ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ

УДК 541.123/.123.8/9:546.56'289'81/23

ФАЗОВЫЕ РАВНОВЕСИЯ В СИСТЕМЕ Cu₂Se-GeSe₂-SnSe₂

© 2022 г. Л. Ф. Машадиева^{*a*, *}, З. М. Алиева^{*b*}, Р. Дж. Мирзоева^{*c*}, Ю. А. Юсибов^{*b*}, А. В. Шевельков^{*d*}, М. Б. Бабанлы^{*a*}

^аИнститут катализа и неорганической химии НАН Азербайджана, пр-т Г. Джавида, 113, Баку, AZ-1148 Азербайджан

^bГянджинский государственный университет, пр-т Г. Алиева, 187, Гянджа, АZ-2000 Азербайджан

^сБакинский государственный университет, ул. З. Халилова, 23, Баку, Аz-1143 Азербайджан

^d Московский государственный университет им. М.В. Ломоносова, Ленинские горы, 1, Москва, 119991 Россия

*e-mail: leylafm76@gmail.com

Поступила в редакцию 16.07.2021 г. После доработки 25.12.2021 г.

Принята к публикации 27.12.2021 г.

Методами дифференциального термического и рентгенофазового анализа изучены фазовые равновесия в квазитройной системе Cu₂Se–GeSe₂–SnSe₂. Построен ряд политермических сечений и изотермическое сечение при 750 К фазовой диаграммы, а также проекция поверхности ликвидуса, определены области первичной кристаллизации и гомогенности фаз, характер и температуры нони моновариантных равновесий. Установлено, что в системе образуются широкие области твердых растворов на основе соединений Cu₂GeSe₃ и Cu₂SnSe₃ вдоль разреза Cu₂GeSe₃–Cu₂SnSe₃.

Ключевые слова: селениды меди-германия-олова, фазовая диаграмма, поверхность ликвидуса, квазитройная система, твердые растворы

DOI: 10.31857/S0044457X22050129

введение

Халькогениды меди и фазы на их основе являются одними из наиболее широко исследуемых полупроводниковых материалов, обладающих множеством функциональных свойств, которые можно использовать в нескольких потенциальных приложениях, таких как фотоэлектрохимические, фотокаталитические или солнечные элементы [1-5]. В последнее время эти фазы привлекают все большее внимание как перспективные термоэлектрические материалы благодаря их высокой эффективности, настраиваемым транспортным свойствам, а также низкой токсичности и широкой распространенности составляющих компонентов [6–11]. Кроме того, халькогениды меди являются смешанными электронно-ионными проводниками и за счет высокой мобильности "жидкоподобных" ионов меди демонстрируют рекордные для твердых тел значения катионной проводимости (до ~3 Ом⁻¹ см⁻¹) и ионной диффузии (~10⁻⁵ см²/с) [12-14]. Это делает их перспективными материалами для ионоселективных электродов или твердых электролитов при разработке различных типов электрических батарей, датчиков и др. [12–19].

Известно, что одной из эффективных стратегий для оптимизации функциональных свойств материалов является изменение их состава и структуры. Для поиска и дизайна новых материалов и лучшего понимания взаимосвязи между составом, структурой и свойствами особенно необходимо наличие надежных данных по фазовым равновесиям и термодинамическим свойствам соответствующих многокомпонентных систем [19–22].

Ранее нами в работах [23–27] были проведены подобные комплексные исследования сложных систем на основе халькогенидов меди, в которых были обнаружены новые фазы и определены их области первичной кристаллизации и гомогенности.

В настоящей работе представлены новые экспериментальные данные по фазовым равновесиям в квазитройной системе $Cu_2Se-GeSe_2-SnSe_2$ (A). В последнее время тройные фазы (Cu_8GeSe_6 , Cu_2SnSe_3 , Cu_2GeSe_3), образующиеся в этой системе, интенсивно изучаются в качестве термоэлектрических материалов [11–13].

Исходные соединения (Cu_2Se , $GeSe_2$, SnSe) и граничные квазибинарные составляющие ($Cu_2Se-GeSe_2$, $GeSe_2-SnSe_2$, $Cu_2Se-SnSe_2$) исследуемой системы детально изучены.

Соединение, температурный интервал существования, К	Структура	Пр. гр.	Параметры решетки, нм	Источник
HT-Cu ₂ Se, 396–1403	Кубическая	Fm3m	a = 0.5859(1)	[28]
LT-Cu ₂ Se, <396	Моноклинная	<i>C</i> 2/ <i>c</i>	a = 0.71379(4); b = 1.23823(7); $c = 2.73904(9); \beta = 94.308^{\circ}$	[28]
GeSe ₂ , <1015	Моноклинная	$P2_{1}/c$	a = 0.7016(5); b = 1.6796(8); $c = 1.1831(5); \beta = 90.65(5)$	[27, 29]
SnSe ₂ , <948	Гексагональная	P 3m1	$a = 0.3811; c = 0.6137; \gamma = 120^{\circ}$	[27, 40]
HT-Cu ₂ GeSe ₃ , 1054–893	Орторомбическая	Imm2	a = 1.1878(8); b = 0.3941(3); c = 0.5485(3)	[33]
LT-Cu ₂ GeSe ₃ , <893	Тетрагональная	I42d	a = 0.55913(4); c = 1.0977(1)	[36]
HT-Cu ₈ GeSe ₆ , 1083–333	Кубическая	$F\overline{4}3m$	a = 1.1020	[32]
LT-Cu ₈ GeSe ₆ , <333	Гексагональная	<i>P</i> 6 ₃ <i>mc</i>	a = 1.26601(4); c = 1.17698(3)	[30, 31]
Cu_2SnSe_3 , <968	Кубическая	$F\overline{4}3m$	a = 0.56877	[41, 42]
	Моноклинная	<i>C</i> 2/ <i>c</i>	a = 0.69670(3); b = 1.20493(7); $c = 0.69453(3); \beta = 109.19(1)^{\circ}$	[43]

