ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ, 2022, том 67, № 3, с. 373–383

ТЕОРЕТИЧЕСКАЯ НЕОРГАНИЧЕСКАЯ ХИМИЯ

УДК 539.194

ОСОБЕННОСТИ СТРОЕНИЯ ОДНОЯДЕРНЫХ КОМПЛЕКСОВ МОНОДЕПРОТОНИРОВАННОГО ГЕМИГЕКСАФИРАЗИНА С Y, La И Lu ПО ДАННЫМ КВАНТОВО-ХИМИЧЕСКИХ РАСЧЕТОВ

© 2022 г. Ю. А. Жабанов^{а, *}, Н. И. Гиричева^b, М. К. Исляйкин^{а, c}

^аИвановский государственный химико-технологический университет, Шереметевский пр-т, 7, Иваново, 153000 Россия ^bИвановский государственный университет, ул. Ермака, 39, Иваново, 153025 Россия ^cИнститут химии растворов им. Г.А. Крестова РАН, ул. Академическая, 1, Иваново, 153045 Россия *e-mail: zhabanov@isuct.ru Поступила в редакцию 08.09.2021 г. После доработки 27.09.2021 г. Принята к публикации 30.09.2021 г.

Молекулярная структура одноядерных нецентросимметричных комплексов Y, La и Lu с шестизвенным порфириноидом ABABAB-типа (гемигексафиразином, H_3 Hhp) состава MH₂Hhp изучена методом DFT. Обнаружено, что макроциклический лиганд в этих комплексах имеет плоское строение. Выполнен анализ распределения электронной плотности в молекулах MH₂Hhp методами QTAIM и NBO. Показано, что в каждом комплексе образуются три координационные связи между атомом M и атомом азота пиррольного фрагмента и двумя атомами азота соседних тиадиазольных фрагментов. Лиганд H₂Hhp является квазитридентатным несмотря на то, что комплексы MH₂Hhp образованы замещением лишь одного атома водорода. Показано, что электронное строение комплексов MH₂Hhp не соответствует общепринятым представлениям $M^{1+}H_2Hhp^{1-}$ о степени окисления металла и лиганда в подобных структурах. На основании данных расчетов методом TDDFT установлено, что электронные спектры поглощения комплексов MH₂Hhp содержат полосы поглощения в ИК-области, а комплексы могут обладать ярко выраженными донорными свойствами.

Ключевые слова: макрогетероциклы, порфириноиды, молекулярная структура, координационная связь, DFT-расчеты

DOI: 10.31857/S0044457X22030187

введение

В последнее десятилетие повышенный интерес вызывают порфириноиды [1] с увеличенной координационной полостью [2].

Шестизвенные макрогетероциклические соединения ABABAB-типа, состоящие из последовательно чередующихся тиадиазольных (А) и пирролсодержащих (В) фрагментов, связанных *мезо*-атомами азота, – гемигексафиразины – обладают увеличенной координационной полостью и проявляют необычные по сравнению с порфиринами и фталоцианинами координационные свойства [3–7].

Впервые результаты прямого исследования структуры этого класса порфириноидов были получены для *трет*-бутилзамещенного макроцикла $(C_{42}H_{39}N_{15}S_3)$ с помощью синхронного электронографического и масс-спектрометрического эксперимента и квантово-химических расчетов методом теории функционала электронной плотности (DFT) в 2008 г. [8]. Установлено, что молекула обла-

дает симметрией C_{3h} , а макроциклический остов имеет плоское строение. Тиадиазольные кольца ориентированы таким образом, что атомы серы направлены наружу макроциклической полости [8, 9]. Позднее плоское строение макроциклического остова было подтверждено результатами исследования незамещенного H₃Hhp методом газовой электронографии [10]. В 2010 году основные структурные параметры этих соединений (плоский макроцикл и ориентация атомов серы наружу) были подтверждены методом рентгеноструктурного анализа кристалла гексапентаоксизамещенного макроцикла [3]. Сформированная таким образом внутренняя макроциклическая полость имеет увеличенные по сравнению с порфиринами и фталоцианинами размеры и может быть разделена на три самостоятельных хелатоподобных координационных "кармана". Таким образом, гемигексафиразины (Hhps) способны координировать три атома переходных металлов или один атом большого радиуса. В последнем случае координация может проходить с образованием как центросимметричного, так и нецентросимметричного комплекса.

