КООРДИНАЦИОННЫЕ СОЕЛИНЕНИЯ

УДК 54-386:[546.650.763.]547.544.2

ГЕКСА(ТИОЦИАНАТО-N)ХРОМАТНЫЕ(III) КОМПЛЕКСЫ ЛАНТАНОИДОВ(III) С ДИМЕТИЛСУЛЬФОКСИДОМ: СИНТЕЗ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА

© 2022 г. Т. Г. Черкасова a , *, Н. В. Первухина b , Н. В. Куратьева b , Е. В. Черкасова a , Ю. Р. Гиниятуллина a , Э. С. Татаринова a

^а Кузбасский государственный технический университет им. Т.Ф. Горбачева, ул. Весенняя, 28, Кемерово, 650000 Россия

^b Институт неорганической химии им. А.В. Николаева СО РАН, пр-т Академика Лаврентьева, 3, Новосибирск, 630092 Россия

*e-mail: ctg.htnv@kuzstu.ru Поступила в редакцию 30.08.2021 г. После доработки 15.11.2021 г. Принята к публикации 29.11.2021 г.

Методами ИК-спектроскопии и рентгеноструктурного анализа изучены двойные комплексные соединения состава [Ln(DMSO)₈][Cr(NCS)₆], где Ln = Nd (1), Eu (2), Gd (3), Dy(4), Ho (5), Lu (6), Tb (7), Yb (8), синтезированные по реакции между водными растворами Ln(NO₃)₃ и K₃[Cr(NCS)₆] и диметилсульфоксидом C_2H_6SO (DMSO). Монокристаллы соединений для PCA получены изотермической перекристаллизацией порошков комплексов из диметилсульфоксидных растворов. Соединения 1-8 изоструктурны, кристаллизуются в триклинной сингонии, пр. гр. $P\bar{1}$. Кристаллическая структура островная с катионами [Ln(DMSO)₈]³⁺ и анионами [Cr(NCS)₆]³⁻. В независимой части присутствует по два катиона и по два аниона. Координационное окружение атома Ln состоит из 8 атомов О, принадлежащих молекулам DMSO, располагающимся в вершинах искаженной квадратной антипризмы. В изолированных анионах [Cr(NCS)₆]³⁻ координационный полиэдр хрома(III) близок к правильному октаэдру и состоит из атомов N шести NCS-ионов. Упаковка по центрам комплексных катионов и анионов представляет собой искаженную структуру NaCl.

Ключевые слова: двойные комплексные соединения, лантаноиды(III), (тиоцианато-N) хроматный(III)-анион, ИК-спектроскопические и кристаллографические параметры

DOI: 10.31857/S0044457X22050051

ВВЕДЕНИЕ

На основе разнолигандных неорганическихорганических комплексных соединений, имеющих разнообразные структурные топологии и физико-химические свойства, создаются новые материалы, которые могут найти применение в различных областях науки и технологиях [1].

В дополнение к традиционным областям применения — медицине и фармакологии [2] — водные растворы диметилсульфоксида (**DMSO**) используются также в оптике, в частности, для производства полимерных оптических волокон. DMSO является эффективным апротонным растворителем для электролитов, обладает высокой диэлектрической проницаемостью, сильной донорной способностью электронных пар и высоким молекулярным дипольным моментом, что позволяет координировать как "мягкие", так и "жесткие" ионы металлов [3—8].

Известны многочисленные координационные соединения лантаноидов с DMSO. Гетеробиметаллические разнолигандные комплексные соединения перспективны как предшественники для получения разнообразных функциональных материалов и композитов [9–13]. В частности, интерес представляют термохромные вещества, изменяющие окраску при воздействии различных температур, особенно вещества возвратного действия [14–18].

Ранее нами сообщалось о получении обратимых термочувствительных двойных комплексных соединений (ДКС) состава [Ln(DMSO)₈][Cr(NCS)₆] [19], перспективных для создания многократно используемых термохромных материалов, однако получить монокристаллы и установить кристаллическую структуру удалось только в случае комплекса [La(DMSO)₈][Cr(NCS)₆] [20]. Проведенные ранее исследования роданохроматных комплексов

Эле- мент	Nd		Eu		Gd		Dy		Но		Lu	
	най-	вычис-										
	дено	лено										
Ln	12.27	12.33	12.85	12.90	13.22	13.29	13.62	13.68	13.80	13.85	14.52	14.57
Cr	4.38	4.44	4.36	4.42	4.35	4.40	4.33	4.38	4.33	4.37	4.30	4.33
C	22.53	22.59	22.40	22.44	22.30	22.34	22.20	22.24	22.15	22.20	21.95	22.01
Н	4.08	4.14	4.05	4.11	4.05	4.09	4.04	4.07	4.02	4.06	4.00	4.03
N	7.12	7.18	7.10	7.14	7.07	7.10	7.05	7.07	7.03	7.06	6.97	7.00
S	38.32	38.38	38.08	38.12	37.92	37.95	37.75	37.79	37.67	37.71	37.35	37.39