Таблица 1. Кристаллографические данные соединений системы Cu₂Se-GeSe₂-SnSe₂

Соединение Cu_2Se плавится конгруэнтно при 1403 К, претерпевая полиморфное превращение при 396 К [28]. Это соединение имеет область гомогенности в сторону избытка селена, максимальную при 800 К (33.3–36.6 ат. % Se).

Диселениды германия GeSe₂ и олова SnSe₂ плавятся с открытым максимумом при 1015 [28] и 948 К [29] соответственно.

Кристаллографические данные бинарных и тройных соединений системы А приведены в табл. 1.

В системе Cu₂Se-GeSe₂ образуются тройные соединения Cu₈GeSe₆ и Cu₂GeSe₃ по перитектической (1083 К) и дистектической (1054 К) реакциям соответственно [32]. Соединение Cu₈GeSe₆ имеет фазовый переход при 333 К [32] (или 328 К согласно [33]). Низкотемпературная модификация LT-Cu₈GeSe₆ кристаллизуется в гексагональной [32, 33], а высокотемпературная НТ-Cu₈GeSe₆ – в кубической структуре [34] (табл. 1). Соединение Cu₂GeSe₃ имеет две полиморфные модификации с фазовым переходом при 893 К [35-38]. Высокотемпературная фаза образует орторомбическую решетку, а низкотемпературная – тетрагональную. В системе кристаллизуются две эвтектики с координатами 1033 К, 38 мол. % GeSe₂ и 973 К, 88 мол. % GeSe₂ [32].

Система Cu₂Se–SnSe₂ изучена в работах [39–41], результаты которых обобщены в обзорной работе [42]. В системе образуется одно конгруэнтно плавящееся при 968 К [40, 41] соединение Cu₂SnSe₃, которое образует эвтектики с исходными бинарными компонентами системы. Эвтектики имеют координаты: 84 мол. % SnSe₂, 853 К и 22 мол. % SnSe₂, 983 К [40]. Растворимость на основе исходных соединений не превышает 3 мол. % (SnSe₂) и 10 мол. % (Cu₂Se) [41]. По данным [43, 44], соединение Cu₂SnSe₃ кристаллизуется в кубической структуре типа сфалерита. Однако в ходе изучения кристаллической структуры монокристаллического образца [45] установлено, что это соединение имеет моноклинную структуру.

Граничная квазибинарная система $GeSe_2-SnSe_2$ образует фазовую диаграмму эвтектического типа с ограниченной взаимной растворимостью исходных селенидов [46]. Максимальная растворимость на основе $GeSe_2$ и $SnSe_2$ составляет ~9.6 и 6 мол. % соответственно при температуре эвтектики (823 K). Эвтектический расплав содержит 49 мол. % SnSe₂.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для проведения экспериментов были синтезированы исходные бинарные Cu_2Se , $SnSe_2$, $GeSe_2$ и тройные Cu_2GeSe_3 , Cu_8GeSe_6 , Cu_2SnSe_3 соединения системы A.

Для экспериментов использовали простые вещества от фирмы Evochem Advanced Materials GMBH (Германия) высокой степени чистоты: медь в гранулах (Си-00029, 99.9999%), кусочки германия (Ge-00003, 99.9999%), олово в гранулах (Sn-00005, 99.999%), селен в гранулах (Se-00002, 99.999%). Бинарные и тройные соединения синтезировали сплавлением простых веществ в стехиометрических соотношениях в вакуумированных до ~10⁻² Па и запаянных кварцевых ампулах при температурах немного выше температур

607

Рис. 1. Изученные политермические разрезы (линии) и сплавы (точки) системы Cu₂Se-GeSe₂-SnSe₂.

плавления синтезируемых соединений. Синтез соединений Cu₂Se, GeSe₂, Cu₂GeSe₃ и Cu₈GeSe₆, плавящихся при температуре, значительно превышающей точку кипения селена (958 К [47]), проводили в двухзонном режиме. Ампулу с реакционной смесью нагревали в наклонной трубчатой печи до температуры, на ~50 К превышающей температуру плавления синтезируемого соединения ("горячая" зона). Часть ампулы (~8 см) находилась вне печи и охлаждалась водой для контроля давления паров селена и предотвращения взрыва ампулы ("холодная" зона). Для ускорения взаимодействия ампулу вращали вокруг продольной оси и подвергали вибрации. После взаимодействия основной массы селена ампулу полностью вводили в печь и выдерживали в горячей зоне в течение 1 ч, а затем медленно охлаждали. Учитывая отклонение Cu₂Se при низких температурах [28], после синтеза была проведена его закалка от температуры 1300 К в холодную воду с целью получения однородного стехиометрического состава.