Таким образом, показано, что присутствие заместителей практически не оказывает влияния на строение макроциклического остова Hhps, поэтому теоретические исследования таутомерных превращений с участием внутрициклических атомов водорода можно проводить с использованием незамещенного макроцикла в качестве модельного соединения [10, 11].

Гемигексафиразины можно считать структурными аналогами гексафирина [12] с увеличенной внутренней полостью, которая может вмещать атомы переходных металлов (например, Ni²⁺, Cu²⁺, Co²⁺ [12–14] или La³⁺ [15]). Их свойства представляют большой интерес в связи с необычной структурой образующихся координационных соединений.

Впервые формирование нецентросимметричного комплекса H_2Hhp^- с Dy на поверхности Au(111) обнаружено методом сканирующей туннельной микроскопии (**CTM**) в работе [4]. Структура замещенных металлокомплексов M₃Hhp (M = Cu, Co, Ni) была изучена методом CTM в работе [6], а восстановленных форм Ni₃OHhp и Cu₃OHhp – методом рентгеноструктурного анализа в работе [7]. Особенности строения комплексов гемигексафиразина с MHhp (M = Y, La, Lu) были изучены с помощью квантово-химических расчетов [16].

В настоящей работе объектами исследования являлись нецентросимметричные комплексы MH_2Hhp (M = Y, La, Lu), в которых лишь один атом водорода во внутренней полости Hhp замещен атомом металла. Подобный комплекс DyH_2Hhp , обнаруженный методом СТМ в работе [4], является наиболее энергетически устойчивым, по данным DFT-расчетов, среди структур, рассмотренных в реакции металлирования (рис. 5 в работе [4]).

ДЕТАЛИ КВАНТОВО-ХИМИЧЕСКИХ РАСЧЕТОВ

Исследование структуры молекул нецентрированных металлокомплексов MH_2Hhp (M = Y, La, Lu) (рис. 1) выполнено методом теории функционала плотности (DFT, гибридный функционал B3LYP) с использованием базисных наборов сс-pVTZ [17, 18] для описания электронных оболочек атомов C, N, S, H. Электронные оболочки атомов металлов описывали с помощью квазирелятивистских псевдопотенциалов в комбинации с соответствующими базисными наборами. Для атома Y использовали псевдопотенциал и базис сс-pVTZ-PP [19], для La – комбинацию псевдопотенциала и базис Def2-TZVPP [20], для атома Lu – валентно-трехэкспонентный базис [21, 22] и псевдопотенциал [23], разработанные штутгартской группой. Во всех трех случаях базисные наборы использовали для описания 11 валентных электронных оболочек. Все расчеты проводили с помощью программного пакета Firefly 8.1 [24], частично основанного на исходном коде программы GAMESS (US) [25]. Распределение электронной плотности анализировали с помощью метода QTAIM [26] (квантовая теория атомов в молекулах) с использованием пакета программ AIMAll [27] и NBO-анализа [28].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Формально степень окисления металла в комплексах MH_2Hhp (M = Y, La, Lu) равна +1, а в комплексах MHhp - +3. В этой связи сравнение геометрического и электронного строения двух типов комплексов позволит проследить, насколько реализуются общепринятые представления о степени окисления металла и лиганда в подобных структурах.

