ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ

УДК 536.631+544.31

ТЕПЛОЕМКОСТЬ И ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ СТАННАТА ГАДОЛИНИЯ В ОБЛАСТИ 0–350 К

© 2022 г. К. И. Печковская^{*a*, *}, Г. Е. Никифорова^{*a*}, А. В. Тюрин^{*a*}, О. Н. Кондратьева^{*a*}, А. В. Гуськов^{*a*}, М. А. Рюмин^{*a*}

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия *e-mail: bryuhanova@igic.ras.ru Поступила в редакцию 15.09.2021 г. После доработки 21.10.2021 г. Принята к публикации 27.10.2021 г.

Теплоемкость поликристаллического станната гадолиния $Gd_2Sn_2O_7$ впервые экспериментально изучена методами релаксационной и адиабатической калориметрии в интервале 2.35–350.35 К. Значения теплоемкости, полученные двумя независимыми методами, в перекрывающемся интервале практически совпадают и хорошо согласуются с литературными данными по теплоемкости станната гадолиния ниже 7 К. Показано, что низкотемпературная аномалия теплоемкости, обусловленная магнитным переходом из парамагнитного в антиферромагнитное состояние при $T_N = 1.015$ К, продолжается до 21 К. На основе полученных значений теплоемкости $C_\rho^o(T)$ рассчитаны температурные зависимости термодинамических функций $Gd_2Sn_2O_7$ в интервале 0–350 К. Определена энтальпия образования $\Delta_f G^o(298.15$ К), энергия Гиббса образования $\Delta_f G^o(298.15$ К) и характеристическая температура Дебая Θ_D станната гадолиния.

Ключевые слова: Gd₂Sn₂O₇, структура пирохлора, термодинамика, калориметрия **DOI:** 10.31857/S0044457X22040158

введение

Соединения состава $RE_2X_2O_7$ (RE = P3Э, X = = Zr, Hf, Sn, Ti) со структурой пирохлора вызывают повышенный исследовательский интерес, связанный с их уникальными характеристиками: высокими температурами плавления, отсутствием фазовых превращений в широком температурном диапазоне, низкой теплопроводностью, высокой ионной проводимостью, химической инертностью, а также высокими параметрами прочности. Перспективные свойства станнатов редкоземельных элементов позволяют использовать керамику на основе этих соединений в качестве электрохимических сенсоров [1], кислородионных проводников [2], катализаторов [3], матриц для утилизации радиоактивных отходов (поскольку ионный радиус гадолиния близок к радиусу америция) [4].

В структуре пирохлора атомы редкоземельного элемента образуют подрешетку, состоящую из связанных вершинами тетраэдров, для которой характерно возникновение геометрической магнитной фрустрации при понижении температуры. Спин-спиновые корреляции и другие обменные и дипольные взаимодействия, возникающие при охлаждении из парамагнитного состояния, способствуют возникновению нестандартных низкотемпературных термодинамических свойств и магнитных состояний, таких как спиновые стекла, спиновый лед [5–8]. Поэтому большое внимание уделяется изучению магнитных свойств и структурных искажений геометрически фрустрированного антиферромагнетика $Gd_2Sn_2O_7$ в области экстремально низких температур [9–11].

Теплоемкость станната гадолиния ранее была изучена в интервалах 0.1-0.8 [9] и 0.35-7.0 K [12]. На температурной зависимости теплоемкости $C_p(T)$ было обнаружено широкое гало, на которое накладывается острый пик с максимумом при 1.015 К и амплитудой 120 Дж/(К моль Gd). Такая высокая амплитуда пика позволила авторам [12] утверждать, что данный переход относится к переходам первого рода. Однако при температуре фазового перехода T_N реализуется лишь 40% магнитной энтропии, т.е. аномалия теплоемкости должна наблюдаться и при более высоких температурах. Отметим, что данные по теплоемкости Gd₂Sn₂O₇ выше 7 К в литературе не найдены.

Целью настоящей работы является исследование теплоемкости $Gd_2Sn_2O_7$ в интервале 0—350 K, согласование полученных данных с литературными значениями в области магнитного перехода и расчет термодинамических характеристик станната гадолиния в изучаемом температурном интервале.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез и идентификация образцов

В качестве исходных реагентов использовали оксид олова SnO_2 (чистота 99.0%, Русхим) и предварительно прокаленный при 1000°С оксид гадолиния Gd_2O_3 (чистота 99.9%, Химмед).