Индивидуальность всех синтезированных соединений контролировали методами ДТА и РФА. Полученные значения температур плавления и параметры кристаллических решеток всех синтезированных соединений в пределах погрешности измерений (ДТА: ± 3 К при высоких температурах; ± 2 – при низких; РФА: ± 0.0003 Å) совпадали с вышеуказанными литературными данными (табл. 1).

Для проведения экспериментов сплавлением исходных соединений в условиях вакуума было приготовлено более 60 сплавов, составы которых находятся по разрезам $Cu_2GeSe_3-Cu_2SnSe_3$, $Cu_8GeSe_6-"Cu_8SnSe_6"$, $0.4Cu_8GeSe_6-Cu_2SnSe_3$, $GeSe_2-0.5Cu_2SnSe_3$, $0.5Cu_2GeSe_3-SnSe_2$ и $Cu_2Se-"Ge_{0.5}Sn_{0.5}Se_2"$, а также ряд дополнительных сплавов вне этих разрезов (рис. 1). Для достижения состояния, максимально близкого к равновесному, литые сплавы, полученные быстрым охлаждением расплавов, отжигали при 750 K в течение 500 ч.

ДТА проводили на дифференциальном сканирующем калориметре 404 F1 Pegasus System фирмы Netzsch. Скорость нагревания составляла 10 град/мин. В отдельных случаях для определения температуры ликвидуса были сняты кривые охлаждения. Результаты измерений ДТА обрабатывали с помощью программного обеспечения Netzsch Proteus Software. Точность измерения температуры составляла ±2°.

Рентгенофазовый анализ проводили при комнатной температуре на дифрактометре D8

Состав, мол. % Cu ₂ SnSe ₃	Тепловой эффект, К	Параметры кристаллической решетки, нм
$0 (Cu_2GeSe_3)$	1054	Тетрагональная, <i>a</i> = 0.39471; <i>c</i> = 0.54905
10	1025-1045	
20	1005-1025	Тетрагональная, <i>a</i> = 0.39541; <i>c</i> = 0.55329
30	990-1015	Тетрагональная, <i>a</i> = 0.39562; <i>c</i> = 0.55334
35	987-1011	Тетрагональная, <i>a</i> = 0.39571; <i>c</i> = 0.55337
40	985-1010	Тетрагональная, $a = 0.39578$; $c = 0.5540$ (γ_1 -фаза)
		Кубическая, <i>a</i> = 0.5608 (ү ₂ -фаза)
45	985-1004	Тетрагональная, <i>a</i> = 0.39578; <i>c</i> = 0.5540 (ү ₁ -фаза)
		Кубическая, <i>a</i> = 0.5608 (ү ₂ -фаза)
50	985-995	Кубическая, <i>a</i> = 0.56112
55	981-990	Кубическая, <i>a</i> = 0.56223
60	973-985	Кубическая, <i>a</i> = 0.56315
70	970-980	
80	968-975	Кубическая, <i>a</i> = 0.56584
90	967	
100	965	Кубическая, <i>a</i> = 0.56852

Таблица 2. Данные ДТА и параметры кристаллической решетки системы Cu₂GeSe₃-Cu₂SnSe₃

Advance фирмы Bruker с Си $K_{\alpha 1}$ -излучением. Рентгенограммы индексировали с помощью программы Topas V3.0 Software (Bruker).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Совместная обработка совокупности полученных экспериментальных результатов с использованием литературных данных по боковым системам $Cu_2Se-GeSe_2$ [32], $Cu_2Se-SnSe_2$ [39–42] и $GeSe_2-SnSe_2$ [46] позволила получить взаимосогласованную картину фазовых равновесий в системе $Cu_2Se-GeSe_2-SnSe_2$.

Далее в тексте, таблицах и на рисунках приняты следующие обозначения фаз:

• α и δ – твердые растворы на основе HT-Cu₂Se и HT-Cu₈GeSe₆ соответственно;

• β_1 и β_2 – твердые растворы на основе соединений GeSe₂ и SnSe₂ соответственно;

• γ_1 и γ_2 – твердые растворы на основе Cu₂GeSe₃ и Cu₂SnSe₃ соответственно.

Квазибинарный разрез $Cu_2GeSe_3-Cu_2SnSe_3$

Результаты ДТА и РФА системы Cu_2GeSe_3 - Cu_2SnSe_3 приведены в табл. 2. Данная система является квазибинарным разрезом соответствующей четверной системы и образует фазовую диаграмму перитектического типа (рис. 2). Перитектическое равновесие $L \leftrightarrow \gamma_1 + \gamma_2$ устанавливается при температуре 985 К. Точка перитектики соответствует составу 60 мол. % Cu₂SnSe₃.

