НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ

УДК 661.728+546.282+546.26

ЗОЛЬ-ГЕЛЬ СИНТЕЗ ПОРИСТЫХ УГЛЕРОДНЫХ МАТЕРИАЛОВ С ИСПОЛЬЗОВАНИЕМ НАНОКРИСТАЛЛИЧЕСКОЙ ПЕЛЛЮЛОЗЫ В КАЧЕСТВЕ ТЕМПЛАТА

© 2022 г. М. И. Воронова^{а, *}, О. В. Суров^а, Н. В. Рублева^а, А. Г. Захаров^а

^аИнститут химии растворов им. Г.А. Крестова РАН, ул. Академическая, 1, Иваново, 153045 Россия *e-mail: miv@isc-ras.ru

Поступила в редакцию 09.09.2021 г. После доработки 06.10.2021 г. Принята к публикации 11.10.2021 г.

Для получения пористых углеродных материалов (ксерогелей и аэрогелей) применен золь-гель метод с использованием нанокристаллической целлюлозы (НКЦ) в качестве темплата. Метод включает золь-гель синтез неорганической матрицы кремнезема (с использованием тетраэтоксисилана в качестве прекурсора SiO_2) и карбонизацию НКЦ в инертной атмосфере с последующим удалением SiO_2 кипячением в растворе щелочи. Изучены факторы, определяющие формирование пористой структуры углерода, и проведены исследования полученных пористых углеродных материалов.

Ключевые слова: нанокристаллическая целлюлоза, темплатный золь-гель синтез, пористый углерод

DOI: 10.31857/S0044457X22030163

ВВЕДЕНИЕ

При всем многообразии методов получения пористых углеродных материалов (ПУМ), обусловленном широчайшей областью их применения, двойной темплатный золь-гель синтез имеет неоспоримые преимущества. Он очень прост и надежен и дает хорошо воспроизводимые результаты. Данный метод включает смешивание суспензии органического темплата с совместимым прекурсором неорганической матрицы для формирования наноструктурированного композиционного материала [1-3]. Карбонизация темплата с последующим удалением неорганической матрицы дает пористый углеродный материал, свойства которого во многом определяются условиями формирования матрицы и свойствами темплата. При двойном темплатном синтезе (жестком темплатинге, нанокастинге) структурные особенности темплата и матрицы определяют свойства получаемого пористого углеродного материала, что позволяет получать материалы с регулируемыми пористостью и удельной поверхностью. При этом регулирование структуры углеродного материала осуществляется путем изменения размеров и концентрации темплата, концентрации прекурсора, а также природы растворителя, рН, ионной силы и температуры [4].

В работе в качестве темплата использовали частицы нанокристаллической целлюлозы (НКЦ),

а в качестве прекурсора для получения неорганической матрицы кремнезема — тетраэтоксисилан.

Нанокристаллическая целлюлоза быть выделена кислотным гидролизом из целлюлозосодержащего сырья. Частицы НКЦ имеют анизотропную стержнеобразную форму (диаметр 5-200 нм, длина 100-300 нм в зависимости от источника целлюлозы и условий гидролиза) [5–9], большой поверхностный заряд, высокую механическую прочность [10]. Физикохимические свойства НКЦ и возможность ее химической модификации [11, 12] привлекают внимание исследователей в связи с разработкой новых функциональных материалов [13-18]. В силу сочетания свойств (анизотропная форма частиц, поверхностный заряд, большая площадь поверхности) НКЦ в последнее время широко применяется в темплатном синтезе пористых материалов [19-23].

В литературе описаны методы получения углеродных аэрогелей с использованием нанофибриллярной и бактериальной целлюлозы [24—28]. Такие материалы обладают набором уникальных физических свойств (низкая плотность, высокая электропроводность, большие пористость и удельная поверхность), что делает их очень перспективными с точки зрения разработки материалов, используемых в качестве носителей катализаторов, электродов суперконденсаторов, адсорбентов, газовых сенсоров и т.д. Однако получению углерод-

ных материалов с использованием НКЦ, на наш взгляд, уделяется недостаточно внимания [29, 30].

