_____ КООРДИНАЦИОННЫЕ ____ СОЕДИНЕНИЯ

УДК 547.979.733

ГЕНЕРАЦИЯ И СПЕКТРАЛЬНЫЕ СВОЙСТВА ОКИСЛЕННЫХ ФОРМ ПОРФИРИНОВЫХ КОМПЛЕКСОВ ИРИДИЯ И РЕНИЯ

© 2022 г. Е. Ю. Тюляева^{а, *}, Н. Г. Бичан^а, Т. Н. Ломова^а

^аИнститут химии растворов им. Г.А. Крестова РАН, ул. Академическая, 1, Иваново, 153045 Россия

*e-mail: teu@isc-ras.ru Поступила в редакцию 07.09.2021 г. После доработки 14.09.2021 г. Принята к публикации 20.09.2021 г.

Представлен краткий обзор результатов исследований в области реакционной активности комплексов иридия и рения в различных степенях окисления с замещенными, расширенными, N-fused, N-confused порфиринами, корролами, а также гетероатомными макроциклами в условиях химического и электрохимического окисления. Проанализированы характерные спектральные особенности форм, а также факторы, определяющие стабилизацию того или иного заряда иона-комплексообразователя и место локализации заряда при окислении соединений: ароматическая часть молекулы, центральный атом металла или аксиальный лиганд. Иридий и рений в степенях окисления от +1 до +7 образуют с порфиринами и их аналогами устойчивые комплексы, которые представляют особый интерес благодаря необычным свойствам и потенциалу применения в различных областях науки и техники, включая современные материалы и катализаторы. Показано, что высокая реакционная способность в окислительно-восстановительных процессах с реакционным центром на макроцикле или центральном ионе представляет главную особенность порфириновых комплексов ирилия и рения. Высокая устойчивость не только молекулярных, но и заряженных радикальных форм комплексов вызывает огромный интерес для дальнейшего прогресса в изучении механизмов их химических и фотофизических превращений, необходимого для развития прикладной химии порфириновых комплексов иридия, рения и их аналогов.

Ключевые слова: иридий, рений, комплексы порфиринов, окисление, катион-радикалы **DOI:** 10.31857/S0044457X2203014X

введение

Иридий и рений относятся к одним из самых редких элементов из-за их ничтожно малого содержания в природе. Однако разнообразие формальных степеней окисления (от +1 до +5 v Ir, от +1 до +7 у Re) в сочетании со способностью ароматических тетрапиррольных лигандов стабилизировать необычные степени окисления металлов обеспечивает порфириновым комплексам иридия (IrP) и рения (ReP) уникальные свойства, перспективные в радиофармакологии при диагностике и лечении заболеваний и в разработке и использовании люминесцентных материалов и катализаторов [1-10]. Благодаря сочетанию богатых окислительно-восстановительных свойств и координационной ненасыщенности, тетрапиррольные комплексы иридия и рения рассматриваются в качестве подходящих синтетических моделей для изучения одно- и двухэлектронных окислительных процессов при переносе кислорода в каталитических циклах природных ферментов наряду с такими комплексами, как порфирины железа и марганца [11–14]. Обсуждается также

перспектива применения IrP и ReP в качестве катализаторов реакций органических соединений [15–30], окисления воды [31, 32] и восстановления кислорода [33]. Опубликованы данные по использованию таких комплексов в качестве доноров электронов в системах с фотоиндуцированным электронным транспортом, где реализуются их короткоживущие катион-радикальные формы [34–37], и в качестве биосовместимых и биоразлагаемых кислородных зондов [38].