Рентгенофазовый анализ гомогенизированных сплавов системы Cu₂GeSe₃-Cu₂SnSe₃ подтвердил образование в системе широких твердых растворов замещения. Как видно из рис. 3, порошковая дифрактограмма сплава состава 20 мол. % Cu₂SnSe₃ качественно идентична дифракционной картине чистого соединения Cu₂GeSe₃. Это показывает, что данный сплав является твердым раствором на основе указанного соединения (γ_1). Сплавы с 60 и 80 мол. % Си₂SnSe₃ имеют дифракционную картину, идентичную таковой для чистого соединения Cu₂SnSe₃ с некоторым смещением углов отражения с изменением состава. Анализ дифрактограмм этих сплавов показал, что они полностью индицируются в кубической сингонии (пр. гр. $F\overline{4}3m$) с некоторым смещением углов отражения с изменением состава. Сплав с 40 мол. % Cu₂SnSe₃ является двухфазным, его дифракционная картина состоит из суммы дифракционных линий ү1- и ү2-фаз. Следует отметить некоторое расширение дифракционных пиков твердых растворов по сравнению с исходными соединениями. По-видимому, это связано с деформацией кристаллов вследствие неравномерности замещения Ge ↔ Sn несмотря на достаточно длительный термический отжиг образцов. В табл. 2 приведены параметры кристаллической решетки сплавов и исходных соединений системы Cu₂GeSe₃-Cu₂SnSe₃, рассчитанные с помощью компьютерной программы Topaz V3.0, а на рис. 4 – их концентрационные зависимости. Из рис. 4 видно, что параметры кристаллических ре-

Рис. 2. Фазовая диаграмма системы Cu₂GeSe₃-Cu₂SnSe₃.

Рис. 3. Порошковые дифрактограммы сплавов системы Cu₂GeSe₃-Cu₂SnSe₃.

шеток γ_1 - и γ_2 -фаз изменяются линейно в интервалах составов 0—35 и 50—100 мол. % Cu₂SnSe₃ соответственно, а в промежуточных сплавах остаются постоянными независимо от общего состава сплавов. Это показывает, что составы предельных взаимонасыщенных γ_1 - и γ_2 -фаз составляют 35 ± 1 и 50 ± 1 мол. % соответственно.

В результате индицирования порошковых дифрактограмм соединения Cu_2GeSe_3 и твердых растворов на его основе, а также Cu_2SnSe_3 и твердых растворов на его основе установлено, что первые полностью индицируются в тетрагональной, а вторые — в кубической системе.

Диаграмма твердофазных равновесий при 750 К

На основе данных РФА ряда равновесных сплавов внутри концентрационного треугольника $Cu_2Se-GeSe_2-SnSe_2$ и фазовых диаграмм граничных квазибинарных систем [32, 39–42, 46] построена диаграмма твердофазных равновесий при 750 К. Как видно из рис. 5, система характеризу-

Рис. 4. Концентрационная зависимость параметров кристаллической решетки сплавов системы $Cu_2GeSe_3-Cu_2SnSe_3$.

Рис. 5. Изотермическое сечение фазовой диаграммы системы $Cu_2Se-GeSe_2-SnSe_2$ при 750 К.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 5 2022

Точка на рис. 6	Равновесие	Состав, мол. %		ТИ
		Cu ₂ Se	SnSe ₂	1, К
D_1	$L \leftrightarrow Cu_2GeSe_3$	50	_	1054
D_2	$L \leftrightarrow Cu_2SnSe_3$	50	50	965
p_1	$L + \alpha \leftrightarrow \delta$	75	_	1080
<i>p</i> ₂	$L+\gamma_1 \leftrightarrow \gamma_2$	50	30	985
e_1	$L \leftrightarrow \gamma_1 + \beta_1$	15	_	975
e_2	$L \leftrightarrow \gamma_1 + \delta$	60	-	1030
e_3	$L \leftrightarrow \alpha + \gamma_2$	75	25	940
e_4	$L \leftrightarrow \gamma_2 + \beta_2$	18	82	860
e_5	$L \leftrightarrow \beta_1 + \beta_2$	5	49	815
U_1	$L + \gamma_2 \leftrightarrow \beta_2 + \gamma_1$	12	55	845
U_2	$L + \gamma_1 \leftrightarrow \delta + \gamma_2$	57	27	965
U_3	$L + \delta \leftrightarrow \alpha + \gamma_{21}$	73	24	950
E	$L \leftrightarrow \beta_1 + \beta_2 + \gamma_1$	5	48	805

Таблица 3. Нонвариантные равновесия в системе Cu₂Se-GeSe₂-SnSe₂

ется образованием широких областей твердых растворов вдоль квазибинарного разреза $Cu_2GeS_3-Cu_2SnSe_3$ на основе исходных тройных соединений. Области гомогенности твердых растворов имеют форму полос с шириной ~1–2 (γ_1 -фаза) и ~3–5 мол. % (γ_2 -фаза). Это хорошо согласуется с фазовыми диаграммами систем $Cu_2Se-GeSe_2$ и $Cu_2Se-SnSe_2$ [32, 42].

В системе при 750 К также образуются области ограниченных твердых растворов на основе соединений GeSe₂ (β_1), SnSe₂ (β_2) и HT-Cu₈GeSe₆ (δ). Фазы β_1 и β_2 образуют узкие полосы вдоль граничной квазибинарной системы GeSe₂—SnSe₂ с шириной ~1 мол. % и длиной 8 и 6 мол. % соответственно. Область гомогенности δ -фазы достигает состава Cu₈Ge_{0.9}Sn_{0.1}Se₆ вдоль разреза Cu₈GeSe₆—Cu₈SnSe₆. Растворимость на основе низкотемпературной модификации соединения Cu₂Se незначительна.

В результате взаимодействия сосуществующих фаз в системе образуется ряд двухфазных ($\beta_1 + \gamma_1$, $\beta_2 + \gamma_2$, $\beta_2 + \gamma_1$, $\gamma_1 + \gamma_2$, $\gamma_1 + \delta$, $\gamma_2 + \delta$, $\gamma_2 + \alpha$, $\alpha + \delta$) и трехфазных ($\beta_1 + \beta_2 + \gamma_2$, $\beta_1 + \gamma_1 + \gamma_2$, $\gamma_1 + \gamma_2 + \delta$, $\alpha + \gamma_2 + \delta$) областей. Фазовые составы указанных областей подтверждены методом РФА.