Образец станната гадолиния $Gd_2Sn_2O_7$ получали постадийно методом твердофазного синтеза при температурах 1000, 1200 и 1400°С. Смесь оксидов первоначально гомогенизировали в агатовой ступке под слоем ацетона. После каждой стадии отжига проводили дополнительную гомогенизацию смеси без добавления растворителей. На первых двух стадиях отжиг проводили 24 ч, на последней стадии — 4 ч.

Фазовый состав полученных порошков на всех стадиях синтеза изучали методом рентгенофазового анализа (**РФА**) на дифрактометре фирмы Bruker Advance D8 (Cu K_{α} -излучение, $\lambda = 1.5418$ Å, никелевый фильтр, геометрия на отражение) в интервале углов $2\theta = 10^{\circ}-65^{\circ}$ с шагом 0.0133° и временем накопления сигнала 0.3 с. Для интерпретации данных РФА использовали программу Bruker Diffrac.Eva и базу данных ICDD PDF-2. Кристаллографические параметры определяли с использованием программного обеспечения TO-PAS-R (Bruker).

Химическую чистоту однофазного образца и соотношение катионов контролировали с помощью ретгенофлуоресцентного спектрометра Bruker M4 TORNADO, оснащенного трубкой с родиевым анодом и поликапиллярной линзой. Точность анализа составляет 5% от измеряемой величины.

Форма и размер частиц оценены с помощью растрового электронного микроскопа (РЭМ) фирмы JEOL JCM-7000 NeoScope.

Измерение теплоемкости Gd₂Sn₂O₇ со структурой пирохлора

Измерение теплоемкости в температурном диапазоне 2.35–35.04 К выполнено методом релаксационной калориметрии на установке PPMS-9 Quantum Design по методике, описанной ранее в [13]. В диапазоне 5.11–350.35 К измерения проводили с помощью адиабатического вакуумного калориметра БКТ-3 (АОЗТ "Термис", Россия) в атмосфере гелия (p = 30 кПа). В качестве эталонных образцов использовали бензойную кислоту марки "К-2" (99.99%), медь (99.999%), синтетический сапфир (α -Al₂O₃ 99.999%). Установлено, что погрешность измерений достигает 2% ниже 15 К, 0.8% — в диапазоне температур 15–

Рис. 1. Дифрактограммы порошков, полученных в результате постадийной термической обработки стехиометрической смеси Gd_2O_3 и SnO_2 .

50 К, 0.2% — выше 50 К. Более детальное описание установок и методик измерения теплоемкости приведено в [14].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Синтез и исследование образца $Gd_2Sn_2O_7$

Согласно литературным данным, твердофазный синтез пирохлоров состава Ln₂Sn₂O₇ требует продолжительного высокотемпературного отжига (например, при 1400–1500°С 5 сут [15], 1600°С 10 ч [16], 1400°С 24 ч [17], 1700°С 10 ч [18]). Для определения оптимальной температуры синтеза и снижения времени отжига при высоких температурах была проведена постадийная термическая обработка стехиометрической смеси исходных оксидов при температурах 1000, 1200 и 1400°С. Динамику превращения простых оксидов в Gd₂Sn₂O₇ прослеживали методом РФА после каждого этапа отжига смеси. Рентгенограммы образцов Gd₂Sn₂O₇, синтезированных при указанных температурах, представлены на рис. 1. Видно, что взаимодействие компонентов начинается уже при 1000°С, однако после отжига в течение 24 ч количество целевой фазы составляло лишь 7%. Как и для ранее изученного станната лантана [14], формирование $Gd_2Sn_2O_7$ начинается при 1200°С, но длительности отжига оказалось недостаточно для получения однофазного образца. В результате дополнительного отжига при 1400°С

Рис. 2. µ-XRF спектр Gd₂Sn₂O₇.

Рис. 3. Микрофотография станната гадолиния $Gd_2Sn_2O_7$.

в течение 4 ч был получен поликристаллический порошок станната гадолиния бежевого цвета.

На дифрактограмме полученного образца все дифракционные рефлексы соответствуют кубической структуре пирохлора (пр. гр. $Fd\overline{3}m$) с параметром элементарной ячейки a = 10.459(1) Å и объемом V = 1144.2(1) Å³, что хорошо согласуется с литературными данными [15, 19–21].