Таблица 1. Результаты элементного анализа [Ln(DMSO)₈][Cr(NCS)₆], ω , мас. %

лантаноидов с другими органическими лигандами позволили установить структурные особенности соединений цериевой и иттриевой групп состава [$Ln(\epsilon-C_6H_{11}NO)_8$][$Cr(NCS)_6$] и [$Ln(C_5H_5NCOO)_3(H_2O)_2$][$Cr(NCS)_6$] $\cdot nH_2O$ [21, 22]. Представляло интерес выяснить структурные закономерности в ряду аналогичных комплексов с ДМSO.

Цель настоящей работы — установление строения комплексных соединений [Ln(DMSO)₈][Cr(NCS)₆], где Ln = Nd (1), Eu (2), Gd (3), Dy (4), Ho (5), Lu (6), Tb (7), Yb (8).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реагенты Ln(NO₃)₃ · 6H₂O, где Ln = Nd (1), Eu (2), Gd (3), Dy (4), Ho (5), Lu (6), Tb (7), Yb (8), и DMSO (все соединения марки "х. ч.") использовали в коммерчески доступной форме без дополнительной очистки (производитель солей лантаноидов — Завод редких металлов, Новосибирск, поставщик DMSO — OOO "Компонент-Реактив", Москва), K_3 [Cr(NCS)₆] · 4H₂O получали по известной методике [23] из KNCS и KCr(SO₄) · 12H₂O (реактивы марки "х. ч.", поставщик НПО "Химпроект", Уфа).

Синтез соединений. К 1 М водным растворам, содержащим по 0.001 моль гексагидрата нитрата лантаноида(III) и $K_3[Cr(NCS)_6] \cdot 4H_2O$, добавляли по каплям DMSO. Мольное соотношение реагентов составляло 1:1:8 соответственно. Полученные в результате реакции кристаллические порошки бледно-малинового цвета промывали холодной водой, отфильтровывали и высушивали на воздухе. Выход соединений составил 65-70%.

Химический анализ на ионы редкоземельных металлов(III) выполняли в виде оксидов, полученных при прокаливании оксалатов [24], хром определяли фотоколориметрически [25], элементный С,H,N,S-анализ проводили на приборе ThermoFlash 2000 фирмы ThermoScientific. Результаты элементного анализа приведены в табл. 1.

ИК-спектры комплексов регистрировали на ИК-фурье- спектрометре Cary 630 FTIR фирмы

Agilent в интервале $4000-400 \text{ см}^{-1}$ в матрице KBr. Ниже приведены основные частоты полос поглошения соединений (v. cm^{-1}): 1 – 2998 (сл.). 2918 (сл.), 2075 (оч. с.), 1723 (сл.), 1662 (сл.), 1405 (ср.), 1321 (ср.), 1003 (оч. с.), 959 (с.), 825 (ср.), 719 (ср.), 685 (ср.), 485 (ср.); $\mathbf{2} - 2996$ (сл.), 2918 (сл.), 2075 (оч. с.), 1723 (сл.), 1662 (сл.), 1405 (ср.), 1321 (ср.), 1003 (оч. с.), 964 (с.), 830 (ср.), 719 (ср.), 685 (ср.), 480 (ср.); **3** – 2996 (сл.), 2912 (сл.), 2080 (оч. с.), 1740 (сл.), 1662 (сл.), 1405 (ср.), 1321 (ср.), 1003 (оч. с.), 964 (с.), 830 (ср.), 719 (ср.), 685 (ср.), 485 (ср.); 4 — 2996 (сл.), 2912 (сл.), 2069 (оч. с.), 1736 (сл.), 1662 (сл.), 1405 (ср.), 1321 (ср.), 998 (оч. с.), 959 (c.), 850 (cp.), 719 (cp.), 685 (cp.), 485 (cp.); 5 – 2996 (сл.), 2912 (сл.), 2075 (оч. с.), 1706 (сл.), 1651 (сл.), 1405 (ср.), 1321 (ср.), 1003 (оч. с.), 964 (с.), 820 (ср.), 719 (ср.), 685 (ср.), 480 (ср.); $\mathbf{6} - 2996$ (сл.), 2912 (сл.), 2075 (оч. с.), 1706 (сл.), 1662 (сл.), 1416 (ср.), 1321 (ср.), 998 (оч. с.), 964 (с.),835 (ср.), 724 (ср.), 685 (ср.), 480 (ср.); 7 - 2996 (сл.), 2918 (сл.), 2080 (оч. с.), 1706 (сл.), 1405 (ср.), 1321 (ср.), 1003 (оч. с.), 964 (с.), 825 (ср.), 719 (ср.), 682 (сл.), 480 (ср.); 8 - 2996 (сл.), 2912 (сл.), 2069 (оч. с.), 1958 (сл.), 1662 (сл.), 1405 (ср.), 1331 (ср.), 998 (оч. с.), 959 (c.), 815 (cp.), 724 (cp.), 480 (cp.).