В качестве примера на рис. 6 представлены порошковые дифрактограммы трех выборочных сплавов из различных фазовых областей (сплавы 1, 2 и 3 на рис. 5). Анализ этих дифрактограмм показал, что они состоят из суммы дифракционных линий фаз, находящихся, согласно рис. 5, в равновесии.

Проекция поверхности ликвидуса

На рис. 7 представлена проекция поверхности ликвидуса системы Cu₂Se-GeSe₂-SnSe₂, которая состоит из шести полей первичной кристаллизации твердых растворов на основе бинарных (α , β_1 , β_2) и тройных ($\gamma_1, \gamma_2, \delta$) соединений системы. Эти области разграничены межлу собой рядом эвтектических и перитектических кривых. На кривой $p_2 U_1$ в точке К происходит трансформация перитектического равновесия L + $\gamma_1 \leftrightarrow \gamma_2$ в эвтектическое L $\leftrightarrow \gamma_1 + \gamma_2$. В этих равновесиях участвуют твердые растворы. Поэтому данный переход, в принципе, должен сопровождаться образованием в соответствующей трехфазной области некой поверхности, на которой трехфазное равновесие становится двухфазным при пассивной роли третьей фазы [48, 49]. Поскольку области гомогенности ү1- и ү2-фаз практически не выходят за рамки квазибинарного разреза Cu₂GeSe₃-Cu₂SnSe₃, скорее всего, указанная поверхность вырождена в точку (К).

Типы и координаты нонвариантных равновесий, а также типы и температурные интервалы моновариантных равновесий приведены в табл. 3 и 4 соответственно.

Квазибинарный разрез $Cu_2GeSe_3-Cu_2SnSe_3$ делит концентрационный треугольник $Cu_2Se-GeSe_2-SnSe_2$ на две независимые подсистемы: $Cu_2Se-Cu_2GeSe_3-Cu_2SnSe_3$ и $GeSe_2-Cu_2GeSe_3-Cu_2SnSe_3$. Первая подсистема характеризуется двумя нонвариантными переходными реакциями (U_2, U_3) , а вторая – одним нонвариантным пере-

Рис. 6. Порошковые дифрактограммы и фазовые составы некоторых сплавов системы Cu₂Se-GeSe₂-SnSe₂. Сплав 1 – 60 мол. % Cu₂Se + 9 мол. % GeSe₂; сплав 2 – 15 мол. % Cu₂Se + 75 мол. % GeSe₂; сплав 3 – 35 мол. % Cu₂Se + 35 мол. % GeSe₂.

ходным (U_1) и одним эвтектическим (E) равновесиями. Отметим, что вторую подсистему можно рассматривать как взаимную систему 1.5GeSe₂ + + Cu₂SnSe₃ \leftrightarrow 1.5SnSe₂ + Cu₂GeSe₃. Как видно из рис. 7, она является обратимо взаимной, т.е. не имеет квазибинарной диагонали. Это связано с тем, что решающую роль в распределении фазовых областей играют не исходные соединения, а образующиеся в системе широкие области твердых растворов на их основе.

Политермические сечения фазовой диаграммы

Ниже рассмотрен ряд политермических сечений фазовой диаграммы исследуемой системы в контексте с проекцией поверхности ликвидуса (рис. 7, табл. 3 и 4) и диаграммой твердофазных равновесий при 750 К (рис. 5).

Разрез Cu₈GeSe₆-"Cu₈SnSe₆" (рис. 8) целиком расположен в области первичной кристаллизации α-фазы. После первичной кристаллизации

Рис. 7. Проекция поверхности ликвидуса системы $Cu_2Se-GeSe_2-SnSe_2$. Поля первичной кристаллизации фаз: $1 - \alpha$ (Cu_2Se); $2 - \delta$ (Cu_8GeSe_6); $3 - \gamma_1$ (Cu_2GeSe_3); $4 - \gamma_2$ (Cu_2SnSe_3); $5 - \beta_1$ ($GeSe_2$); $6 - \beta_2$ ($SnSe_2$).

 α -фазы в системе по перитектической реакции L + $\alpha \leftrightarrow \delta$ кристаллизуется δ -фаза на основе соединения HT-Cu₈GeSe₆, а по эвтектической реак-

Таблица 4. Моновариантные равновесия в системе $Cu_2Se-GeSe_2-SnSe_2$

Кривая на рис. 6	Равновесие	Температурный интервал, К
e_1E	$L \leftrightarrow \beta_1 + \gamma_1$	975-805
e_5E	$L {\leftrightarrow} \beta_1 + \beta_2$	815-805
e_4U_1	$L \leftrightarrow \beta_2 + \gamma_2$	860-845
U_1E	$L {\leftrightarrow} \beta_2 + \gamma_1$	845-805
e_2U_2	$L \mathop{\leftrightarrow} \gamma_1 + \delta$	1030-965
p_2K	$L+\gamma_1\leftrightarrow\gamma_2$	985-925
KU_1	$L \leftrightarrow \gamma_1 + \gamma_2$	925-845
$p_2 U_2$	$L+\gamma_1\leftrightarrow\gamma_2$	985-965
U_2U_3	$L + \delta \leftrightarrow \gamma_2$	965-950
p_1U_3	$L + \alpha \leftrightarrow \delta$	1080-950
U_3e_3	$L \leftrightarrow \alpha + \gamma_2$	950-940

ции L $\leftrightarrow \alpha + \gamma_2 - д$ вухфазная смесь $\alpha + \gamma_2$ (табл. 4, рис. 7, кривые p_1U_3 и U_3e_3).