Результаты элементного анализа образца $Gd_2Sn_2O_7$, выполненного методом рентгенофлуоресцентной спектроскопии, представлены на рис. 2. Среднее соотношение Gd к Sn, вычисленное на основании 10 точек, близко к 1 : 1. Небольшое отклонение от стехиометрии лежит в пределах погрешности метода анализа.

Рис. 4. Экспериментальные значения теплоемкости $Gd_2Sn_2O_7$, полученные методами релаксационной (треугольники) и адиабатической (кружки) калориметрии, и температурная зависимость теплоемкости $C_p^{\circ}(T)$, рассчитанная по уравнению (1) (сплошная линия), в интервале 0–350 К.

Микрофотографии полученного станната гадолиния представлены на рис. 3. Поликристаллический образец $Gd_2Sn_2O_7$ представляет собой совокупность ограненных частиц округлой формы, связанных в агломераты. Следует отметить узкое распределение частиц по размерам, средний диаметр составляет ~400 нм.

$Tеплоемкость Gd_2Sn_2O_7$

На рис. 4 приведены экспериментальные значения молярной теплоемкости $Gd_2Sn_2O_7$ в области низких температур, полученные методом релаксационной (2.35–35.04 К, 50 экспериментальных точек) и адиабатической калориметрии (5.11–350.35 К, 141 экспериментальная точка), а также сглаженные значения теплоемкости в области 3–350 К. На вставке видно, что в интервале температур 6–35 К данные, полученные двумя различными методами, совпадают в пределах точности экспериментов. Поэтому весь набор экспериментальных точек был аппроксимирован единым уравнением, представляющим собой линейную комбинацию ортонормированных полиномов [22]:

$$C_p = \sum_{0}^{m} A_j U^j$$
, где $U = \ln\left(\frac{T}{400}\right)$. (1)

Значения полиномиального множителя *A_j* приведены в табл. 1.

Выше 15 К теплоемкость станната гадолиния закономерно увеличивается с ростом температуры без каких-либо аномалий на зависимости

 $C_p(T)$. При этом ниже 15 К наблюдается увеличение теплоемкости с понижением температуры, связанное с антиферромагнитным упорядочением ионов Gd³⁺. В данной работе мы зафиксировали нисходящую ветвь низкотемпературной аномалии теплоемкости, обусловленной магнитным фазовым переходом первого рода при температуре 1.015 К, изученным ранее Бонвиллем [12]. Сопоставление результатов настоящей работы с литературными данными приведено на рис. 5. Небольшое расхождение кривых теплоемкости в области 2.5–3 К (не более 6%) не внесет дополнительной неопределенности в дальнейшие термодинамические расчеты.

Для корректного расчета термодинамических функций необходимо экстраполировать температурную зависимость теплоемкости к 0 К. Поэтому в области магнитного фазового перехода решеточную составляющую теплоемкости станната гадолиния принимали пропорциональной кубу температуры и рассчитывали по формуле:

$$C_p^{\circ}(T) = aT^3 = 0.00051T^3.$$
 (2)

Температуру возникновения спин-спиновых корреляций при охлаждении парамагнитного Gd₂Sn₂O₇ определяли по разности значений теплоемкости, рассчитанных по уравнениям (1) и (2). Эта разница принимает нулевое значение при ~21 К.

На основе сглаженных значений теплоемко-

сти $C_p^{\circ}(T)$ с учетом низкотемпературных данных работ [9, 12] рассчитаны температурные зависимости термодинамических функций станната гадолиния (изменения энтальпии $H^{\circ}(T) - H^{\circ}(0)$, энтропии $S^{\circ}(T)$ и приведенной энергии Гиббса

Таблица 1. Коэффициенты A_i в уравнении (1)

j	A_{j} , Дж/(К моль)
0	246.6459
1	158.8691
2	313.7606
3	674.342815399
4	704.91285256
5	423.0413224
6	157.89121773
7	37.288063114
8	5.418519916
9	0.4420608898
10	0.01549398577
σ^2	0.041099

 $\Phi^{\circ}(T) = (H^{\circ}(T) - H^{\circ}(0))/T - S^{\circ}(T))$ (табл. 2). Молярная магнитная энтропия фазового перехода ΔS^{mag} при 21 К составила 35.07 Дж/(К моль), что сопоставимо с величиной максимальной энтропии магнитной подсистемы, определяемой как $R\ln(2J + 1) = R\ln 8 = 17.3 \text{ Дж/(К моль Gd)}$, т.е. 34.6 Дж/(К моль Gd₂Sn₂O₇).