Комплексы MHhp (рис. 2) имеют неплоское строение [16], причиной которого является соотношение размеров большой координационной полости лиганда Hhp^{3–} и относительно малого размера иона M^{3+} . Подстройка лиганда Hhp^{3–} к M^{3+} происходит путем стягивания трех донорных единиц $N_t - N_t$ к центральному иону, сопровождающегося поворотом плоскостей гетероциклических фрагментов лиганда.

В комплексах MH₂Hhp координирующая полость, определяемая пространством между атомом азота депротонированного изоиндольного и двумя атомами азота соседних тиадиазольных фрагментов, существенно меньше, чем координационная полость в комплексах MHhp.

Для инкорпорирования в ограниченное координационное пространство ион металла должен иметь возможно малый размер, который, как известно, уменьшается при увеличении на нем положительного заряда (увеличении степени окисления металла).

При рассмотрении особенностей строения комплексов MH_2Hhp можно выделить два фактора: стерический, направленный на искажение геометрического строения лиганда при внедрении M^+ , и электронный, при котором происходит уменьшение размера иона металла за счет передачи электронной плотности с его валентных орбиталей на лиганд. Рассмотрим оба фактора.

Геометрическое строение комплексов MH₂Hhp

По данным квантово-химических расчетов, комплексы YH_2Hhp и La H_2Hhp имеют плоское строение (симметрия C_{2v} и C_s соответственно), а комплекс Lu H_2Hhp — геометрическое строение

Рис. 1. Структура металлокомплексов MH_2Hhp (M = Y, La, Lu) с нумерацией атомов.

(симметрия C_2) с незначительным (до 3°) искажением макроцикла типа рафлинг.

В комплексе LaH₂Hhp атом La смещен от оси C_2 на 0.006 Å. Однако величина барьера между структурами симметрии C_s и $C_{2\nu}$ составляет всего 0.54 кДж/моль, при этом энергия нулевого колебания, связанного со смещением атома La в плоскости макроцикла, приводящего к понижению симметрии, составляет 0.37 кДж/моль. Энергия нулевого колебания сопоставима с величиной барьера V ($C_s \rightarrow C_{2\nu}$) (0.54 кДж/моль). Таким образом, комплекс лантана следует считать структурно нежестким.

Положение металла внутри малой координирующей полости относительно изоиндольного и тиадиазольного фрагментов изменяется в зависимости от природы атома металла. Величина расстояния между металлом и точкой в центре связи $N_t - N_t$ противоположного тиадизольного фрагмента (рис. 3) является наибольшей в случае металлокомплекса с Lu (4.027 Å) и наименьшей в случае металлокомплекса с La (3.404 Å). При этом расстояние от атома азота изоиндольного фрагмента до центра связи $N_t - N_t$ противоположного тиадиазольного цикла изменяется от 6.25 до 6.01 Å.

Следует отметить интересный факт: периметр внутреннего контура макроцикла (рис. 4) остается постоянным и равным 36.2(2) Å (табл. 1) независимо от природы металла и симметрии металлокомплексов и таким же, как в комплексах MHhp (M = Y, La, Lu), в ионе лиганда Hhp^{3–} и в безметальном соединении H₃Hhp [16].

Плоское (или близкое к таковому — Lu) строение комплексов MH_2Hhp позволяет заключить, что ион M^{n+} имеет объем, соответствующий размеру координационной полости.

Природа координационных связей в комплексах МН₂Нhp. Заряд на атоме М

Во всех рассмотренных комплексах атом металла смещен в сторону депротонированного изоиндольного фрагмента (рис. 1 и 3). В этом положении атом М образует три координационные связи (M–N1, M–N28 и M–N31) с атомами азота, о чем свидетельствует наличие критических точек между данными атомами по результатам анализа электронной плотности методом QTAIM (рис. 5).