Особенность данного разреза заключается в том, что область гомогенности δ -фазы находится на его плоскости, вследствие этого в перитектической реакции L + $\alpha \leftrightarrow \delta$ одновременно полностью расходуются обе исходные фазы. Поэтому в области составов, богатых Cu₈GeSe₆, указанная перитектическая реакция завершается образованием δ -твердых растворов, которые непосредственно граничат с трехфазной областью L + α + δ (рис. 8). В области составов 15–85 мол. % кристаллизация завершается нонвариантной переходной реакцией L + $\delta \leftrightarrow \alpha + \gamma_2$ (U_3), в результате в субсолидусе образуется трехфазная область α + $+ \delta + \gamma_2$.

Разрез 0.4Сu₈GeSe₆–Cu₂SnSe₃ (рис. 9) проходит через области первичной кристаллизации фаз α (0–15 мол. % Cu₂SnSe₃), δ (15–50 мол. % Cu₂SnSe₃) и γ_2 (50–100 мол. % Cu₂SnSe₃). После первичной кристаллизации α -фазы протекает моновариантная перитектическая реакция L + $\alpha \leftrightarrow \delta$, в результате которой образуется трехфазная область L + α + δ . Эта реакция завершается при ~1040 K избытком жидкой фазы и образованием двухфаз-

Рис. 8. Политермическое сечение Cu_8GeSe_6- " Cu_8SnSe_6 ".

Рис. 9. Политермическое сечение $0.4Cu_8GeSe_6-Cu_2SnSe_3$.

ной области L + δ . В этой области кристаллизация завершается реакцией L + $\delta \leftrightarrow \gamma_2$ (табл. 4, U_2U_3), и в субсолидусе формируется двухфазная область $\delta + \gamma_2$.

В области составов 45—80 мол. % Cu₂SnSe₃ переходная реакция L + $\delta \leftrightarrow \alpha$ + γ_2 (табл. 3, U_3) завершается избытком δ -фазы и образуется трехфазная область α + δ + γ_2 . В областях, богатых Cu₂SnSe₃, кристаллизация завершается равновесными процессами L $\leftrightarrow \gamma_2$ и L $\leftrightarrow \alpha + \gamma_2$ (табл. 4, U_3e_3).

Разрез GeSe₂–0.5Cu₂SnSe₃ (рис. 10). Ликвидус этой системы состоит из трех ветвей, отвечающих первичной кристаллизации β_1 -, γ_1 - и γ_2 -фаз. Точки их пересечения отвечают началу моновариантных перитектической (p_2K) и эвтектической (e_1E) реакций. В результате этих реакций формируются трехфазные области L + β_1 + γ_1 и L + γ_1 + γ_2 . В области составов 80–95 мол. % GeSe₂ кристаллизация завершается перитектической реакцией p_2K и образуется двухфазная область β_1 + γ_1 .

Рис. 10. Политермическое сечение GeSe₂-0.5Cu₂SnSe₃.

Рис. 11. Политермическое сечение $0.5Cu_2SnSe_3-SnSe_2$.

После первичной кристаллизации γ_2 -фазы процесс продолжается по моновариантной эвтектической схеме L $\leftrightarrow \beta_2 + \gamma_2 (e_4 U_1)$ и в области составов 5–20 мол. % GeSe₂ завершается образованием двухфазной области $\beta_2 + \gamma_2$. В узком интервале составов (20–25 мол. % GeSe₂) кристаллизация завершается переходной реакцией U_1 (845 K) и образуется трехфазная область β_2 + + γ_1 + γ_2 .

Горизонталь при 805 К (*E*) отвечает нонвариантной кристаллизации тройной эвтектики β_1 + $+\beta_2 + \gamma_1$.

Разрез 0.5Си₂GeSe₃–SnSe₂ (рис. 11) пересекает поля первичной кристаллизации γ_1 -, γ_2 - и β_2 -фаз.

Рис. 12. Политермическое сечение $Cu_2Se-Ge_{0.5}Sn_{0.5}Se_2$.

Ниже ликвидуса наблюдаются моновариантные $(e_1E, U_1E, KU_1 \text{ и } e_4U_1)$ и нонвариантные (U_1, E) равновесия. При завершении кристаллизации по указанным реакциям образуется ряд двух- и трехфазных смесей.

Разрез Си₂Se–Ge_{0.5}Sn_{0.5}Se₂ (рис. 12) проходит через поля первичной кристаллизации α -, δ -, γ_1 и γ_2 -фаз, а в субсолидусе пересекает четыре трехфазные области. Фазовые равновесия по этому разрезу нетрудно установить путем сопоставления рис. 11 с рис. 4 и 6. *T*–*x*-диаграмма этого разреза четко отражает нонвариантные переходные равновесия U_1 , U_2 , U_3 и *E* (горизонтали при 845, 965, 950 и 805 К соответственно). Горизонталь при 398 К соответствует полиморфному переходу $\alpha \leftrightarrow LT$ -Cu₂Se.