Рентгеноструктурный анализ (РСА) соединений 1-6 выполнен на дифрактометре Bruker Nonius X8Apex с 4K CCD-детектором с использованием φ- и ω-сканирования. Поправки на поглощение введены с помощью программы SADABS [26], которая использует многократные измерения одних и тех же отражений при разных ориентациях кристалла. Структуры расшифрованы прямым методом и уточнены полноматричным МНК по F^2 в анизотропном приближении для неводородных атомов с помощью комплекса программ SHELX2014 [27]. Атомы водорода органических лигандов расставлены геометрически и уточнены в приближении жесткого тела. Для соединений 2-6 были введены ограничения на длины некоторых связей S-O на уровне 1.51(2) Å и некоторых связей S—С на уровне 1.78(2) Å в связи с присутствующим в структурах позиционным разупорядочением диметилсульфоксидных лигандов. Кристаллографические данные И детали дифракционного

Таблица 2. Кристаллографические данные и условия дифракционного эксперимента для ДКС 1-6

Гаолица 2. Кристаллографические данные и условия дифракционного эксперимента для ДКС 1—6								
Формула	Ln = Nd(1)	Ln = Eu (2)	Ln = Gd(3)	Ln = Dy(4)	Ln = Ho (5)	Ln = Lu(6)		
$\mathrm{C}_{22}\mathrm{H}_{48}\mathrm{CrN}_{6}\mathrm{LnO}_{8}\mathrm{S}_{14}$	211 110 (2)	211 24 (2)	211 00 (0)	2.1 2 3 (1)	211 110 (0)	211 211 (0)		
M, г/моль	1169.74	1177.46	1182.75	1188.00	1190.43	1200.47		
Сингония, пр. гр.	Триклинная, <i>P</i> Ī							
a, Å	12.9120(4)	12.8734(9)	12.8276(3)	12.6254(8)	12.7964(5)	12.8161(3)		
b, Å	18.6554(6)	18.6998(14)	18.5524(4)	18.8020(9)	18.5521(7)	18.6827(6)		
c, Å	22.5531(7)	22.6193(17)	22.4064(5)	22.8305(13)	22.4064(8)	22.6245(7)		
α, град	111.846(1)	111.766(2)	111.910(1)	110.407(2)	111.855(1)	111.650(1)		
β, град	91.756(1)	91.611(2)	91.974(1)	92.379(2)	91.900(1)	91.606(1)		
γ, град	92.642(1)	92.667(2)	92.7450(10)	92.415(2)	92.694(1)	92.5730(1)		
V, Å ³ / Z	5030.4(3)/4	5045.4(6)/4	4933.6(2)/4	5065.8(5)/4	4924.2(3)/4	5024.2(3)/4		
$\rho_{\rm выч}$, г/см ³	1.545	1.550	1.592	1.558	1.606	1.587		
μ , mm ⁻¹	1.860	2.068	2.188	2.297	2.452	2.794		
Размер кристалла,	$0.28 \times 0.22 \times$	$0.33 \times 0.24 \times$	$0.17 \times 0.12 \times$	$0.25 \times 0.15 \times$	$0.13 \times 0.12 \times$	$0.22 \times 0.18 \times$		
MM	× 0.18	× 0.14	× 0.06	× 0.15	× 0.07	× 0.11		
Диапазон сбора	0.974-26.453	0.970-25.681	0.981-26.454	0.953-27.217	0.981-26.438	0.969-27.179		
данных по σ, град								
Диапазон h, k, l	$-16 \le h \le 15$	$-15 \le h \le 15$	$-16 \le h \le 15$	$-16 \le h \le 16$	$-16 \le h \le 15$	$-15 \le h \le 16$		
	$-23 \le k \le 23$	$-22 \le k \le 22$	$-21 \le k \le 23$	$-24 \le k \le 21$	$-22 \le k \le 23$	$-23 \le k \le 24$		
	$-24 \le l \le 28$	$-207 \le l \le 23$	$-28 \le l \le 26$	$-29 \le l \le 29$	$-25 \le l \le 28$	$-29 \le l \le 29$		
I_{hkl} измеренных	41 813	34741	41 898	45844	41 440	45 5 6 9		
$I_{hkl} > 2\sigma_I(R_{int})$	20675	19031	19973	22398	20017	22061		
	$(R_{\rm int} = 0.0203)$	$(R_{int} = 0.0153)$	$(R_{\rm int} = 0.0490)$	$(R_{\rm int} = 0.0377)$	$(R_{\rm int} = 0.0467)$	$(R_{\rm int} = 0.0323)$		
Макс. и мин.	0.745 и 0.679	0.746 и 0.630	0.745 и 0.655	0.746 и 0.629	0.745 и 0.588	0.746 и 0.608		
пропускание	1 112	1.040	1.010	1.025	1.052	1.046		
GOOF для F_{hkl}^2	1.113	1.040	1.018	1.035	1.052	1.046		
$R(I \geq 2\sigma_I)$	$R_1 = 0.0414,$	$R_1 = 0.0369,$	$R_1 = 0.0536,$	$R_1 = 0.0769,$	$R_1 = 0.0621,$	$R_1 = 0.0474,$		
	$wR_2 = 0.0926$	$wR_2 = 0.0832$	$wR_2 = 0.1099$	$wR_2 = 0.2027$	$wR_2 = 0.1412$	$wR_2 = 0.1244$		
$R\left(I_{hkl}$ изм. $ ight)$	$R_1 = 0.0480,$	$R_1 = 0.0441,$	$R_1 = 0.0877,$	$R_1 = 0.1056,$	$R_1 = 0.0911,$	$R_1 = 0.0650,$		
	$wR_2 = 0.0948$	$wR_2 = 0.0861$	$wR_2 = 0.1185$	$wR_2 = 0.2167$	$wR_2 = 0.1492$	$wR_2 = 0.1315$		
Макс. и мин. ост.	2.106 и -0.857	2.314 и —1.369	1.846 и —1.189	3.265 и —2.478	3.419 и —1.128	2.617 и —1.165		
эл. плотность, $e/{\rm \AA}^3$								