Цель настоящей работы — изучить влияние условий двойного темплатного золь-гель синтеза с использованием НКЦ в качестве темплата на свойства ПУМ (ксерогелей и аэрогелей).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Материалы. Для получения водных суспензий НКЦ использовали коммерческую микрокристаллическую целлюлозу (**МКЦ**) (Cellulose, powder ~20 micron, Sigma-Aldrich). В качестве прекурсора кремнезема применяли тетраэтоксисилан (**ТЭОС**) (tetraethyl orthosilicate, $C_8H_{20}O_4Si$, ≥99%, Merck). В работе использовали NaOH (х. ч., AO "Химреактив"), серную кислоту (х. ч., ГОСТ 4204-77, Химмед) и бидистиллированную воду.

Синтез объектов исследования

Получение НКЦ. Водные суспензии НКЦ были получены сернокислотным гидролизом МКЦ методом, описанным ранее [31]. Гидролиз МКЦ (концентрация суспензии 0.025 г/мл) проводили в растворе серной кислоты (62%) при 50° C в течение 2 ч при интенсивном перемешивании. После гидролиза суспензию отмывали водой с использованием повторяющихся циклов центрифугирования (10 мин при 8000 об/мин), т.е. надосадочную жидкость отделяли от осадка и добавляли новую порцию воды. Этап центрифугирования прекращали после 5-6 промывок, пока промывная вода не сохраняла постоянное значение рН. Далее суспензию НКЦ обрабатывали ультразвуком (Sonorex DT100 Bandelin) в течение 15-30 мин. Выход НКЦ составлял 30-35%. При необходимости концентрацию водной суспензии НКЦ изменяли добавлением или испарением воды с помощью ротационного испарителя. Концентрацию водной суспензии НКЦ определяли гравиметрическим методом. После отмывки суспензия имела значение рН ~ 2.4 вследствие наличия поверхностных групп −OSO₃H.

Получение пористого углерода

Получение пористого углерода включает следующие стадии.

1. Получение композитов HKЦ/SiO₂. Композиты HKЦ/SiO₂ получали смешиванием водной суспензии HKЦ (pH 2.2—2.4) с ТЭОС при перемешивании на магнитной мешалке с последующим гидролизом при температуре 60° С в течение 3 ч. Сушкой геля HKЦ/SiO₂ на воздухе при комнатной температуре в течение 36—48 ч были получены композитные пленки (ксерогели) HKЦ/SiO₂, сублимационной сушкой геля HKЦ/SiO₂ — аэрогели HKЦ/SiO₂.

Сублимационную сушку проводили при давлении 6-10 Па и температуре коллектора -50°C в течение 36 ч.

- **2.** Пиролиз и получение композитов C/SiO_2 . Пиролиз композитов $HKLI/SiO_2$ проводили в муфельной печи в атмосфере азота (скорость подачи азота 20 мл/мин) по следующей программе: нагрев до $100^{\circ}C$ со скоростью 2 град/мин, выдержка в течение 2 ч при $100^{\circ}C$, нагрев до $900^{\circ}C$ со скоростью 2 град/мин, выдержка 4 ч при $900^{\circ}C$. Затем образцы медленно охлаждали до комнатной температуры в атмосфере азота.
- **3.** Получение пористого углерода. Углерод получали удалением SiO₂ путем кипячения композитов C/SiO₂ в 2 М NaOH при 90°С в течение 4 ч. После охлаждения образцы фильтровали и промывали большим количеством воды. Удаление кремнезема контролировали по данным элементного анализа. Элементный анализ показал содержание углерода ~95—97%, кислорода ~3—5% и следы натрия и кремния.

Методы физико-химического анализа

Сканирующая электронная микроскопия (СЭМ), электронная спектроскопия для химического анализа. Морфология образцов изучена с использованием сканирующего электронного микроскопа VEGA3 TESCAN (Чехия). Исследование проводили с использованием детектора вторичных электронов при ускоряющем напряжении 5 кВ в режиме высокого вакуума. Элементный состав определяли методом рентгеновского энергодисперсионного анализа с помощью спектрометра X-Max 6 (Oxford Instruments NanoAnalysis) с использованием детектора х-АСТ. Диапазон анализируемых элементов: 4Ве-94Ри. Данное оборудование обеспечивает высокую точность анализа (разрешающая способность соответствует стандарту ISO156 32:2012).

