t</i> ₂	t_3			
в табл. 2	°C					
1	98	120-140	170			
2	75	99—125	149			
3	66	79–96	101			
4	84	110—140	200			

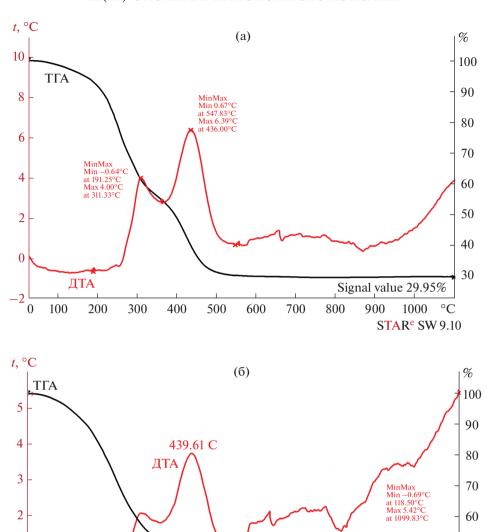


Рис. 3. Кривые ТГА и ДТА: а – цирконийоксанмагнийоксаналюмоксан (табл. 2, вещество 1); б – гафнийоксанмагнийок нийоксаналюмоксан (табл. 2, 4).

600

700

800

На рис. 4 приведена дифрактограмма образца, полученного в результате пиролиза при 900°C цирконийоксанмагнийоксаналюолигомерного моксана (табл. 2, (1)), которая показывает, что при 900°С образуется дисперсная шпинель (рис. 4).

0

0

100

200

300

400

500

Результаты СЭМ – морфология поверхности и рентгеновский элементный микроанализ - представлены на рис. 5. Рентгеновский элементный микроанализ подтверждает начало образования модифицированной цирконием шпинели (рис. 5).

Signal value 28.60%

900

50

40

30

1000 °C STARe SW 9.10

Процесс термотрансформации Zr(Hf)-оксанмагнийоксаналюмоксанов (переход органиканеорганика) в атмосфере воздуха при температуре 20-1500°C представлен по аналогии с термотрансформацией органомагнийоксаналюмосансилоксанов [30] схемой (2):

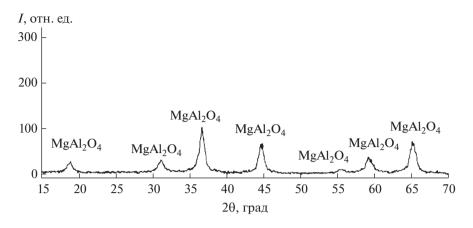
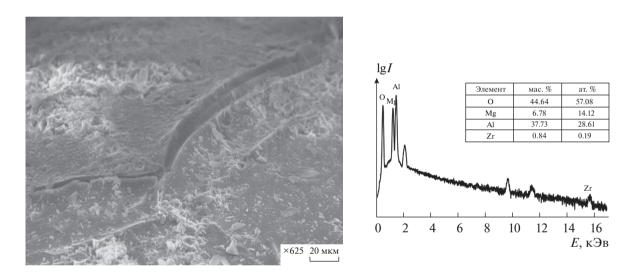



Рис. 4. Дифрактограмма образца, полученного в результате пиролиза олигомера (табл. 2, олигомер 1) при 900°C.

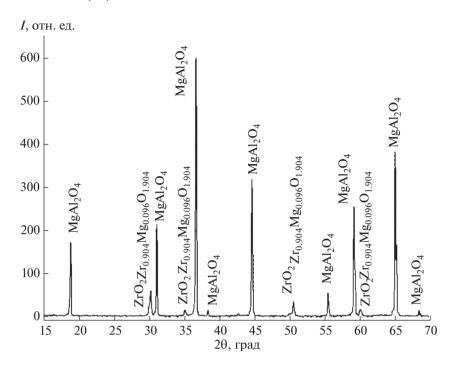
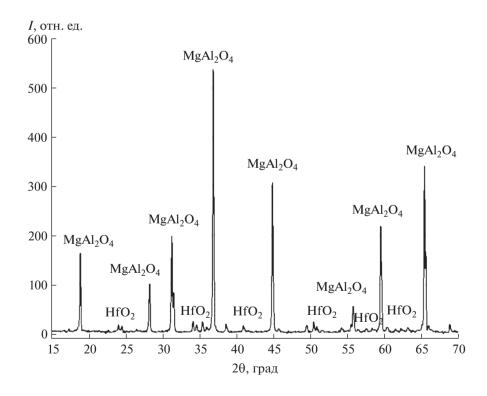