эксперимента приведены в табл. 2, основные длины связей для соединений 1-6- в табл. 3. Структурные данные депонированы в КБСД (ССDС 2105882-2105887) и могут быть получены по запросу на сайте www.ccdc.cam.ac.uk/data_reguest/cif.

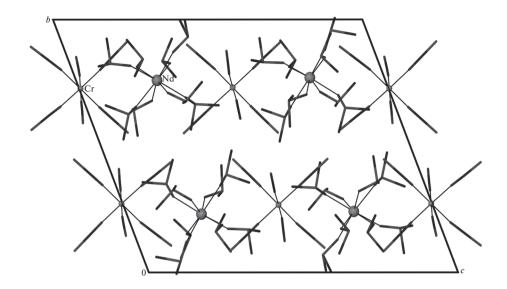
РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Синтезированы устойчивые на воздухе кристаллические порошки бледно-малинового цвета с растворимостью в воде (25.0 \pm 0.5°С): 1-0.03 моль/л; 2-0.02 моль/л; 3-0.4 моль/л, 4-0.03 моль/л, 5-0.02 моль/л, 6-0.01 моль/л. ДКС не растворяются в спиртах, μ -углеводородах, эфирах, ацетоне, толуоле, бензоле, разлагаются концентрированными растворами минеральных кислот, растворимы в DMFA и DMSO.

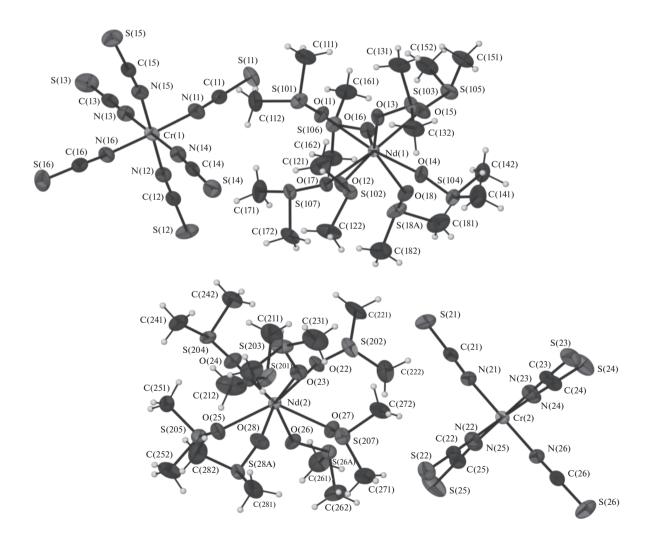
По данным [28-30], для иона SCN $^-$ характерными являются колебания v(CN), v(CS) и $\delta(NCS)$ при 2066.3, 744 и 468.1 см⁻¹ соответственно. Способ координации тиоцианатной группы влияет на степень кратности связей, что отражается в смещении указанных полос. Значения v(CN) в интервале 2069-2080 см-1 указывают на отсутствие тиоцианатных мостиков в комплексах. Получение (тиоцианато-N)-комплексов подтверждается повышением частот v(CS) до значений $815-850 \,\mathrm{cm}^{-1}$, характеризующих увеличение кратности связи CS. Дополнительную информацию дает полоса δ (NCS) при 480—485 см $^{-1}$. Частота валентного колебания "свободного" DMSO равна 1055 см^{-1} , при его координации через кислород это значение всегда понижается на 60-100 см⁻¹. Таким образом, органические лиганды в катио-