Таблица 1. Величины периметров внутреннего контура макроцикла, Å

H ₂ Hhp.	Hhn ^{3–}	YHhp.	LaHhp.	LuHhp.	YH ₂ Hhp.	LaH ₂ Hhp.	LuH ₂ Hhp.
D_{3h}	D_{3h}	C_s	C_s	C_s	C_{2v}	C_s	C_2
36.14	36.05	36.13 [16]	36.12 [16]	36.13 [16]	36.29	36.26	36.30

Рис. 2. Структура комплекса УНһр по данным квантово-химических расчетов [16].

Рис. 3. Положение атома металла (Y, La, Lu) внутри координационной полости комплексов MH₂Hhp (расстояния даны в Å).

По величинам порядков связей M–N1, M–N28 и M–N31, оцененных по схеме Вайберга в рамках NBO-анализа, и индексов делокализации электронов, полученных методом QTAIM (табл. 2), можно судить, что эти связи наряду с ионной со-

ставляющей имеют заметную ковалентную составляющую. В то же время между металлом и атомами азота N32 и N33 координационные связи не образуются, о чем свидетельствует отсут-

Рис. 4. Периметр внутреннего контура макроцикла.

ствие критических точек (рис. 5), а также данные NBO-анализа (табл. 2).

В комплексах MH_2 Hhp и MHhp (рис. 1 и 2 соответственно) атомы металлов являются трехкоординированными, однако в комплексах MHhp донорными единицами являются неподеленные пары атомов азота связи N_t — N_t трех тиадиазольных фрагментов [16], а в комплексах MH_2 Hhp — неподеленные пары атомов азота N1, N28, N31. В комплексах MHhp донорные единицы практически сим-

метрично окружают центральный атом. В комплексах MH_2Hhp донорные атомы расположены близко друг к другу и три координационные связи "образуют" Т-образную структуру.

Электронная конфигурация атома металла в ряду YH_2Hhp , LaH_2Hhp , LuH_2Hhp отличается в основном заселенностью *d*-орбиталей (табл. 3). Электронная конфигурация донорных атомов азота почти одинаковая в комплексах MH_2Hhp . Судя по суммарной энергии донорно-акцепторно-

Таблица 2. Межъядерные расстояния (R, Å), порядки связей (B), оцененные по схеме Вайберга, сумма энергий $\Sigma E^{(2)}$ (ккал/моль) взаимодействия между неподеленными электронными парами атомов азота и акцепторными орбиталями центрального атома М по данным NBO-анализа, индексы делокализации электронов $\delta(A,B)$ по данным метода QTAIM

Связь	R	В	δ(A,B)	$\Sigma E^{(2)}$		
YH ₂ Hhp						
Y-N1	2.299	0.37	0.48	66.18		
Y-N28	2.183	0.34	0.50	77.24		
Y-N32	2.881	0.10	0.07	10.22		
	I	LaH ₂ Hhp		I		
La-N1	2.606	0.15	0.38	20.51		
La–N28	2.325	0.18	0.51	35.2		
La–N31	2.338	0.21	0.54	38.2		
La-N32	2.851	0.06	0.12	5.4		
La–N33	2.977	0.04	0.08	3.44		
LuH ₂ Hhp						
Lu-N1	2.223	0.38	0.53	61.17		
Lu–N28	2.167	0.32	0.49	70.11		
Lu-N32	2.912	0.06	0.06	4.37		

Рис. 5. Распределение электронной плотности в молекулах MH_2Hhp (M = Y, La, Lu) в плоскости макроцикла по данным метода QTAIM. Критические точки связи – зеленые, критические точки кольца – красные.

го взаимодействия $\Sigma E^{(2)}$ между неподеленными парами атомов азота и *d*-орбиталями атомов металлов (табл. 2), комплекс лантана намного менее прочный, чем комплексы Y и Lu. Это связано с положением атома La в координационной полости макроцикла. Из табл. 2 видно, что расстояние La–N1 длиннее, чем аналогичные расстояния в комплек-

сах Y и Lu, на ~ 0.3 Å. Причиной таких больших различий является размер атома металла. Отметим, что ионные радиусы Y и Lu близки, что отражается в близости длин связей Y—N1 и Lu—N1.