ЗАКЛЮЧЕНИЕ

Получена полная картина фазовых равновесий в квазитройной системе Cu₂Se–GeSe₂–SnSe₂,

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 5 2022

включающая диаграмму твердофазных равновесий при 750 K, проекцию поверхности ликвидуса и ряд политермических сечений фазовой диаграммы. В системе выявлены широкие области твердых растворов по квазибинарному разрезу $Cu_2GeSe_3-Cu_2SnSe_3$. Определены области первичной кристаллизации и гомогенности фаз, а также характер и температуры нон- и моновариантных равновесий в исследуемой системе. Полученные новые фазы переменного состава представляют интерес как потенциальные экологически безопасные термоэлектрические материалы.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Фонда развития науки при Президенте Азербайджанской Республики, грант EİF-BGM-4-RFTF-1/2017-21/11/4-M-12.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

1. Sanghoon X.L., Tengfei L.J., Zhang L.Y-H. Chalcogenide: From 3D to 2D and Beyond. Elsevier, 2019. 398 p.

https://doi.org/10.1016/C2017-0-03585-1

- Chen X., Yang J., Wu T. et al. // Nanoscale. 2018. V. 10. P. 15130.
- https://doi.org/10.1039/C8NR05558K
- Peccerillo E., Durose K. // MRS Energy Sustainability. 2018. V. 5. P. 1. https://doi.org/10.1557/mre.2018.10
- Yun B., Zhu H., Yuan J. et al. // J. Mater. Chem. B. 2020. V. 8. P. 4778. https://doi.org/10.1039/D0TB00182A
- 5. *Xia Z., Fang H., Zhang X. et al.* // Chem. Mater. 2018. V. 30. № 3. P. 1121.
- https://doi.org/10.1021/acs.chemmater.7b05104 6. *Wei T.R., Qin Y., Deng T. et al.* // Sci. China Mater.
- 2019. V. 62. P. 8. https://doi.org/10.1007/s40843-018-9314-5
- Mikuła A., Mars K., Nieroda P., Rutkowski P. // Materials. 2021. V. 14. P. 2635. https://doi.org/10.3390/ma14102635
- Deng T., Qiu P., Xing T. // J. Mater. Chem. A. 2021. V. 9. P. 7946. https://doi.org/10.1039/D0TA12042A
- 9. *Jiang B., Qiu P., Eikeland E. et al.* // J. Mater. Chem. C. 2017. V. 5. № 4. P. 943. https://doi.org/10.1039/c6tc05068a
- Siyar M., Cho J.-Y., Youn Y. et al. // J. Mater. Chem. C. 2018. V. 6. № 7. P. 1780. https://doi.org/10.1039/C7TC05180H
- Chetty R., Prem-Kumar D.S., Falmbigl M. et al. // Intermetallics. 2014. V. 54. P.1. https://doi.org/10.1016/j.intermet.2014.05.006
- 12. Иванов-Щиц А.К., Мурин И.В. Ионика твердого тела. Т. 1. СПб.: Изд-во С. Петерб. ун-та, 2000. 616 с.
- Березин В.М., Вяткин Г.П. Суперионные полупроводниковые халькогениды. Челябинск, 2001. 135 с.
- 14. Liu H., Shi X., Xu F. et al. // Nature Materials. 2012. V. 11. P. 422. https://doi.org/10.1038/nmat3273
- 15. Бабанлы М.Б., Юсибов Ю.А., Абишев В.Т. Трехкомпонентные халькогениды на основе меди и серебра. Баку, 1993. 342 с.
- Babanly M.B., Yusibov Yu.A., Babanly N.B. // Intechweb. Org. / Ed. Kara S. 2011. P. 57. https://doi.org/10.5772/28934
- 17. *Liang X.* // Appl. Phys. Lett. 2017. V. 111. P. 133902. https://doi.org/10.1063/1.4997501
- Qiu P., Agne M. T., Liu Y. et al. // Nature Commun. 2018. V. 9. № 2910. https://doi.org/10.1038/s41467-018-05248-8