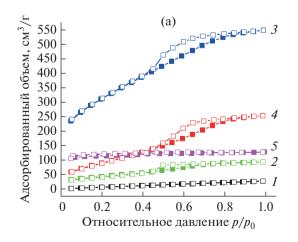
Пористая структура композитов изучена методом низкотемпературной адсорбции азота (анализатор удельной поверхности и пористости NOVAtouch NT LX, Quantachrome, США). Образцы выдерживали под вакуумом в течение 3 ч при температуре 50° С. Адсорбционные и десорбционные изотермы измеряли при -196° С в интервале относительных давлений p/p_0 от 0.01 до 0.95. Удельную поверхность рассчитывали по адсорбционной изотерме методом БЭТ. Распределение пор по размерам и объем пор определяли методом ВЈН.

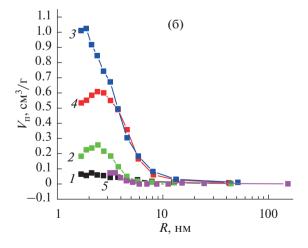
Адсорбционные характеристики. Адсорбцию насыщенных паров воды и органических растворителей на образцах измеряли при температуре 25°С. Содержание адсорбата в образцах определяли гравиметрически.

Образец	$S_{\rm yg}$ (BET), м ² /г	V_{Π} (ВЈН), см ³ /г	R_{Π} (ВЈН), нм
1. НКЦ/SiO ₂ -A, 1 стадия	30	0.036	_
2. C/SiO ₂ -A, 2 стадия	118	0.094	2.4
3. С-А, 3 стадия	585	0.456	1.9
4. SiO ₂ -A	276	0.302	2.5
5. С(НКЦ)-А	355	0.015	<2.0

Таблица 1. Изменение пористой структуры композитов в процессе получения аэрогеля углерода

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ


Данные, приведенные в табл. 1, демонстрируют эволюцию пористой структуры композитов в процессе получения аэрогеля углерода. На рис. 1 показаны низкотемпературные изотермы адсорбции—десорбции азота и распределение пор по размерам для соответствующих образцов.


Для получения композита НКЦ/SiO₂-A (аэрогель) использовали водную суспензию НКЦ с концентрацией 18 г/л и рН 1.65. Содержание НКЦ в лиофилизированном композите составляет 45%, образец имеет маленькую удельную поверхность — 30 M^2/Γ (табл. 1, образец 1). Пиролиз в атмосфере азота приводит к образованию углерода на поверхности пористого кремнезема, вследствие чего удельная поверхность увеличивается до 118 м²/г (образец 2). Удаление кремнезема приводит к формированию развитой пористой структуры углерода с большой удельной поверхностью — $585 \,\mathrm{m}^2/\mathrm{r}$ (образец 3). Для сравнения в табл. 1 приведены также характеристики образцов кремнезема (образец 4 получен из композита НКЦ/SiO₂-A термическим удалением НКЦ в процессе прокаливания на воздухе) и углерода, полученного пиролизом аэрогеля чистой НКЦ (образец 5). Из табл. 1 видно, что углерод, полученный двойным темплатингом, имеет значительно бо́льшую удельную поверхность и объем пор, чем кремнезем в составе исходного композита или углерод, полученный пиролизом аэрогеля НКЦ.

По форме низкотемпературные изотермы адсорбции—десорбции азота на образце 3 можно отнести к IV типу по классификации Брунауэра [32], характерному для мезопористых материалов (рис. 1). Удельная поверхность аэрогеля углерода значительно выше, чем кремнезема, полученного из той же исходной смеси водной суспензии НКЦ с ТЭОС. Углеродный материал, полученный из чистой НКЦ (в отсутствие кремнезема), обладает микропористой структурой (I тип изотермы адсорбции). Поэтому можно предположить, что мезопористую структуру углеродный материал приобретает за счет темплата SiO₂.

В табл. 2 приведены характеристики пористой структуры углеродных материалов, полученных из композитов $HKLI/SiO_2$ с различным содержанием HKLI (от 30 до 60%).