В отличие от комплексов MHhp, среди которых комплекс LaHhp является наиболее прочным и жестким [16], в ряду комплексов MH₂Hhp комплекс LaH₂Hhp является менее прочным и обладает наименьшей жесткостью.

В комплексах MHhp размер атома La в большей степени, чем размеры Y и Lu, соответствует размеру увеличенной координационной полости, и это приводит к меньшему структурному искажению от оптимальной структуры безметального лиганда. Напротив, в комплексах MH₂Hhp размер атома La оказывается слишком большим для полости между двумя тиадиазольными и изоиндольным фрагментами.

В комплексах MHhp на атомах Y, La и Lu NPAзаряды составляют 2.24, 2.26 и 2.25 (работа [16], табл. 3). В комплексах MH₂Hhp эти заряды равны 2.03, 2.45 и 2.13 (табл. 3), что также намного больше, чем +1, и это не соответствует ожидаемой степени окисления атома металла в монодепротонированном лиганде. Данные заряды в комплексах MH₂Hhp близки к зарядам на атомах M в комплексах с трижды депротонированным лигандом (MHhp).

При этом в лиганде H_2 Hhp происходит увеличение электронной плотности на атомах N1, N28, C7, C4, S36, S34 за счет ее переноса с атома металла. Это увеличение в сумме соответствует ~1.2 электрона. Именно такое перераспределение электронной плотности приводит к большому положительному заряду на атоме M и возникновению большого дипольного момента в комплексах MH₂Hhp (в случае Y, La, Lu μ = 11.4, 9.2, 11.0 D соответственно), в отличие от дипольного момента в комплексах MHhp, близкого к нулю.

Таким образом, электронное строение комплексов MH_2Hhp не соответствует общепринятым представлениям о степени окисления металла и лиганда $M^{l+}H_2Hhp^{l-}$ в подобных структурах.

Внутримолекулярные водородные связи в комплексах MH₂Hhp

Во всех трех комплексах MH₂Hhp (M = Y, La, Lu) существуют бифуркатные внутримолекулярные водородные связи (**BMBC**) N32...H62 и N29...H62 (N33...H63 и N30...H63), причем первая связь прочнее второй (табл. 4), о чем свидетельствуют данные NBO-анализа и результаты QTAIM (рис. 5). На рис. 6 показано взаимодействие неподеленной пары атома азота с σ^* -орбиталью связи N2–H62. BMBC в комплексе La более прочные, чем в комплексах Y и Lu, из-за меньшего расстояния от атома N1 до центра связи N_t–N_t (рис. 3, табл. 4).

Атом	<i>Q</i> (NBO)	q (AIM)	Электронная конфигурация			
YHaHhp						
Y	2.03	2.08	$[core]5s^{0.09}4d^{0.77}5p^{0.10}$			
N1	-0.77	-1.19	$[core]2s^{1.41}2p^{4.35}$			
N28	-0.61	-0.87	$[core]2s^{1.38}2p^{4.21}$			
N32	-0.37	-0.79	$[core]2s^{1.37}2p^{3.97}$			
	LaH	₂ Hhp				
La	2.45	2.11	$[\text{core}]6s^{0.06}4f^{0.07}5d^{0.43}$			
N1	-0.82	-1.15	$[core] 2s^{1.43} 2p^{4.36}$			
N28	-0.65	-0.86	$[core] 2s^{1.38} 2p^{4.22}$			
N32	-0.45	-0.79	$[core] 2s^{1.38} 2p^{4.03}$			
N31	-0.71	-0.85	$[core]2s^{1.41}2p^{4.26}$			
N33	-0.42	-0.80	$[core]2s^{1.37}2p^{4.01}$			
	LuH	₂ Hhp				
Lu	2.13	2.08	$[core]6s^{0.14}5d^{0.66}6p^{0.07}$			
N1	-0.80	-1.20	$[core]2s^{1.41}2p^{4.38}$			
N28	-0.64	-0.86	$[core]2s^{1.39}2p^{4.23}$			
N32	-0.38	-0.79	$[core] 2s^{1.38} 2p^{3.97}$			