Рис. 5. СЭМ-изображение и результаты рентгеновского элементного микроанализа образца, полученного в результате пиролиза олигомера (табл. 2, олигомер 1) при 900°C.


$$\begin{split} & \left[\mathrm{Mg}(\mathrm{OR}^{**}) \mathrm{O} \right]_{k} \cdot \left[\mathrm{Al}(\mathrm{OR})_{l} (\mathrm{OR}^{**})_{g} \left(\mathrm{OR}^{*} \right)_{x} (\mathrm{OH})_{z} \mathrm{O}_{y} \right]_{m} \cdot \left[(\mathrm{R}^{**}\mathrm{O})_{3} \mathrm{MO} \right]_{p} \frac{100 - 150^{\circ}\mathrm{C}}{l \mathrm{C}_{2} \mathrm{H}_{4}} \\ & \rightarrow \left[\mathrm{Mg}(\mathrm{OR}^{**}) \mathrm{O} \right]_{k} \cdot \left[\mathrm{Al}(\mathrm{OR}^{**})_{g} \left(\mathrm{OR}^{*} \right)_{x} (\mathrm{OH})_{z+l} \mathrm{O}_{y} \right]_{m} \cdot \left[(\mathrm{R}^{**}\mathrm{O})_{3} \mathrm{MO} \right]_{p} \frac{500^{\circ}\mathrm{C}}{-(\mathrm{CO}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{CH}_{3} \mathrm{CCH})} \\ & \rightarrow \left[\mathrm{Mg}(\mathrm{OH})_{t+s} \mathrm{O}_{r} \right]_{k} \cdot \left[\mathrm{Al}(\mathrm{OH})_{t+x+z} \mathrm{O}_{y} \right]_{m} \cdot \left[\mathrm{M}(\mathrm{OH})_{2} \mathrm{O} \right]_{n} \frac{900^{\circ}\mathrm{C}}{-\mathrm{H}_{2}\mathrm{O}} \\ & \rightarrow k \mathrm{MgO} \cdot m \mathrm{Al}_{2} \mathrm{O}_{3} \cdot n \mathrm{MO}_{2} \frac{1500^{\circ}\mathrm{C}}{-1500^{\circ}\mathrm{C}} \rightarrow x (\mathrm{MgAl}_{2} \mathrm{O}_{4}) \cdot y (\mathrm{MO}_{2}). \end{split}$$

Дифрактометрически показано, что в результате пиролиза олигомерных Zr(Hf)-оксанмагнийоксаналюмоксанов при 1500° С в качестве основной кристаллической фазы образуется алюмомагниевая шпинель (MgAl₂O₄ ~ 96—98 мас. %) и наблюдаются фазы оксидов тугоплавкого металла HfO_2 или ZrO_2 (рис. 6, 7).