Таблица 3. Основные межатомные расстояния (d, Å) для комплексов **1–6**

Связь	Nd (1)	Eu (2)	Gd (3)	Dy (4)	Ho (5)	Lu (6)
Ln(1)-O(11)	2.423(3)	2.461(3)	2.342(4)	2.331(6)	2.313(5)	2.342(3)
Ln(1)-O(12)	2.427(3)	2.363(3)	2.442(4)	2.403(6)	2.417(5)	2.424(3)
Ln (1)–O(13)	2.500(3)	2.381(3)	2.359(4)	2.302(7)	2.276(6)	2.343(4)
Ln (1)–O(14)	2.466(3)	2.395(3)	2.415(4)	2.349(7)	2.375(5)	2.397(3)
Ln (1)–O(15)	2.410(3)	2.458(3)	2.450(4)	2.410(6)	2.413(5)	2.421(3)
Ln (1)–O(16)	2.430(3)	2.364(3)	2.363(4)	2.334(6)	2.321(5)	2.349(3)
Ln (1)–O(17)	2.488(3)	2.380(3)	2.337(4)	2.337(10)	2.286(7)	2.335(4)
Ln (1)–O(18)	2.404(3)	2.430(3)	2.388(4)	2.364(7)	2.362(6)	2.365(3)
Ln (2)–O(21)	2.491(3)	2.413(3)	2.407(4)	2.348(7)	2.368(6)	2.390(4)
Ln (2)-O(22)	2.416(3)	2.373(3)	2.353(4)	2.312(6)	2.320(5)	2.340(3)
Ln (2)–O(23)	2.463(3)	2.387(3)	2.332(4)	2.278(8)	2.248(6)	2.337(4)
Ln (2)-O(24)	2.409(3)	2.445(3)	2.452(4)	2.367(6)	2.423(6)	2.436(3)
Ln (2)-O(25)	2.455(3)	2.425(3)	2.359(4)	2.319(7)	2.315(6)	2.349(3)
Ln (2)-O(26)	2.412(3)	2.375(3)	2.403(4)	2.369(7)	2.380(6)	2.377(4)
Ln (2)–O(27)	2.480(3)	2.369(3)	2.384(4)	2.343(7)	2.339(6)	2.359(4)
Ln (2)-O(28)	2.416(3)	2.459(3)	2.435(4)	2.362(7)	2.401(5)	2.419(3)
Cr(1)-N(11)	2.003(4)	2.005(4)	2.006(6)	1.984(10)	2.002(8)	2.003(5)
Cr(1)-N(12)	1.992(4)	1.996(4)	1.986(5)	1.997(9)	1.994(7)	1.995(5)
Cr(1)-N(13)	2.003(4)	1.994(4)	1.994(6)	2.002(8)	1.992(8)	2.008(5)
Cr(1)-N(14)	1.999(4)	2.005(4)	1.997(6)	1.994(11)	1.985(8)	1.993(5)
Cr(1)-N(15)	2.012(4)	2.017(4)	2.010(5)	2.000(9)	2.006(7)	2.011(5)
Cr(1)-N(16)	1.991(4)	2.002(4)	1.995(6)	2.001(8)	2.002(8)	2.000(5)
Cr(2) - N(21)	1.997(4)	1.995(4)	1.996(6)	1.984(10)	1.992(8)	1.999(5)
Cr(2) - N(22)	2.011(4)	2.007(4)	1.985(6)	2.011(9)	2.001(7)	2.005(5)
Cr(2) - N(23)	1.997(4)	2.010(4)	1.999(5)	1.995(8)	2.002(7)	2.004(5)
Cr(2) - N(24)	1.995(4)	2.001(4)	1.996(6)	1.990(9)	1.993(8)	1.999(5)
Cr(2) - N(25)	2.000(4)	1.994(4)	2.008(6)	1.999(8)	2.003(7)	2.007(5)
Cr(2)-N(26)	2.008(4)	1.998(4)	2.004(5)	2.005(8)	2.009(8)	2.006(5)


нах комплексов координируются с комплексообразователями — ионами Ln^{3+} — через атомы кислорода: $v(SO) = 959-964~cm^{-1},~v(CS)$ до 719—724 cm^{-1} [31—33].