Анализ пористой структуры методом низкотемпературной адсорбции азота показывает, что удельная поверхность (по БЭТ) и объем пор угле-

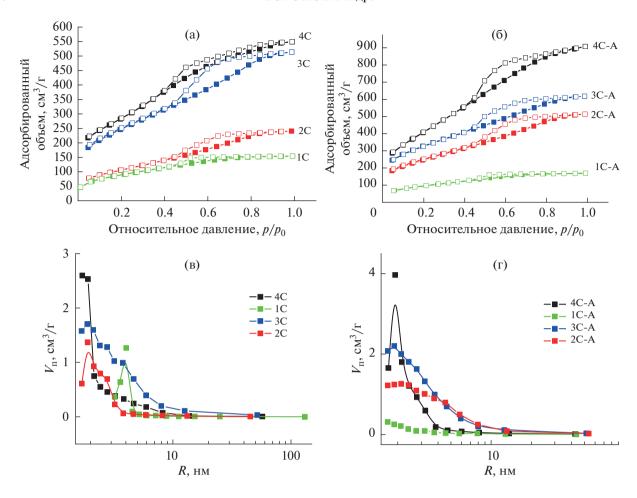
Рис. 1. Изотермы адсорбции (темные значки) и десорбции (светлые значки) азота (77 K) (а) и соответствующее распределение пор по размерам (б), рассчитанное по десорбционной ветви методом ВЈН, для исследованных образцов. Нумерация образцов соответствует приведенной в табл. 1.

	№ образца	Содержание НКЦ в композите НКЦ/SiO ₂ , %	$S_{\rm yg}$ (BET), ${ m M}^2/\Gamma$	V_{Π} (ВЈН), см ³ /г	R_{Π} (ВЈН), нм	S_{mic} , M^2/Γ			
Ксерогели С									
	1C	30	257	0.015	4.0	731			
	2C	35	358	0.345	1.9	1025			
	3C	45	480	0.405	2.0	1990			
	4C	60	732	0.730	1.8	1880			
		ı	Аэрогели С	!		1			
	1C-A	30	261	0.077	1.8	635			
	2C-A	38	426	0.358	2.1	1050			
	3C-A	45	585	0.456	1.9	2220			
	4C-A	60	1125	0.876	1.9	3229			

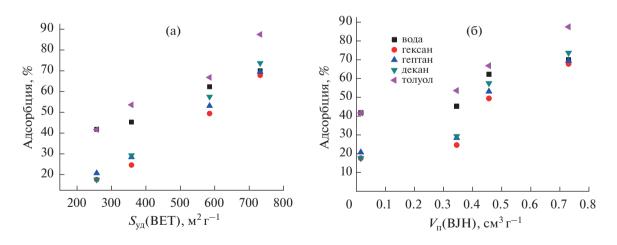
Таблица 2. Характеристики пористой структуры углеродного материала

Таблица 3. Адсорбция насыщенных паров воды и органических растворителей на пористых углеродных материалах

№ образца	Адсорбция паров, %							
	H ₂ O	гексан	гептан	декан	толуол			
Ксерогель С								
1C	41.8	17.6	20.7	17.6	41.7			
2C	45.3	24.56	28.35	29.3	53.6			
3C	62.3	49.4	53.1	57.5	66.8			
4C	70.0	67.8	69.5	73.7	87.5			
Аэрогель С								
1C-A	29.5	20.0	21.8	22.6	23.9			
2C-A	32.6	25.6	32.6	29.2	26.3			
3C-A	72.2	47.8	53.3	46.7	50			
4C-A	180.0	126.1	121.5	118.5	138.5			


родных материалов растут с увеличением доли НКЦ в исходном композите НКЦ/SiO₂ (табл. 2, рис. 2). Удельная поверхность аэрогеля углерода (образец 4С-А) достигает значения 1125 м²/г при содержании НКЦ в исходном композите 60%. Кроме того, анализ экспериментальных изотерм с использованием *t*-метода Хэлси [32], который используется для определения объема микропор в присутствии мезопор, показывает резкое увеличение удельной поверхности углеродных материалов за счет значительного содержания микропор. Приблизительное отношение поверхностей микро- и мезопор в полученных углеродных материалах составляет 2.4—3.2.

Изучена сорбция насыщенных паров воды и органических растворителей (гексана, гептана, декана и толуола) при температуре 25°С на ксерогелях и аэрогелях полученных углеродных материалов (табл. 3).