По коэффициенту *а* уравнения (2) было рассчитано значение характеристической температуры Дебая Θ_D станната гадолиния, равное 347 К. Это значение сопоставимо с величиной Θ_D для La₂Sn₂O₇ (Θ_D = 339 K), рассчитанной по коэффициенту *а* решеточного вклада, приведенному в работе [14].

Рис. 5. Температурные зависимости теплоемкости $Gd_2Sn_2O_7$ в интервале 0–22 К. Квадраты – данные [9]; серые линия и ромбы – данные [12]; сплошная черная линия – зависимость $C_p^{\circ}(T)$, рассчитанная по уравнению (1); треугольники и круги – наши экспериментальные данные.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 4 2022

Таблица 2. Сглаженные термодинамические функции $Gd_2Sn_2O_7$ (теплоемкость $C_p^{\circ}(T)$, энтропия $S^{\circ}(T)$, приращение энтальпии $H^{\circ}(T) - H^{\circ}(0)$ и приведенная энергия Гиббса $\Phi^{\circ}(T) = (H^{\circ}(T) - H^{\circ}(0))/T - S^{\circ}(T))$ в интервале температур 2–350 K, рассчитанные с учетом низкотемпературного магнитного перехода [12]

<i>Т</i> , К	$C_{p}^{\circ},$ Дж/(К моль)	<i>S</i> °, Дж/(К моль)	$H^{\circ}(T) - H^{\circ}(0),$ Дж/моль	-Ф°, Дж∕(К моль)
2	10.87	26.40	27.24	12.78
3	7.801	30.10	36.24	18.02
4	5.304	31.90	42.46	21.29
5	4.095	32.95	47.12	23.52
6	3.258	33.62	50.77	25.16
7	2.683	34.07	53.71	26.40
8	2.288	34.40	56.19	27.38
9	2.005	34.66	58.33	28.18
10	1.812	34.86	60.22	28.83
12	1.684	35.17	63.67	29.87
14	1.869	35.44	67.17	30.64
16	2.357	35.72	71.34	31.26
18	3.142	36.04	76.80	31.77
20	4.183	36.42	84.12	32.22
21	4.777	36.64	88.59	32.42
25	7.617	37.69	112.8	33.18
30	12.26	39.48	162.2	34.07
35	17.49	41.75	236.4	35.00
40	23.05	44.45	337.6	36.01
45	28.77	47.49	467.1	37.11
50	34.54	50.82	625.4	38.31
55	40.33	54.39	812.6	39.61
60	46.09	58.14	1029	41.00
65	51.81	62.06	1273	42.47
70	57.48	66.10	1547	44.01
75	63.08	70.26	1848	45.62
80	68.63	74.51	2177	47.29
85	74.10	78.84	2534	49.02
90	79.50	83.22	2918	50.80
95	84.82	87.66	3329	52.62
100	90.06	92.15	3766	54.49
110	100.3	101.2	4718	58.32
120	110.1	110.4	5771	62.28
130	119.5	119.6	6919	66.33
140	128.5	128.7	8160	70.46
150	137.0	137.9	9488	74.65
160	145.1	147.0	10898	78.89
170	152.7	156.0	12388	83.16
180	159.8	165.0	13951	87.45
190	166.5	173.8	15582	91.77
200	172.7	182.5	17 278	96.09
210	178.4	191.1	19034	100.4

Т, К	$C_{p}^{\circ}, Дж/(К моль)$	<i>S</i> °, Дж/(К моль)	<i>H</i> °(<i>T</i>) − <i>H</i> °(0), Дж/моль	-Ф°, Дж∕(К моль)
220	183.7	199.5	20845	104.7
230	188.7	207.8	22707	109.0
240	193.3	215.9	24617	113.3
250	197.5	223.9	26571	117.6
260	201.4	231.7	28566	121.8
270	205.1	239.4	30 599	126.0
280	208.6	246.9	32668	130.2
290	211.8	254.3	34770	134.4
300	214.9	261.5	36904	138.5
310	217.9	268.6	39068	142.6
320	220.9	275.5	41 262	146.6
330	223.8	282.4	43485	150.6
340	226.7	289.1	45737	154.6
350	229.6	295.7	48019	158.5