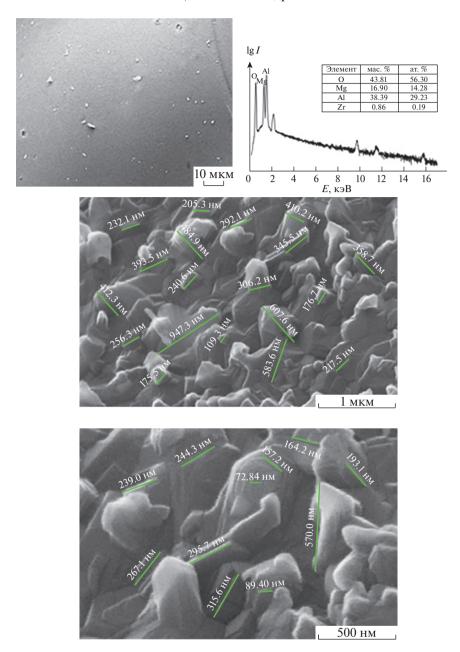
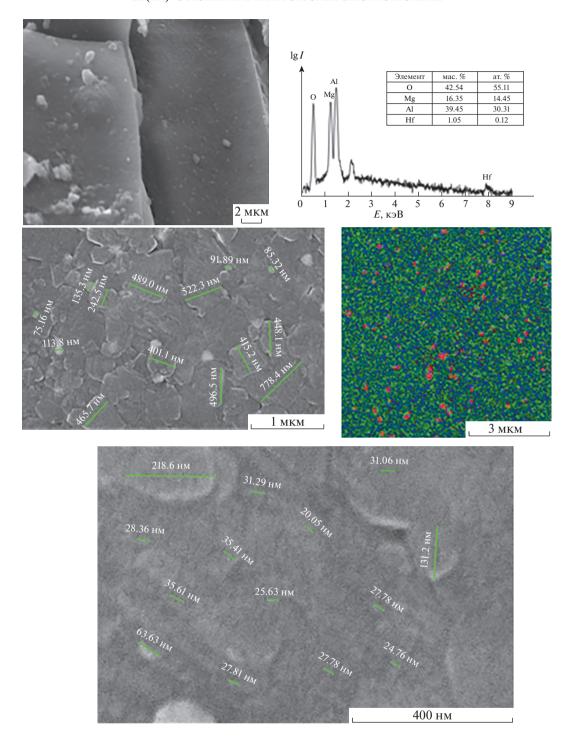

Методом СЭМ показано, что образуется плотная наноструктурированная керамика (рис. 8, 9). Размер кристаллитов в образце алюмомагниевой шпинели, модифицированной Zr, варьируется в диапазоне 70-600 нм, а в образце с Hf — в диапазоне 25-530 нм. Картирование по элементному составу с наложением элементов на одной карте

Рис. 6. Дифрактограмма образца керамики алюмомагниевой шпинели, модифицированной Zr, полученной при $1500^{\circ}C$.

Рис. 7. Дифрактограмма образца керамики алюмомагниевой шпинели, модифицированной Hf, полученной при $1500^{\circ}C$.

Рис. 8. СЭМ-изображение и результаты рентгеновского элементного микроанализа образца керамики алюмомагниевой шпинели, модифицированной Zr, полученной при 1500°C.


показало, что элементы, входящие в состав алюмомагниевой шпинели, модифицированной Hf, распределены достаточно равномерно.

БЭТ-анализ удельной поверхности керамических порошков, полученных в результате пиролиза при 700° С Zr(Hf)-оксанмагнийоксаналюмоксанов, показал что для $MgAl_2O_4$ площадь поверхности составляет 9.8, $MgAl_2O_4$ (ZrO_2) 29.08 $MgAl_2O_4$ (HfO_2) 49.1 M^2 /г. Установлено, что введение второй фазы приводит к ингибированию ро-

ста зерен шпинели, за счет этого растет площадь поверхности порошка, что благоприятно сказывается на свойствах получаемой керамики.

ЗАКЛЮЧЕНИЕ

Впервые синтезированы растворимые в органических растворителях керамообразующие Zr(Hf)-оксанмагнийоксаналюмоксановые олигомеры, термотрансформация которых приводит

Рис. 9. СЭМ-изображение, результаты рентгеновского элементного микроанализа и картирование по элементному составу с наложением элементов (Al — зеленый, Mg — синий, Hf — красный) на одной карте образца керамики алюмомагниевой шпинели, модифицированной Hf, полученной при 1500° C.