Медленной изотермической кристаллизацией при 298 K из разбавленных диметилсульфоксидных растворов порошков соединений получены монокристаллы ДКС.


Все полученные комплексы изоструктурны. Кристаллическая структура островная, с катионами $[Ln(DMSO)_8]^{3+}$ и анионами $[Cr(NCS)_6]^{3-}$. В независимой части присутствует по два катиона и по два аниона (рис. 1). Координационное окружение атома Ln состоит из восьми атомов O, принадлежащих молекулам DMSO, располагающимся в вершинах искаженной квадратной антипризмы. Расстояния Ln-O лежат в диапазоне 2.404(3)-2.500(3) Å, среднее 2.44(3) Å для 1; 2.363(3)-2.461(3) Å, среднее 2.40(4) Å для 2;

2.332(4)—2.452(4) Å, среднее 2.39(4) Å для **3**; 2.278(8)—2.410(6) Å, среднее 2.35(3) Å для **4**; 2.248(6)—2.417(5) Å, среднее 2.34(5) Å для **5**; 2.335(4)—2.436(3) Å, среднее 2.37(3) Å для **6**. Геометрические характеристики координированных молекул DMSO хорошо согласуются с известными литературными данными [34]. Координационный полиэдр хрома(III) в изолированных анионах [Cr(NCS)₆]^{3—} состоит из атомов N шести NCS-ионов и близок к правильному октаэдру (отклонение углов от 90° не превышает 1.90°) (рис. 2). Упаковка по центрам комплексных катионов и анионов представляет собой искаженную структуру NaCl (рис. 3).

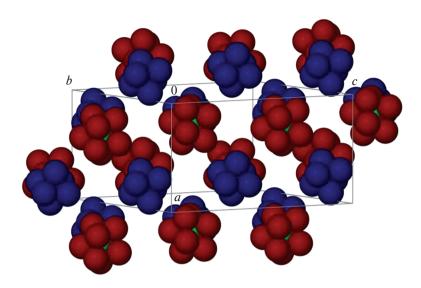

Для соединений [Ln(DMSO)₈][Cr(NCS)₆], где Ln = Тb и Yb, определены кристаллоструктурные характеристики ($P\bar{1}$, a=12.5996(8), b=18.8078(11), c=22.8852(16) Å, $\alpha=110.523(3)^\circ$, $\beta=92.419(3)^\circ$, $\gamma=92.508(3)^\circ$ и a=12.350(7), b=12.350(7)

Рис. 1. Упаковка элементарной ячейки $[Nd(DMSO)_8][Cr(NCS)_6]$.

Рис. 2. Строение и нумерация атомов в комплексном соединении состава $[Nd(DMSO)_8][Cr(NCS)_6]$.

Рис. 3. Атомы металлов и первой координационной сферы вокруг них в произвольной ориентации ячейки. Видно чередование катионов и анионов по типу NaCl.

= 18.995(12), c = 23.097(14) Å, $\alpha = 110.48(1)^\circ$, $\beta = 90.04(2)^\circ$, $\gamma = 89.92(2)^\circ$ соответственно), показывающие, что они изоструктурны с вышеописанной серией соединений. Однако недостаточно хорошее качество кристаллов не позволило получить достаточный массив экспериментальных данных для определения структуры, и, как следствие, из-за низкого качества данных и полученных моделей с $R_1 \sim 15\%$ и частично не локализованными лигандами DMSO результаты не депонировались в КБСД. Попытки заново окристаллизовать эти соединения предпринимались неоднократно, но так и не привели нас к хорошим результатам.

Проведенные исследования ДКС [Ln(DMSO)₈] [Cr(NCS)₆] показали, что для них, как и для других подобных соединений с ε -капролактамом и никотиновой кислотой состава [Ln(ε -C₆H₁₁NO)₈][Cr(NCS)₆] и [Ln(C₅H₅NCOO)₃(H₂O)₂] [Cr(NCS)₆] · nH₂O, характерны ионные островные структуры, состоящие из изолированных катионов [Ln(DMSO)₈]³⁺ и анионов [Cr(NCS)₆]³⁻ [21, 22]. Образование соединений ионного типа хорошо объяснимо на основе "жестко-жесткого" взаимодействия "жестких" кислот — акцепторов электронных пар Ln³⁺ и Cr³⁺ с "жесткими" основаниями Льюиса — кислородом DMSO и азотом NCS-группы [35–37].