Как видно на рис. 3, 4, величина сорбции паров органических растворителей и воды линейно растет с ростом удельной площади поверхности и объема пор углеродных материалов. Величина сорбции не зависит от природы растворителя (в пределах погрешности эксперимента).

ЗАКЛЮЧЕНИЕ

Проведен двойной темплатный золь-гель синтез пористых углеродных материалов (ксерогелей и аэрогелей) с использованием нанокристаллической целлюлозы и кремнезема в качестве органического и неорганического темплатов с последующей карбонизацией НКЦ в инертной атмосфере и удалением SiO_2 кипячением в растворе щелочи. Изучены условия формирования пористой структуры углерода, проведена характеристика полученных пористых углеродных материалов. Показано, что пористая структура материалов сформиро-

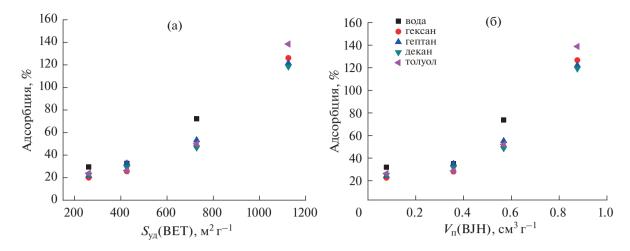

Рис. 2. Изотермы адсорбции (темные значки) и десорбции (светлые значки) азота (77 K) (а, б) и соответствующее распределение пор по размерам (в, г), рассчитанное по десорбционной ветви методом ВЈН, для исследованных образцов. Нумерация образцов соответствует приведенной в табл. 2.

Рис. 3. Зависимость величины сорбции насыщенных паров растворителей (25°C) от удельной поверхности (по БЭТ) (а) и объема пор (б) образцов ксерогеля углерода.

вана мезопорами со значительным содержанием микропор. Сделан вывод, что микропористая структура углерода формируется за счет НКЦ, тогда

как мезопористая — за счет как SiO_2 , так и НКЦ. Изучена сорбция насыщенных паров воды и органических растворителей (гексана, гептана, де-

Рис. 4. Зависимость величины сорбции насыщенных паров растворителей (25°C) от удельной поверхности по БЭТ (а) и объема пор (б) образцов аэрогеля углерода.

кана и толуола) при температуре 25°C на углеродных ксерогелях и аэрогелях. Показано, что сорбция паров органических растворителей и воды линейно растет с ростом удельной площади поверхности и объема пор углеродных материалов и мало зависит от природы растворителя.

БЛАГОДАРНОСТЬ

Данные получены с использованием оборудования центра коллективного пользования "Верхневолжский региональной центр физико-химических исследований".

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Hench L.L., West J.K. // Chem. Rev. 1990. V. 90. № 1. P. 33. https://doi.org/10.1021/cr00099a003
- 2. *Ivicheva S.N.*, *Ovsyannikov N.A.*, *Lysenkov A.S. et al.* // Russ. J. Inorg. Chem. 2020. V. 65. № 12. P. 1820. https://doi.org/10.1134/S0036023620120050
- 3. Frolova M.G., Lysenkov A.S., Titov D.D. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 8. P. 1191. https://doi.org/10.1134/S0036023621080052
- Handy B., Walther K.L., Wokaun A. et al. // Stud. Surf. Sci. Catal. 1991. V. 63. P. 239. https://doi.org/10.1016/S0167-2991(08)64589-9
- Jiang F., Hsieh Y.-L. // Carbohyd. Polym. 2013. V. 95. P. 32. https://doi.org/10.1039/c3ra41646a
- Habibi Y., Lucia L.A., Rojas O.J. // Chem. Rev. 2010.
 V. 110. P. 3479. https://doi.org/10.1021/cr900339w