Таблица 3. NPA-заряды на атомах (Q) и электронные конфигурации атомов по данным NBO-анализа, заряды на атомах (q), полученные методом QTAIM в комплексах MH₂Hhp (M = Y, La, Lu)

Таблица 4. Характеристики внутримолекулярных ВС. Межъядерные расстояния (R, Å), порядки связей (B), оцененные по схеме Вайберга, сумма энергий $\Sigma E^{(2)}$ (ккал/моль) взаимодействия между неподеленными электронными парами атомов азота и акцепторными орбиталями $\sigma^*(N-H)$ по данным NBO-анализа (рис. 6), индексы делокализации электронов δ (A,B) по данным метода QTAIM

Связь	R	В	δ(A,B)	$\Sigma E^{(2)}$		
YH ₂ Hhp						
N32-H62	2.114	0.02	0.06	3.69		
N29-H62	2.236	0.01	0.05	2.88		
LaH ₂ Hhp						
N32-H62	2.006	0.03	0.07	6.82		
N29-H62	2.355	0.01	0.04	2.08		
N33-H62	1.964	0.03	0.07	8.47		
N30-H62	2.256	0.01	0.04	3.19		
LuH ₂ Hhp						
N32-H62	2.107	0.02	0.06	4.37		
N29-H62	2.243	0.01	0.04	2.98		

Граничные орбитали комплексов MHhp и MH₂Hhp

На рис. 7 представлена энергетическая диаграмма молекулярных орбиталей для комплексов MHhp и MH_2Hhp . Из диаграммы видно, что при переходе от комплексов MHhp к MH_2Hhp происходит снижение энергии низшей свободной молекулярной орбитали (**HCMO**) и существенное повышение энергии высшей занятой молекулярной орбитали (**B3MO**), что увеличивает как донорные, так и акцепторные свойства комплексов MH₂Hhp. Вид B3MO и HCMO комплексов MHhp и MH₂Hhp показан на рис. 8. ВЗМО комплексов MHhp является линейной комбинацией атомных орбиталей лиганда. В комплексах MH₂Hhp B3MO, кроме того, включает p-AO металла и носит связывающий характер в области M—N28. В комплексах MHhp основной вклад в HCMO вносят d_{z2} -атомные орбитали металла, в то время как в комплексах MH₂Hhp HCMO представляет линейную комбинацию атомных орбиталей тех гетероциклических фрагментов, которые не вовлечены в образование координационных связей.

В комплексах MHhp при переходе B3MO \rightarrow \rightarrow HCMO происходит перенос заряда от лиганда на центральный атом. В комплексах MH₂Hhp также происходит перенос заряда: от части лиган-

Рис. 6. Неподеленные электронные пары атомов азота N29 и N32 (а), σ*-орбиталь связи N2–H62 (б) и результат их донорно-акцепторного взаимодействия (в).

Рис. 7. Энергетическая диаграмма молекулярных орбиталей для MHhp и MH_2 Hhp (M = Y, La, Lu).

да с координационными связями и повышенной электронной плотностью (сумма NPA-зарядов на атомах $\Sigma q = -1.47e$) на ту часть лиганда, в которой такие связи отсутствуют ($\Sigma q = -0.56e$). Малая ширина энергетической щели ВЗМО–НСМО комплексов МH₂Hhp проявляется в наличии полос поглощения в длинноволновой области электронного спектра и указывает на возможность проявления полупроводниковых свойств этих соединений.

Электронные спектры поглощения по данным TDDFT-расчетов

Электронные спектры поглощения комплексов MHhp (M = Y, La, Lu) можно охарактеризовать как типичные, содержащие полосы поглощения в видимой и ультрафиолетовой областях. Для примера на рис. 9 представлен рассчитанный электронный спектр металлокомплекса LaHhp.