Таблица 2. Окончание

Оценка энергии Гиббса образования Gd₂Sn₂O₇

Энергию Гиббса образования станната гадолиния можно рассчитать исходя из величины абсолютной энтропии S° (298.15 K), определенной в данной работе, значений стандартных энтропий простых веществ (Gd, Sn, O₂) и величины энтальпии образования $\Delta_{f}H^{\circ}(298.15 \text{ K}) \text{ Gd}_{2}\text{Sn}_{2}\text{O}_{7}$, информация о которой в литературе отсутствует. Для оценки энтальпии образования станната гадолиния был использован подход. предложенный в работе [23], который основан на корреляционной зависимости энтальпии образования $\Delta_f^{\mathrm{ox}} H$ соединений лантаноидов со структурой пирохлора от ионного радиуса лантаноида Ln³⁺ [24]. Экспериментальные значения $\Delta_f^{\text{ox}} H$, полученные в работе [19] для станнатов РЗЭ (РЗЭ = La, Nd, Sm, Eu, Dy, Yb) со структурой пирохлора, были описаны следующей зависимостью:

$$D_{f}^{0x}H(R_{i}) =$$

$$= -1652275 + 3528519R_{i} - 1919038R_{i}^{2}.$$
(3)

Ионный радиус Gd^{3+} с координационным числом 8 равен 1.053 Å [25], в этом случае величина $\Delta_f^{ox} H(R_i)(Gd_2Sn_2O_7)$ составляет —64.6 кДж/моль. Исходя из полученной величины и значений энтальпии образования оксидов Gd_2O_3 ($\Delta_f H^{\circ}(Gd_2O_3, 298.15 \text{ K}) = -1819.7 кДж/моль)$ [26] и SnO₂ ($\Delta_f H^{\circ}(SnO_2, 298.15 \text{ K}) = -577.6 кДж/моль)$ [19] можно оценить величину энтальпии образования станната гадолиния из простых веществ: $\Delta_f H^{\circ}(Gd_2Sn_2O_7) = -3039.5$ кДж/моль. Энергия Гиббса образования, рассчитанная с учетом пара-

Габлица 3.	Термодин	амически	е свойства	$Gd_2Sn_2O_7$	co
структурой	пирохлор	ра при Т=	= 298.15 K	2 2 .	

Соединение	Gd ₂ Sn ₂ O ₇
С°(298.15 К), Дж/(К моль)	214.4
<i>S</i> °(298.15 K), Дж/(К моль)	260.2
<i>Н</i> °(298.15 К) − <i>Н</i> °(0), кДж/моль	36.51
∆ _f ^{ox} H(298.15 K), кДж/моль	- 64.6
∆ _f H°(298.15 К), кДж/моль	- 3039.5
$\Delta_{f}G^{\circ}(298.15 \text{ K}),$ кДж/моль	- 2836.3
Θ _D , K	347

метров низкотемпературного магнитного фазового перехода, составила $\Delta_f G^{\circ}(Gd_2Sn_2O_7, 298.15 \text{ K}) = -2836.3 \text{ кДж/моль.}$

Значения термодинамических функций станната гадолиния при 298.15 К представлены в табл. 3.

ЗАКЛЮЧЕНИЕ

Поликристаллический станнат гадолиния со структурой пирохлора получен твердофазным методом синтеза и охарактеризован с помощью рентгенофазового и рентгенофлуоресцентного анализа. Морфология и размер частиц определены с помощью РЭМ. Теплоемкость полученного образца Gd₂Sn₂O₇ изучена методами релаксационной и адиабатической калориметрии в интервале температур 2.35—350.35 К. Полученные экспериментальные данные находятся в хорошем согласии с литературными данными по теплоемкости станната гадолиния в области ниже 7 К. По аппроксимированным значениям тепло-