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Предметом настоящей работы является обобщение и анализ имеющихся в литературе и собственных данных по генерации и свойствам окисленных, в том числе радикальных, форм комплексов иридия и рения в различных степенях окисления с замещенными, расширенными, N-fused, N-confused порфиринами, корролами, а также гетероатомными макроциклами. Специфика свойств окисленных и радикальных форм комплексов IrP и ReP диктует примени-

Рис. 1. Электронные спектры поглощения окисленных форм металлопорфиринов: $1 - \text{ClMnTPP}^{+}$ в 2.52 М H_2O_2 ; $2 - (HSO_4)\text{RhTPP}^{+}$ в 17.41 М H_2SO_4 ; $3 - O=\text{Re}(HSO_4)\text{MPOEP}^{+}$ в 17.77 М H_2SO_4 ; $4 - (CH_3COO)(CH_3COOH)\text{IrTPP}^{+}$ в 100%-ной АсОН (**ТРР** и **ОЕР** – дианионы 5,10,15,20-тетрафенил21H,23H-порфирина и 2,3,7,8,12,13,17,18-октаэтил-21H,23H-порфирина).

мость тех или иных физических и физико-химических методов в их описании. Электронные спектры поглощения (ЭСП) окисленных форм IrP и ReP однотипны по причинам, описанным в следующем разделе, и весьма характерны (рис. 1).

Метод ЭПР информативен лишь при определенном распределении спина неспаренного электрона по атомам макроцикла и неприменим при слабой связи между радикальным и металлическим центрами [39]. Поэтому метод УФ-видимой спектроскопии был признан лучшим на ранних стадиях исследований для характеристики радикальных форм металлопорфиринов [40, 41]. Несмотря на то, что электронный спектр поглощения до сих пор остается наиболее простым методом идентификации π -катион-радикалов, в настоящее время совместное использование методов РСА, ЭПР, ЯМР-спектроскопии и квантово-химических расчетов позволяет охарактеризовать распределение спиновой плотности неспаренного электрона в более сложных системах. Так, в работах [42-44] на основании результатов исследования методом ЭПР и DFT (B3LYP/6-311G(d,p)) расчетов определено распределение спина неспаренного электрона по всем атомам диазапорфиринового кольца в комплексах с 3*d*-металлами. Кроме того, отмечается наличие ферромагнитного перекрывания между спинами парамагнитного центрального иона (Cu^{II}) и *π*-радикала [45]. Доступность количественной энергетической характеристики граничных МО π-катион-радикалов Co^{II}P^{•+} и Mn^{III}P^{•+} в составе фотоиндуцированных короткоживущих радикальных солей с фуллеренсодержащим анион-радикалом продемонстрирована с помощью квантово-химических методов DFT и TD-DFT (B3LYP* + D3BJ/6-31G

уровень) и фемтосекундной переходной спектроскопии поглощения [46].

Образование окисленных форм МР отражается на их ИК-спектрах. Для одноэлектронно-окисленных по макроциклу форм фиксируются полосы, относящиеся к колебаниям связей $C_{\alpha}{-}C_{\beta}$ и $C_{\alpha}{-}N$ в пиррольных кольцах в области 1300-1600 см⁻¹. Самыми заметными из них, подтверждающими тип порфирина, а не состояние симметрии, являются полосы при ~1280 см⁻¹, отвечающие π -катион-радикальным комплексам H_2 TPP, и при ~1550 см⁻¹, характерные для МОЕР^{•+} [47]. Однако присутствие и природа аксиальных и периферийных заместителей (в частности, в мезо-фенилах) значительно влияют на величину частотного сдвига указанных типов колебаний в окисленных формах комплексов [48]. Переход к двухэлектронноокисленным дикатион-радикальным формам димерных комплексов характеризуется увеличением интенсивности сигналов с небольшим их смешением [49, 50].