Было проведено моделирование электронных спектров комплексов MH_2Hhp (M = Y, La,

Рис. 8. Формы высших занятых и нижних свободных молекулярных орбиталей для MHhp и MH₂Hhp (M = Y, La, Lu).

Lu) на основе результатов TDDFT-расчетов. Расчеты методом TDDFT были проведены для 20 возбужденных состояний в приближении B3LYP/cc-pVTZ. Смоделированные на основании TDDFT-расчетов электронные спектры поглощения для молекул MH₂Hhp (M = Y, La, Lu) представлены на рис. 10. Вследствие того, что энергетическая щель HCMO–B3MO для данных молекул составляет всего ~0.5 эВ (рис. 7), электронный спектр этих молекул имеет полосы поглощения в диапазоне 1800-2400 нм, что соответствует 5555-4166 см⁻¹ (рис. 10).

ЗАКЛЮЧЕНИЕ

Методами квантовой химии изучено строение асимметричных металлокомплексов однократно депротонированного гемигексафиразина с Y, La

Рис. 8. Окончание.

и Lu. Установлено, что металлокомплекс с Y обладает равновесной структурой симметрии $C_{2\nu}$, а комплексы с лантаном и лютецием имеют геометрическое строение симметрии C_s и C_2 соответственно с плоским или близким к плоскому лигандом. На основании анализа распределения электронной плотности методами NBO и QTAIM было установлено, что в рассмотренных комплексах металл образует с лигандом три координационные связи несмотря на то, что комплексы сформированы в результате замещения лишь одного атома водорода.

Показано, что электронное строение комплексов MH_2Hhp не соответствует общепринятым представлениям о степени окисления металла и лиганда $M^{I+}H_2Hhp^{I-}$ в подобных структурах. Отмечено, что при переходе от комплексов MHhp к MH₂Hhp происходит снижение энергии HCMO и существенное повышение энергии B3MO, что увеличивает как донорные, так и акцепторные свойства комплексов MH₂Hhp. По данным TDDFTрасчетов, в электронных спектрах этих металлокомплексов следует ожидать появления полос поглощения в ближнем ИК-диапазоне.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при поддержке гранта Президента Российской Федерации (проект МК-586.2020.3). Предварительные квантово-химические расчеты выполнены при поддержке гранта Российского научного фонда (проект № 17-73-10198), анализ электронной плотности методами QTAIM и NBO выполнен при поддержке гранта Правительства Российской Федерации № 075-15-2021-579.

Рис. 9. Рассчитанный методом TDDFT электронный спектр поглощения комплекса LaHhp.

Рис. 10. Рассчитанные методом TDDFT электронные спектры поглощения комплексов MH_2Hhp (M = Y, La, Lu).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Bottari G., de la Torre G., Guldi D.M. et al.* // Coord. Chem. Rev. 2021. V. 428. P. 213605. https://doi.org/10.1016/J.CCR.2020.213605
- Saito S., Osuka A. // Angew. Chem. Int. Ed. 2011. V. 50. № 19. P. 4342. https://doi.org/10.1002/anie.201003909
- 3. *Trukhina O.N., Rodríguez-Morgade M.S., Wolfrum S. et al.* // J. Am. Chem. Soc. 2010. V. 132. № 37. P. 12991.