ЗАКЛЮЧЕНИЕ

Двойные комплексные соединения $[Ln(DMSO)_8][Cr(NCS)_6]$ исследованы методами ИК-спектроскопии и РСА. Изучение кристаллографических характеристик монокристаллов ДКС представителей лантаноидов как цериевой (Nd, Eu), так и иттриевой (Gd, Tb, Dy, Ho, Yb, Lu)

группы показало, что комплексы всего ряда лантаноидов однотипны, кристаллизуются в триклинной сингонии (пр. гр. P_{1}^{-} и представляют собой комплексные соли с катионами $[Ln(DMSO)_8]^{3+}$ и анионами $[Cr(NCS)_6]^{3-}$. Полученные данные еще раз свидетельствуют в пользу концепции ЖМКО, позволяющей прогнозировать строение и, соответственно, характеристики, в частности ДКС, являющихся перспективными прекурсорами для получения различных функциональных, в том числе наноразмерных материалов. Для этого необходимо изучение основных физико-химических характеристик веществ. Ранее установлено, что ДКС состава [Ln(DMSO)₈][Cr(NCS)₆] перспективны для создания возвратных, многократно используемых термохромных материалов. пригодных для визуального контроля температурных режимов в технологических процессах, поэтому исследование таких соединений представляет и практический интерес.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа поддержана Министерством науки и высшего образования Российской Федерации, проект № 121031700313-8.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов

СПИСОК ЛИТЕРАТУРЫ

1. Mishra S., Jeanneau E., Ledoux G., Daniele S. // CrystEngComm. 2012. V. 14. № 11. P. 3894.

- 2. Verstakov E.S., Korobkova S.A., Nosaeva T.A.// Russ. J. Phys. Chem. 2020. V. 94. № 4. Р. 738. [Верстаков Е.С., Коробкова С.А., Носаева Т.А. // Журн. физ. химии. 2020. Т. 94. № 4. С. 564.] https://doi.org/10.1134/SOO3602442004024X
- Abbasi A., Risberg E.D., Eriksson L. et al. // Inorg. Chem. 2007. V. 46. P. 7731. https://doi.org/10.1021/ic7006588
- Pasgreta E., Puchta R., Galle M. et al. // ChemPhysChem. 2007. V. 8. P. 1315.
- 5. *Galvao J.*, *Davis B.*, *Tilley M. et al.* // FASEB J. 2014. V. 28. № 3. P. 1. https://doi.org/10.1096/fj.13-235440
- Alessio E. // Chem. Rev. 2004. V. 104. P. 4203. https://doi.org/10.1021/cr0307291
- 7. *Verma V., Awasthi A., Kumar M. et al.* // Phys. Chem. Liq. 2020. V. 59. № 3. P. 1. https://doi.org/10.1080/00319104.2020.1731809
- 8. Akhmedov M.A., Ibragimova K.O., Khidirov Sh.Sh. // Russ. J. Electrochem. 2020. V. 56. № 5. Р. 396. [Ахме-дов М.А., Ибрагимова К.О., Хидиров III.III. // Электрохимия. 2020. Т. 56. № 5. С. 416.] https://doi.org/10.1134/S1023193520040023
- 9. *Pechenyuk S.I., Domonov D.P., Shimkin A.A. et al.* // Russ. J. Gen. Chem. 2017. V. 87. № 9. P. 2212. [*Печенюк С.И., Домонов Д.П., Шимкин А.А. и др.* // Журн. общ. химии. 2017. Т. 87. № 9. С. 2212.] https://doi.org/10.1134/S1070363217090481
- 10. *Tretyakov Yu.D.* // Russ. J. Chem. Rev. 2004. V. 73. № 9. P. 831. [*Третьяков Ю.Д.* Успехи химии. 2004. T. 73. № 9. C. 831.] https://doi.org/10.1070/RC2004v073n09ABEH000914
- 11. Velikanova L.N., Semchenko V.V., Khentov V.Ya. // Russ. J. Appl. Chem. 2011. V. 84. № 9. Р. 1470. [Великанова Л.Н., Семченко В.В., Хентов В.Я. // Журн. прикл. химии. 2011. Т. 84. № 9. С. 1418.] https://doi.org/10.1134/S1070427211090023
- 12. Khentov V.Ya., Velikanova L.N., Semchenko V.V., Slavinskaya A.B. // Russ. J. Appl. Chem. 2007. V. 80. № 7. Р. 1027. [Великанова Л.Н., Семченко В.В., Хентов В.Я. // Журн. прикл. химии. 2007. Т. 80. № 7. С. 1057.] https://doi.org/10.1134/S1070427207070014
- 13. Помогайло А.Д., Розенберг А.С., Джардималиева Г.И. // Рос. хим. журн. (Журн. Рос. хим. общества им.
- Рос. хим. журн. (Журн. Рос. хим. общества им. Д.И. Менделеева). 2009. Т. 53. № 1. С. 140.
- 14. Абрамович Б.Г. // Химия и химики. 2008. № 5. С. 19.
- Кукушкин Ю.Н. Соединения высшего порядка. Л.: Химия, 1991. 110 с.
- 16. *Sone K., Fukuda Y.* Inorganic Thermochromism. Berlin: Springer-Verlag, 1987. 134 p.
- 17. *Беленький Е.Ф., Рискин И.В., Корсунский И.В., Ша- пиро И.С.* Химия и технология пигментов. Л.: Химия, 1974. 656 с.
- 18. Хентов В.Я., Семченко В.В., Шачнева Е.Ю. Процессы комплексообразования природного и техногенного происхождения. М.: РУСАЙНС, 2020. 266 с.