- Lu P., Hsieh Y.-L. // Carbohyd. Polym. 2010. V. 82. P. 329. https://doi.org/10.1016/j.carbpol.2010.04.073
- Jonoobi M., Oladi R., Davoudpour Y. et al. // Cellulose. 2015. V. 22. P. 935. https://doi.org/10.1007/s10570-015-0551-0
- Brinchi L., Cotana F., Fortunati E. et al. // Carbohyd. Polym. 2013. V. 94. P. 154. https://doi.org/10.1016/j.carbpol.2013.01.033
- Sÿturcova A., Davies G.R., Eichhorn S.J. // Biomacro-molecules. 2005. V. 6. P. 1055. https://doi.org/10.1021/bm049291k
- 11. *Habibi Y.* // Chem. Soc. Rev. 2014. V. 43. P. 1519. https://doi.org/10.1039/C3CS60204D
- Jasmani L., Eyley S., Wallbridge R. et al. // Nanoscale. 2013. V. 5. P. 10207. https://doi.org/10.1039/C3NR03456A
- Holt B.L., Stoyanov S.D., Pelan E. et al. // J. Mater. Chem. 2010. V. 20. P. 10058. https://doi.org/10.1039/C0JM01022G
- Giese M., Blusch L.K., Khan M.K. et al. //Angew. Chem. Int. Ed. 2015. V. 54. P. 2888. https://doi.org/10.1002/anie.201407141
- Ioelovich M., Figovsky O. // Adv. Mater. Res. 2008. V. 47–50. P. 1286. https://doi.org/10.4028/www.scientific.net/AMR.47-50.1286
- 16. *Lin N., Dufresne A.* // Eur. Polym. J. 2014. V. 59. P. 302. https://doi.org/10.1016/j.eurpolymj.2014.07.025
- Georgea J., Siddaramaiah // Carbohyd. Polym. 2012.
 V. 87. № 3. P. 2031.
 https://doi.org/10.1016/j.carbpol.2011.10.019
- 18. *Denisov A.Y., Kloser E., Gray D.G. et al.* // J. Biomol. NMR. 2010. V. 47. № 3. P. 195. https://doi.org/10.1007/s10858-010-9423-y
- Kelly J.A., Giese M., Shopsowitz K.E. et al. // Acc. Chem. Res. 2014. V. 47. P. 1088. https://doi.org//10.1021/ar400243m

- 20. *Shopsowitz K.E., Qi H., Hamad W.Y. et al.* // Nature. 2010. V. 468. P. 422. https://doi.org/10.1038/nature09540
- 21. *Shopsowitz K.E., Kelly J.A., Hamad W.Y. et al.* // Adv. Funct. Mater. 2014. V. 24. P. 327. https://doi.org/10.1002/adfm.201301737
- 22. *Nguyen T.-D., Hamad W.Y., MacLachlan M.J.* // Chem. Commun. 2013. V. 49. P. 11296. https://doi.org/10.1039/c3cc47337f
- 23. Shopsowitz K.E., Stahl A., Hamad W.Y. et al. // Angew. Chem. Int. Ed. 2012. V. 51. P. 6886. https://doi.org//10.1021/ja210355v
- Meng Y., Young T.M., Liu P. et al. // Cellulose. 2015.
 V. 22. P. 435.
 https://doi.org/10.1007/s10570-014-0519-5
- Chen L., Huang Z., Liang H. et al. // R. Soc. Chem. 2013. V. 6. P. 3331. https://doi.org/10.1039/c3ee42366b
- Wu Z.Y., Li C., Liang H.W. et al. // Chem. Int. Ed. 2013.
 V. 52. P. 2925. https://doi.org/10.1002/anie.201209676

- 27. *Chen L.F., Huang Z.H., Liang H.W. et al.* // Energy Environ. Sci. 2013. V. 6. P. 3331. https://doi.org/10.1039/c3ee42366b
- Chen L.F., Liang H.W., Guan Q.F. et al. // Adv. Mater. 2013. V. 25. P. 4746. https://doi.org/10.1002/adma.201204949
- 29. *Hong li Zhu H., Shen F., Luo W. et al.* // Nano Energy. 2017. V. 33. P. 37. https://doi.org/10.1016/j.nanoen.2017.01.021
- Wen Y., Jiang M., Kitchens C.L. et al. // Cellulose. 2017.
 V. 24. P. 4599. https://doi.org/10.1007/s10570-017-1464-x
- 31. *Bondeson D., Mathew A., Oksman K.* // Cellulose. 2006. V. 13. № 2. P. 171. https://doi.org/10.1007/s10570-006-9061-4
- Адамсон А. Физическая химия поверхностей / Пер. с англ. под ред. Зорина З.М., Муллера В.М. М.: Мир, 1979.