емкости $C_p^{\circ}(T)$ рассчитаны температурные зависимости стандартных термодинамических функций Gd₂Sn₂O₇ в интервале 0–350 К.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Минобрнауки России в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований с использованием оборудования Центра коллективного пользования ФМИ ИОНХ РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Balamurugan K., Rajakumaran R., Chen S.M. et al. // Int. J. Electrochem. Sci. 2021. V. 16. P. 210368-1. https://doi.org/10.20964/2021.03.20
- 2. *Srinivasan N., Kiruthika G.V.M.* // Solid State Sci. 2019. V. 96. P. 105957.
 - https://doi.org/10.1016/j.solidstatesciences.2019.105957
- Xu J., Zhang Y., Xu X. et al. // ACS Catalysis. 2019. V. 9. P. 4030. https://doi.org/10.1021/acscatal.9b00022
- Lang M., Zhang F., Zhang J. et al. // Nucl. Instrum. Methods Phys. Res., Sect. B. 2010. V. 268. P. 2951. https://doi.org/10.1016/j.nimb.2010.05.016
- Zhou H.D., Wiebe C.R., Janik J.A. et al. // Phys. Rev. Lett. 2008. V. 101. P. 227204. https://doi.org/10.1103/PhysRevLett.101.227204
- Fennell T., Kenzelmann M., Roessli B. et al. // Phys. Rev. Lett. 2012. V. 109. P. 017201-1. https://doi.org/10.1103/PhysRevLett.109.017201
- Paddison J.A.M., Ehlers G., Petrenko O.A. et al. // J. Phys.: Condens. Matter. 2017. V. 29. P. 144001. https://doi.org/10.1088/1361-648X/aa5d2e
- Gardner J.S., Gingras M.J.P., Greedan J.E. // Rev. Modern Phys. 2010. V. 82. P. 53. https://doi.org/10.1103/RevModPhys.82.53
- Quilliam J.A., Ross K.A., Del Maestro A.G. et al. // Phys. Rev. Lett. 2007. V. 99. P. 097201-1. https://doi.org/10.1103/PhysRevLett.99.097201

- Freitas R.S., Gardner J.S. // J. Phys.: Condens. Matter. 2011. V. 23. P. 164215. https://doi.org/10.1088/0953-8984/23/16/164215
- Wills A.S., Zhitomirsky M.E., Canals B. et al. // J. Phys.: Condens. Matter. 2006. V. 18. P. L37. https://doi.org/10.1088/0953-8984/18/3/L02
- Bonville P., Hodges J.A., Ocio M. et al. // J. Phys.: Condens. Matter. 2003. V. 15. P. 7777. https://doi.org/10.1088/0953-8984/15/45/016
- Rosen P.F., Woodfield B.F. // J. Chem. Thermodyn. 2020. V. 141. P. 105974. https://doi.org/10.1016/j.jct.2019.105974
- Ryumin M.A., Nikiforova G.E., Tyurin A.V. et al. // Inorg. Mater. 2020. V. 56. № 1. P. 97. https://doi.org/10.1134/S0020168520010148
- Kennedy B.J., Hunter B.A., Howard C.J. // J. Solid State Chem. 1997. V. 130. P. 58. https://doi.org/10.1006/jssc.1997.7277
- Zhao M., Ren X., Yang J. et al. // J. Am. Ceram. Soc. 2016. V. 99. P. 293. https://doi.org/10.1111/jace.13979
- Turner K.M., Tracy C.L., Mao W.L. et al. // J. Phys.: Condens. Matter. 2017. V. 29. P. 504005. https://doi.org/10.1088/1361-648X/aa9960
- Xia X.-L., Ouyang J.-H., Liu Z.-G. // J. Power Sources. 2009. V. 189. P. 888. https://doi.org/10.1016/j.jpowsour.2008.12.136
- Lian J., Helean K.B., Kennedy B.J. et al. // J. Phys. Chem. B. 2006. V. 110. P. 2343. https://doi.org/10.1021/jp055266c
- 20. Feng J., Xiao B., Qu Z.X. et al. // Appl. Phys. Lett. 2011. V. 99. P. 201909. https://doi.org/10.1063/1.365948
- Zhao J., Liu Y., Fan Y. et al. // J. Mater. Sci. Technol. 2021. V. 73. P. 23. https://doi.org/10.1016/j.jmst.2020.09.033
- 22. *Гуревич В.М., Хлюстов В.Г.* // Геохимия. 1979. № 6. С. 829.
- Tyurin A.V., Khoroshilov A.V., Ryumin M.A. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 12. P. 1891. https://doi.org/10.1134/S0036023620120207
- Helean K.B., Ushakov S.V., Brown C.E. et al. // J. Solid State Chem. 2004. V. 177. P. 1858. https://doi.org/10.1016/j.jssc.2004.01.009
- 25. Shannon R.D. // Acta Crystallogr., Sect. A. 1976. V. A32 P. 751. https://doi.org/10.1107/S0567739476001551
- 26. *Konings R J.M., Beneš O., Kovács A. et al.* // J. Phys. Chem. Ref. Data. 2014. V. 43. P. 013101-1. https://doi.org/10.1063/1.4825256