Для комплексов низкозарядных катионов металлов (Zn, Cu, Ni, Co, Mg, Fe, Ru) с порфиринами выполнено исследование структуры π-катион-радикалов (деформация, длина связей) методом рентгеноструктурного анализа и расчетным DFT-методом [51-55]. Согласно расчетам, при образовании окисленных по ароматической части тетрапиррольных молекул (порфиринов и фталоцианинов) имеет место изменение длин связей кольца по сравнению с нейтральной молекулой. При образовании катион-радикальных форм увеличивается разница в длине связей, чередующихся в порфириновом кольце. и величине углов между ними, в отличие от делокализованных связей в нейтральной молекуле. В табл. 1 на примере ZnTPP и его замещенных по фенильным кольцам аналогов показано изменение величины двугранных углов (ψ , град) между плоскостями порфиринового кольца и мезо-фенильных заместителей в зависимости от состояния окисления молекулы. Структурные изменения способствуют переносу электрона между нейтральной, катион-радикальной и дикатионной формами.

Однако следует учитывать, что существует различие между данными теоретических расчетов и рентгеноструктурного анализа, отражающее проблему эффекта Яна—Теллера, согласно которому взаимосвязь вырожденных электронных состояний с искажениями приводит к снятию вырождения и понижению симметрии. Экспериментальные данные демонстрируют важность эффектов окружения, которые не учитываются и не обнаруживаются в некоторых расчетах [52].

Методом циклической вольтамперометрии определены редокс-потенциалы Co^{II}Pc^{•+}/Co^{II}Pc и Mn^{III}Pc^{•+}/Mn^{III}Pc (**Pc** – дианион фталоциани-

на) в 0.1 М (*н*-Ви)₄NClO₄ в дихлорметане, равные соответственно 0.94 и 1.25 В, когда комплексы входили в состав донорно-акцепторной пары с аксиально координированным 1'-N-метил-2'-(1H-имидазол-1-ил)-фенилпирролидино[3',4':1,2] [60]фуллереном (**ImC**₆₀) [46]. Здесь же продемонстрирован эффект тушения флуоресценции Mn^{III}Pc ($\lambda_{exs} = 365$ нм) в составе радикальной соли Mn^{III}Pc '+/ImC⁻₆₀.

Детальное изучение влияния локализации заряда, степени окисления и спинового состояния центрального металла в высокоокисленных формах на спектры ¹Н ЯМР и ЭПР представлено в литературе для порфириновых комплексов железа [55].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Для прогнозирования каталитических свойств соединений и установления механизма катализа на металлопорфиринах (МР) важно знать характеристики свойств окисленных и восстановленных форм катализатора – интермедиата редокспроцессов. Устойчивость МР к окислению определяется в основном электронной природой катиона-комплексообразователя, макроцикла и его функциональных заместителей и лигандов в аксиальном положении. Многие окисленные катионные и катион-радикальные формы IrP и ReP наблюдаются в химических, электрохимических или фотофизических превращениях как сравнительно устойчивые или короткоживущие интермелиаты. Удаление электрона при электрохимическом и химическом воздействии на МР может проходить по центральному атому или по ароматической части молекулы и сопровождаться либо повышением степени окисления катиона-комплексообразователя в составе комплекса, либо образованием π -катион-радикальной формы молекул МР^{•+} с локализацией положительного заряда на макроцикле. В зависимости от распределения спина неспаренного электрона различают два типа π-катион-радикалов металлопорфиринов: ²А₁₁₁ радикал с плотностью спина, сосредоточеной на атомах С_{мезо} метиновых мостиков и внутрициклических атомах N, и ²A_{2u} радикал, характеризующийся небольшой плотностью спина в мезо-положениях [40, 41]. Поскольку электронные свойства этих форм близки, симметрию состояния можно изменить. заменив аксиальный лиганд в составе комплекса. Из-за близости энергий ВЗМО электронные спектры поглощения π-катион-радикалов обоих типов аналогичны, что и является причиной характеристичности ЭСП π -катион радикалов металлопорфиринов. По результатам ZINDO-расчета молекул, катионов и анионов ZnPc и ZnTPP с использова-