к образованию высокочистой наноструктурированной алюмомагниевой шпинели, модифицированной оксидами циркония или гафния. Предложена схема термотрансформации олигомерных Zr(Hf)-оксанмагнийоксаналюмоксанов в кера-

мические фазы. Показано, что введение второй фазы приводит к ингибированию роста зерен алюмомагниевой шпинели, за счет этого растет площадь поверхности порошка, что важно для получения прозрачной керамики.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Rubat du Merac M., Hans-Joachim Kleebe, Mathis M. Müller et al. // J. Am. Ceram. Soc. 2013. V. 96. № 11. P. 3341.
 - https://doi.org/10.1111/jace.12637
- 2. *Rothman A., Kalabukhov S., Sverdlov N. et al.* // Int. J. Appl. Ceram. Technol. 2012. V. 11. № 1. P. 146. https://doi.org/10.1111/j.1744-7402.2012.02849.x
- 3. *Reimanis I., Kleebe H.J.* // J. Am. Ceram. Soc. 2009. V. 92. № 7. P. 1472. https://doi.org/10.1111/j.1551-2916.2009.03108.x
- 4. *Burnett J.H., Kaplan S.G., Shirley E.L. et al.* // Optical Microlithography XIX. Int. Soc. Optics Photonics. 2006. V. 6154. P. 615418. https://doi.org/10.1117/12.656901
- 5. *Talimian A., Pouchly V., El-Maghrabya H.F. et al.* // J. Eur. Ceram. Soc. 2020. V. 40. № 6. P. 2417. https://doi.org/10.1016/j.jeurceramsoc.2020.02.012
- 6. *Su X., Du X., Li S., Li J.* // J. Nanopart. Res. 2010. V. 12. № 5. P. 1813. https://doi.org/10.1007/s11051-009-9739-2
- 7. *Xie W., Peng H., Chen L.* // J. Mol. Catal. A: Chem. 2006. V. 246. № 1–2. P. 24. https://doi.org/10.16/j.molcata.2005.10.008
- 8. *Khaidukov N.M.*, *Brekhovskikh M.N.*, *Kirikova N.Y. et al.* // Russ. J. Inorg. Chem. 2020. V. 65. № 8. P. 1135. [*Хайдуков Н.М.*, *Бреховских М.Н.*, *Кирикова Н.Ю. и др.* // Журн. неорган. химии. 2020. Т. 65. № 8. С. 1027.] https://doi.org/10.1134/S0036023620080069
- Mangognia A., Kucera C., Guerrier J. et al. // Opt. Mater. Express. 2013. V. 3. № 4. P. 511. https://doi.org/10.1364/OME.3.000511
- 10. Angappan S., Berchmans L.J., Augustin C.O. // Mater. Lett. 2004. V. 58. № 17–18. P. 2283. https://doi.org/10.1016/j.matlet.2004.01.033
- Harris D.C. // Proceedings. Window and Dome Technologies and Materials IX. 2005. V. 5786. P. 1. https://doi.org/10.1117/12.609708
- Shahbazi H., Tataei M. // Ceram. Inter. 2019. V. 45. P. 8727. https://doi.org/10.1016/j.ceramint.2019.01.196
- 13. Saelee A., Jiemsirilers S., Jinawath S., Serivalsatit K. // Key Eng. Mater. 2016. V. 690. P. 224. https://doi.org/10.4028/www.scientific.net/KEM.690.224
- 14. Zawrah M.F. // Mater. Sci. Eng., A. 2004. V. 382. № 1–2. P. 362. https://doi.org/10.1016/j.msea.2004.05.074
- 15. *Kim W., Saito F.* // Powder Technol. 2000. V. 113. № 1–2. P. 109. https://doi.org/10.1016/S0032-5910(00)00208-4
- Domanski D., Urretavizcaya G., Castro F.J., Gennari F.C. // J. Am. Ceram. Soc. 2004. V. 87. № 11. P. 2020. https://doi.org/10.1111/j.1151-2916.2004.tb06354.x
- 17. *Ping L.R., Azad A.M., Dung T.W.* // Mater. Res. Bull. 2001. V. 36. № 7–8. P. 1417. https://doi.org/10.1016/S0025-5408(01)00622-5