- Babanly M.B., Mashadiyeva L.F., Babanly D.M. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 13. P. 1649. https://doi.org/10.1134/S0036023619130035
- Babanly M.B., Chulkov E.V., Aliev Z.S. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 13. P. 1703. https://doi.org/10.1134/S0036023617130034
- Zlomanov V.P., Khoviv A.M., Zavrazhnov A.Yu. // Materials Sci.—Adv. Topics. 2013. P. 103. https://doi.org/10.5772/56700
- Imamaliyeva S.Z., Babanly D.M., Tagiev D.B., Babanly M.B. // Russ. J. Inorg. Chem. 2018. № 13. P. 1703. https://doi.org/10.1134/S0036023618130041
- Alverdiyev I.J., Aliev Z.S., Bagheri S.M. et al. // J. Alloys Compd. 2017. V. 691. P. 255. https://doi.org/10.1016/j.jallcom.2016.08.251
- Mashadiyeva L.F., Gasanova Z.T., Yusibov Yu.A., Babanly M.B. // Russ. J. Inorg. Chem. 2017. V. 62. № 5.
 P. 598. [Машадиева Л.Ф., Гасанова З.Т., Юсибов Ю.А., Бабанлы М.Б. // Журн. неорган. химии. 2017. Т. 62.
 № 5. С. 599.] https://doi.org/10.1134/S0036023617050151
- Gasanova Z.T., Mashadiyeva L.F., Yusibov Yu.A., Babanly M.B. // Russ. J. Inorg. Chem. 2017. V. 62. № 5.
 P. 591. [Гасанова З.Т., Машадиева Л.Ф., Юсибов Ю.А., Бабанлы М.Б. // Журн. неорган. химии. 2017. Т. 62.
 № 5. С. 592.] https://doi.org/10.1134/S0036023617050126
- 26. Mashadieva L.F., Gasanova Z.T., Yusibov Yu.A., Babanly M.B. // Inorg. Mater. 2018. V. 54. № 1. Р. 8. [Mauaдиева Л.Ф., Гасанова З.Т., Юсибов Ю.А., Бабанлы М.Б. // Неорган. материалы. 2018. Т. 54. № 1. С. 11.] https://doi.org/10.1134/S0020168518010090
- Ismailova E.N., Mashadieva L.F., Bakhtiyarly I.B., Babanly M.B. // Russ. J. Inorg. Chem. 2019. V. 64. № 6. Р. 801. [Исмаилова Э.Н., Машадиева Л.Ф., Бахтиярлы И.Б., Бабанлы М.Б. // Журн. неорган. химии. 2019. Т. 64. № 6. С. 646.] https://doi.org/10.1134/S0036023619060093
- Binary Alloy Phase Diagrams // ASM International / Ed. Massalski T.B. Ohio: Materials Park, 1990. P. 3589. https://doi.org/10.1002/adma.19910031215
- 29. Абрикосов Н.Х., Банкина В.Ф., Порецкая Л.В. и др. Полупроводниковые соединения, их получение и свойства. М., 1967. 252 с. [Abrikosov N.Kh.. Semiconducting II–VI, IV–VI, and V–VI Compounds. Monographs in Semiconductor Physics. Springer, 2013. 252 p.]. https://doi.org/10.1007/978-1-4899-6373-4
- Gulay L., Daszkiewicz M., Strok O., Pietraszko A. // Chem. Met. Alloys. 2011. V. 4. P. 200. https://doi.org/10.30970/cma4.0184
- Dittmar G., Schafer H. // Acta Crystallogr. 1976. V. 32. P. 2726. https://doi.org/10.1107/s0567740876008704
- 32. *Tomashik V.* Copper-germanium-selenium // Ternary Alloys. V. 2. 2005. P. 288.
- 33. Onoda M., Ishii M., Pattison P. et al. // J. Solid State Chem. 1999. V. 146. P. 355. https://doi.org/10.1006/jssc.1999.8362
- 34. *Мороз В.Н.* // Изв. Акад. наук СССР. Неорган. материалы. 1990. Т. 26. С. 1830.

- 35. *Marcano G., Ieves L. //* J. Appl. Phys. 2000. V. 87. № 3. P. 1284. https://doi.org/10.1063/1.372010
- 36. Parasyuk O.V., Gulay L.D., Romanyuk Ya.E., Piskach L.V. // J. Alloys Compd. 2001. V. 329. P. 202. https://doi.org/10.1016/s0925-8388(01)01606-1
- Lychmanyuk O.S., Gulay L.D., Olekseyuk I.D. et al. // Pol. J. Chem. 2007. V. 81. № 3. P. 353.
- 38. Sharma B.B. // Phys. Status Solidi. A. 1970. V. 2. № 1. P. 13. https://doi.org/10.1002/pssa.19700020125
- Rivet J., Laruelle P., Flahaut J. // Bull. Soc. Chim. Fr. 1970. V. 5. P. 1667.
- 40. *Berger L.I., Kotina E.K.* // Inorg. Mater. (Engl. Trans.). 1973. V. 9. № 3. P. 330.
- Зотова Т.В., Карагодин Ю.А. // Сб. научн. трудов по пробл. микроэл. (хим.-технол. серия). 1975. Т. 21. С. 57.
- 42. Olekseyuk I.D., Parasyuk O.V., Piskach L.V. et al. Quasi-Ternary Systems of Chalcogenides. Lutsk: Vega Publish, 1999. V. 1. P. 168.

- Налатник Л.С., Комник Ю.Ф., Белова Е.К., Атрошченко Л.В. // Кристаллография. 1961. Т. 6. № 6. С. 960.
- 44. *Sharma B.B., Ayyar R., Singh H.* // Phys. Status Solidi A. 1977. V. 40. № 2. P. 691. https://doi.org/10.1002/pssa.2210400237
- Marcano G., de Chalbaud L.M., Rincon C., Sanchez-Perez G. // Mater. Lett. 2002. V. 53. P. 151. https://doi.org/10.1016/S0167-577X(01)00466-9
- Караханова М.И., Соколова Л.П., Новоселова А.В. // Изв. Акад. наук СССР. Неорган. материалы. 1976. Т. 12. С. 1221.
- 47. Эмсли Дж. Элементы. М.: Мир, 1993. С. 256.
- 48. Lutsyk V.I., Vorob'eva V.P., Shodorova S.Ya. // Russ. J. Phys. Chem. 2015. V. 89. № 13. P. 2331. https://doi.org/10.1134/S0036024415130245
- 49. Lutsyk V.I., Vorob'eva V.P. // Russ. J. Phys. Chem. A. 2017. V. 91. № 13. P. 2593. https://doi.org/10.1134/S0036024417130131