Таблица 1. Полученные расчетным методом DFT (B3LYP 6-31G(d,p)) значения двугранных углов (ψ, град) между плоскостями порфиринового кольца и *ме-зо*-фенильных заместителей в различных состояниях окисления [51]

Комплекс	Ψ*	Ψ**
ZnTPP	66.01	65.43
ZnT(2'-thienyl)P	65.26	63.57
ZnT(3'-furyl)P	58.37	57.13
ZnT(3'-thienyl)P	61.86	61.18
ZnTPP ^{•+}	55.86	56.00
ZnT(2'-thienyl)P ⁺⁺	44.78	44.74
ZnT(3'-furyl)P*+	44.52	44.20
ZnT(3'-thienyl)P ⁺⁺	49.12	49.04
ZnTPP ²⁺	45.36	55.09
ZnT(2'-thienyl)P ²⁺	34.46	34.46
ZnT(3'-furyl)P ²⁺	35.53	34.61
ZnT(3'-thienyl)P ²⁺	39.24	39.32

* Оптимизировано для изолированных молекул и радикалов. ** Оптимизировано в дихлорметане.

ZnTPP - (5,10,15,20-тетрафенил-21H,23H-порфинато)цинк(II), ZnT(2'-thienyl)P - (5,10,15,20-(2'-тиенил)-21H,23H-порфинато)цинк(II), ZnT(3'-furyl)P - (5,10,15,20-(3'-фурил)-21H,23Hпорфинато)цинк(II), ZnT(3'-thienyl)P - (5,10,15,20-(3'-тиенил)-21H,23H-порфинато)цинк(II).

нием 16-орбитальной модели и данным магнитного кругового дихроизма, опубликованным в основополагающей работе [56], как в случае одноэлектронного восстановления ZnTPP, так и в случае одноэлектронного окисления ZnPc имеет место снятие вырождения двух граничных орбиталей (ВЗМО), характерное для исходных молекул. Это катастрофически изменяет ЭСП упомянутых соединений. В спектре ZnTPP появляются полосы поглощения с $\lambda_{max} = 538$ и 910 нм $\pi^* \to \pi^*$ переходов в пределах вакантных МО. Одновременно O-полосы (0,0) и (0,1), расположенные при 605 и 560 нм в спектре исходного ZnTPP, смещаются батохромно на 145 и 168 нм. При удалении одного электрона (переход от $ZnPc \ltimes ZnPc^+$) аналогичные новые полосы принадлежат $\pi \to \pi$ -переходам внутри заполненных оболочек. Наряду с ними проявляются смещенные батохромно Q-полосы при 958 и 925 нм, полоса второго $\pi \rightarrow \pi^*$ -перехода при 300-450 нм, полосы B_1 , B_2 и $\pi \to \pi^*$. Общим результатом становится резкое увеличение поглощения на границе УФ и видимой части спектра, появление новых полос в ближней ИК-области и сравнительное падение адсорбции на месте исходных Q-полос, что и наблюдается в приведенных на рис. 1 спектрах других одноэлектронно-окисленных металлопорфиринов. Наличие или отсутствие полос поглощения МР в области 550-700 нм явля-

Рис. 2. Химическое строение трифенилкорролов. L = = пиридин (ру), триметиламин (tma), изохинолин (isoq), 4-диметиламинопиридин (dmap), 4-пиколиновая кислота (4ра).

ется основой интерпретации имеющихся экспериментальных данных для идентификации окисленных по макроциклу соединений.