- 18. *Morita K., Kim B.-N., Yoshida H. et al.* // J. Eur. Ceram. Soc. 2018. V. 38. № 6. P. 2588. https://doi.org/10.1016/j.jeurceramsoc.2017.09.038
- Zegadi A., Kolli M., Hamidouche M., Fantozzi G. // Ceram. Int. 2018. V. 44. № 15. P. 18828. https://doi.org/10.1016/j.ceramint.2018.07.117
- 20. *Khasanov O., Dvilis E., Khasanov A. et al.* // Phys. Status Solidi C. 2013. V. 10. № 6. P. 918. https://doi.org/10.1002/pssc.201300009
- 21. *Obradović N., Fahrenholtz W.G., Filipović S. et al.* // Ceram. Int. 2019. V. 45. № 9. P. 12015. https://doi.org/10.1016/j.ceramint.2019.03.095
- 22. *Pacurariu C., Lazau I., Ecsedi Z. et al.* // J. Eur. Ceram. Soc. 2007. V. 27. P. 707. https://doi.org/10.1016/j.jeurceramsoc.2006.04.050
- 23. *Файков П.П.* // Дис... канд. техн. наук. М., 2007. 165 с.
- Zhang H., Jia X., Liu Z., Li Z. // Mater. Lett. 2004.
 V. 58. P. 1625.
 https://doi.org/10.1016/j.matlet.2003.09.051
- 25. Абакумов Г.А., Пискунов А.В., Черкасов В.К. и др. // Успехи химии. 2018. Т. 87. № 5. С. 393. [Abakumov G.A., Piskunov A.V., Cherkasov V.K. et al. // Russ. Chem. Rev. 2018. V. 87. № 5. P. 393.] https://doi.org/10.1070/RCR4795
- 26. *Щербакова Г.И.*, *Стороженко П.А.*, *Жигалов Д.В. и др.* // Изв. АН. Сер. хим. 2020. Т. 69. № 5. С. 875. [*Shcherbakova G.I.*, *Storozhenko P.A.*, *Zhigalov D.V. et al.* // Russ. Chem. Bull. 2020. V. 69. P. 875.] https://doi.org/10.1007/s11172-020-2844-1
- 27. *Shcherbakova G.I.*, *Storozhenko P.A.*, *Apukhtina T.L. et al.* // Polyhedron. 2017. V. 135. P. 144. https://doi.org/10.1016/j.poly.2017.07.006
- 28. *Ganesh I.*, *Srinivas B.*, *Johnson R. et al.* // Br. Ceram. Trans. 2003. V. 102. № 3. P. 119. https://doi.org/10.1179/096797803225001632
- 29. Щербакова Г.И., Похоренко А.С., Варфоломеев М.С., Стороженко П.А. Пат. РФ № 2755706 // Бюл. изобр. 2021. № 26.
- 30. Shcherbakova G.I., Pokhorenko A.S., Storozhenko P.A. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 1. Р. 25. [Щербакова Г.И., Похоренко А.С., Стороженко П.А. и др. // Журн. неорган. химии. 2021. Т. 66. № 1. С. 30.] https://doi.org/10.1134/S0036023621010083
- 31. *Shcherbakova G.I., Shaukhin M.K., Kirilin A.D. et al.* // Russ. J. Gen. Chem. 2021. V. 91. № 2. P. 235. [*Щерба-кова Г.И., Шаухин М.К., Кирилин А.Д. и др.* // Журн. общ. химии. 2021. Т. 91. № 2. С. 283.] https://doi.org/10.1134/S1070363221020122
- 32. Shcherbakova G.I., Apukhtina T.L., Krivtsova N.S. et al. // Inorg. Mater. 2015. V. 51. № 3. P. 206. [Шербакова Г.И., Апухтина Т.Л., Кривцова Н.С. и др. // Неорган. материалы. 2015. Т. 51. № 3. С. 253.] https://doi.org/10.1134/S0020168515030140
- 33. *Tayyari S.F., Bakhshi T., Mahdizadeh S.J. et al.* // J. Mol. Struct. 2009. V. 938. № 1–3. P. 76. https://doi.org/10.1016/j.molstruc.2009.09.006
- 34. *Boschmann E., Keller R.N.* // J. Mol. Struct. 2019. V. 1195. P. 762. https://doi.org/10.1016/j.molstruc.2019.05.131
- 35. Fay R.C., Pinnavaia T.J. // Inorg. Chem. 1968. V. 7. № 3. P. 508. https://doi.org/10.1021/ic50061a024