- 4. *Cirera B., Trukhina O., Björk J. et al.* // J. Am. Chem. Soc. 2017. V. 139. № 40. P. 14129. https://doi.org/10.1021/jacs.7b06406
- Konarev D.V., Khasanov S.S., Islyaikin M.K. et al. // Chem. - An Asian J. 2020. V. 15. № 1. P. 61. https://doi.org/10.1002/asia.201901518
- Bacilla A.C.C., Okada Y., Yoshimoto S. et al. // Bull. Chem. Soc. Jpn. 2020. V. 94. P. 34. https://doi.org/10.1246/bcsj.20200188
- Nazarov D.I., Islyaikin M.K., Ivanov E.N. et al. // Inorg. Chem. 2021. V. 7. P. 35. https://doi.org/10.1021/acs.inorgchem.1C01132
- 8. Zakharov A.V., Shlykov S.A., Bumbina N.V. et al. // Chem. Commun. 2008. P. 3573.
- 9. Zakharov A.V., Shlykov S.A., Danilova E.A. et al. // Phys. Chem. Chem. Phys. 2009. V. 11. P. 8570.
- Zhabanov Y.A., Zakharov A.V., Shlykov S.A. et al. // J. Porphyr. Phthalocyanines. 2013. V. 17. № 3. P. 220. https://doi.org/doi:10.1142/S1088424613500144
- 11. Otlyotov A.A., Veretennikov V.V., Merlyan A.P. et al. // Macroheterocycles. 2019. V. 12. № 2. P. 209. https://doi.org/10.6060/mhc1904430
- 12. Islyaikin M.K., Danilova E.A., Yagodarova L.D. et al. // Org. Lett. 2001. V. 3. № 14. P. 2153.
- Sessler J.L., Seidel D. // Angew. Chem. Int. Ed. 2003. V. 42. № 42. P. 5134.
- Danilova E., Islyaikin M. // Maroheterocycles. 2012. V.
 Nº 2. P. 157. https://doi.org/10.6060/mhc2012.120577i
- Бумбина Н.В., Данилова Е.А., Исляйкин М.К. // Изв. вузов. Химия и хим. технология. 2008. V. 51. № 6. Р. 15.
- Zhabanov Y.A., Giricheva N.I., Zakharov A.V. et al. // J. Mol. Struct. 2017. V. 1132.
- https://doi.org/10.1016/j.molstruc.2016.07.033
- 17. Dunning J. // J. Chem. Phys. 1989. V. 90. № 2. P. 1007.
- Woon D.E., Dunning T.H.J. // J. Chem. Phys. 1993.
 V. 98. № 2. P. 1358.
- 19. Figgen D., Peterson K.A., Dolg M. et al. // J. Chem. Phys. 2009. V. 130. № 16. P. 124101. https://doi.org/10.1063/1.3119665
- 20. Weigend F, Ahlrichs R. // Phys. Chem. Chem. Phys. Des. Assess. accuracy. 2005. V. 7. № 18. P. 3297.
- Yang J., Dolg M. // Theor. Chem. Acc. 2005. V. 113. № 4. P. 212.
- 22. Weigand A., Cao X., Yang J. et al. // Theor. Chem. Acc. 2009. V. 126. № 3. P. 117. https://doi.org/10.1007/s00214-009-0584-2
- 23. *Dolg M., Stoll H., Savin A. et al.* // Theor. Chim. Acta. 1989. V. 75. № 3. P. 173.
- 24. *Granovsky A.A.* // Firefly, version 8. http://classic.chem.msu.su/gran/firefly/index.html, (accessed May 12, 2021)
- 25. Schmidt M.W., Baldridge K.K., Boatz J.A. et al. // J. Comput. Chem. 1993. V. 14. № 11. P. 1347.
- Bader R.F.W. // Atoms in Molecules: A Quantum Theory. Oxford University Press, Clarendon Press, 1990. https://global.oup.com/academic/product/atoms-inmolecules-9780198558651?cc=in&lang=en& (accessed March 12, 2020)
- 27. *Keith T.A.* // AIMAll, TK Gristmill Software http://aim.tkgristmill.com/references.html (accessed March 13, 2020)
- Weinhold F, Landis C.R. // Chem. Educ. Res. Pract. 2001. V. 2. № 2. P. 91. https://doi.org/10.1039/B1RP90011K

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 3 2022