- 19. Черкасова Т.Г., Татаринова Э.С., Кузнецова О.А., Трясунов Б.Г. // Пат. RU 2097714 от 27.11.1997.
- 20. *Черкасова Т.Г.* // Журн. неорган. химии. 1994. Т. 39. № 8. С. 1316.
- 21. Virovets A.V., Peresypkina E.V., Cherkasova E.V. et al. // J. Struct. Chem. 2009. V. 50. № 1. Р. 137. [Вировец А.В., Пересыпкина Е.В., Черкасова Е.В. // Журн. структур. химии. 2009. Т. 50. № 1. С. 144.] https://doi.org/10.1007/s10947-009-0018-y
- 22. Черкасова Т.Г., Первухина Н.В., Куратьева Н.В. и др. // Журн. неорган. химии. 2018. Т. 63. № 7. С. 858. [Cherkasova T.G., Pervukhina N.V., Kuratieva N.V. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 7. P. 899.] https://doi.org/10.1134/S0036023618070045
- 23. Руководство по неорганическому синтезу / Под ред. Брауэра Г. М.: Мир, 1985. Т. 5. 360 с.
- 24. *Коровин С.С., Букин В.И., Федоров П.И., Резник А.М.* Редкие и рассеянные элементы. Химия и технология. М.: МИСИС, 2003. 439 с.
- 25. *Булатов М.И.*, *Калинкин И.П*. Практическое руководство по фотометрическим методам анализа. Л.: Химия, 1986. 431 с.
- 26. Sheldrick G.M. SADABS. Version 2.01. Bruker AXS Inc. Madison. Wisconsin, 2004.
- 27. *Sheldrick G.M.* // Acta Crystallogr. 2015. V. C71. P. 3. https://doi.org/10.1039/p29870000s1
- 28. Химия псевдогалогенидов / Под ред. Голуба А.М., Келера Х., Скопенко В.В. Киев: Вища. шк., 1981. 360 с.
- 29. Костромина Н.А., Кумок В.Н., Скорик Н.А. Химия координационных соединений. М.: Высш. шк., 1990. 432 с.
- 30. *Gordon D.J.*, *Smith D.F.* // Spectrochim. Acta. 1974. V. A30. № 10. P. 1953.
- Кукушкин Ю.Н. Химия координационных соединений. М.: Высш. шк., 1985. 455 с.
- 32. *Преч Э., Бюльманн Ф., Аффольтер К.* Определение строения органических соединений. Таблицы спектральных данных. М.: Мир, БИНОМ. Лаборатория знаний, 2006. 438 с.
- 33. Васильев А.В., Гриненко Е.В., Шукин А.О., Федулина Т.Г. Инфракрасная спектроскопия органических и природных соединений. СПб.: СПбЛТА, 2007. 54 с.
- Allen F.H., Kennard O., Watson D.G. // J. Chem. Soc., Perkin Trans. 1987. V. 12. P. S1. https://doi.org/10.1039/p298700000s1
- 35. Гарновский А.Д., Садименко А.П., Осипов О.А., Цинцадзе Г.В. Жестко-мягкие взаимодействия в координационной химии. Ростов-на-Дону: Изд-во Ростовск. ун-та, 1986. 272 с.
- 36. Неудачина Л.К., Лакиза Н.В. Химия координационных соединений. М.: Юрайт, 2019. 123 с.
- 37. *Киселев Ю.М.* Химия координационных соединений. М.: Юрайт, 2019. Ч. 1. 439 с.