Генерирование окисленных форм тетрапиррольных соединений иридия и рения в условиях электрохимических экспериментов представлено в литературе, однако идентификация процессов окисления с указанием места локализации положительного заряда выполнена не в каждой работе. Для порфириновых комплексов Ir^{3+} с различными аксиальными лигандами и *мезо*-фенильными и/или β-алкильными заместителями макроцикла величины первого потенциала окисления, отнесенного к процессу образования π -катион-радикальной формы, определены в интервале 0.51–1.31 В [2, 57]. Образование дважды окисленных форм происходит при 1.15–1.45 В, причем для комплексов с H_2 TPP наличие этого процесса зависит от природы аксиальных лигандов. Исследования комплексов иридия(III) с близкими порфириновыми аналогами три(пентафтор- и три(*napa*-X-фенил)корролами (X = CF₃, H, Me, OMe (рис. 2, структура 1)) свидетельствуют об окислении по центральному катиону до Ir⁴⁺ при E = 0.20-1.69 В и возможности второго окисления как по макроциклу, так и по катиону иридия при E = 0.89-1.18 В [3, 58].

Аксиально координированные алкильными группами комплексы иридия Ir(C₈H₁₃)OEP и Ir(C₈H₁₃)(CO)OEP являются первыми примерами σ-связанных по аксиальной оси металлопорфиринов, которые могут быть обратимо окислены по аксиальному лиганлу в среле тетрагилрофурана при 0.68 и 0.80 В соответственно [59]. Окисление аксиальной части молекулы также было обнаружено в реакции (CH₂COAr)IrTTP (TTP – дианион 5,10,15,20-тетратолил21Н,23Н-порфина) с 1-окси-2,2,6,6-тетраметилпиперидинилом, когда предполагаемый интермедиат с локализацией радикала на атоме углерода Ir^{III}(CH₂CHR[•]) был стабилизирован центральным катионом, а результатом реакции являлся комплекс Ir^{II}(CH₂=CHR) с неспаренным электроном на металле [60].

Биядерный комплекс иридия(I) (TPP)[Ir^I(CO)₃]₂ (рис. 3, структура 2) характеризуется двумя окислительными потенциалами: 0.92 и 1.5 В в бензонитриле (**PhCN**) или CH₂Cl₂, содержащих 0.2 М перхлорат тетрабутиламмония [61]. При первом (быстром и необратимом) электроокислении по металлу Ir^I \rightarrow Ir^{III} с отрывом CO, фиксируемом по исчезновению полос колебаний связей Ir–CO при

Рис. 3. Химическое строение биядерных комплексов иридия(I) и рения (I) с H₂TPP (структура 2) и моноядерного комплекса рения(I) с замещенным H₂Pc (структура 3).

ния, образуется [(TPP)Ir^{III}]⁺ClO₄⁻. Дальнейшее удаление электрона происходит с макроцикла при 1.5 В аналогично другим порфириновым комплексам трехзарядного иридия.

В изоструктурных комплексах рения(I) (ТРР)[Re^I(CO)₃]₂ (рис. 3, структура 2) и ('Bu-Pc)[Re^I(CO)₃]₂, в отличие от (ТРР)[Ir^I(CO)₃]₂, при электрохимическом воздействии изменения степени окисления металла не происходит. Наблюдаемые спектральные изменения и изменения величины E_{ox} характерны для процессов образования форм, окисленных по макроциклу: 1.01 (CH₂Cl₂), 1.16 В (PhCN) для порфиринового [62] и 0.52 В для фталоцианинового [63] комплексов. В то же время моноядерный комплекс ('BuPc)Re^I(CO)₃ (рис. 3, структура 3) подвергается окислению дважды: при 0.32 и 0.76 В, однако отнесение первого процесса удаления электрона в цитируемой работе не проведено [63].

Окислительные потенциалы замещенных N-confused-порфириновых (NCP) комплексов рения(I) и рения(V), представленных на схеме 1, изменяются в пределах 0.1-0.6 В в зависимости от степени окисления центрального атома и протяженности π -электронной системы. Значительные батохромные сдвиги в ЭСП химически окисленных форм и меньшие значения потенциалов окисления по сравнению с соответствующими ReNCP свидетельствуют о протекании процесса окисления по макроциклу и включении периферийных заместителей в π -сопряжение, что подтверждается также теоретическими расчетами [64].

Значительно более высокие потенциалы, характеризующие окисление макроцикла, демонстрируют уникальные моно- и дигетерокомплексы $Re(CO)_3$ с тиапорфирином, селенпорфирином и оксапорфирином, в которых одно или два из пиррольных колец порфирина заменены на тиофен, фуран и селенофен соответственно. Для них определены потенциалы: 1.10 и 1.43 В (STPPRe^I(CO)₃) (рис. 4, структура 4); 1.65 В (S₂TTPRe^I(CO)₃), 1.15 и 1.74 В (Se₂TTPRe^I(CO)₃) (рис. 4, структура 5); 0.88 и 1.33 В (ОТРРRe^I(CO)₃) (рис. 4, структура 6) [65, 66]. Несмотря на сильное искажение молекулы при комплексообразовании с ионом Re⁺ по сравнению с соответствующим свободным макроциклическим основанием, такие комплексы высокоустойчивы к окислению.

Электрохимическое поведение тетрапиррольных комплексов рения(V) представлено в литературе данными по оксорений(V)триарилкорролам (рис. 5, структура 7) [67]. Результаты исследования редокс-свойств и величины E_{ox} (0.93–1.10 В) свидетельствуют о возможности окисления соединений по макроциклу.

Рис. 5. Химическое строение оксорений(V)триарилкорролов (структура 7).

Приведенные данные демонстрируют, что ни одно из этих соединений рения не может

быть окислено по центральному атому металла при электрохимическом воздействии в изученных условиях в области потенциалов 0-2 В. Переход $Re(I) \rightarrow Re(V)$ химическим путем (схема 1) возможен для соединения Re^I(NCTPP), упомянутого выше [64]. Химическое окисление $Re(I) \rightarrow Re(VII)$ оказалось успешным в единственном случае. На примере получения триоксокомплекса рения(VII) NFPReO₃ (NFP - N-fused порфирин) окислением соответствующего комплекса рения(I) NFPRe(CO)₃ с использованием Me₃NO · 2H₂O в 1,2-Cl₂C₆H₄ при 140°C в течение 30 мин была представлена впечатляющая способность N-fused порфиринов стабилизировать комплексы металлов в высокой степени окисления за счет координации с тремя атомами азота и сравнительно небольшой координирующей полости (схема 2) [68].

Схема 1. Химическое окисление Re^I(NCTPP).

Схема 2. Химическое окисление Re^I(NFTPP).

Комплекс	Растворитель (С, моль/л)	Форма
[O=ReTPP] ₂ O	5–10 H ₂ SO ₄ /HOAc	$O = Re(HSO_4)TPP^{+}$
O=Re(Cl)OEP	16.78–18.1 H ₂ SO ₄	$O = Re(Cl)(O_2)OEP^a$
O=Re(OPh)OEP	16.8–18.1 H ₂ SO ₄	$O = Re(OPh)(O_2)OEP^a$
O=Re(OPh)MPOEP	16.8–18.2 H ₂ SO ₄	$O = Re(OPh)(O_2)MPOEP^a$
O=Re(Cl)MPOEP	16.8–18.2 H ₂ SO ₄	$O = Re(HSO_4)MPOEP^{+}$
O=Re(Cl) ^{5,15} DPOEP	16.8–18.1 H ₂ SO ₄	$O = Re(HSO_4)^{5,15} DPOEP^{++}$
$O = Re(X)P^{6}$	16.8–18.2 H ₂ SO ₄	$O = Re(X)(O_2)P^a$
(Cl)(H ₂ O)IrTPP	0.043 H ₂ O/HOAc	(OAc)(HOAc)IrTPP ⁺⁺
	99 ^в CF ₃ COOH	(CF ₃ COO) ₂ Ir ^{IV} TPP
	16.78–18.09 H ₂ SO ₄	(HSO ₄) ₂ Ir ^{IV} TPP ⁺⁺

Таблица 2. Окисленные формы некоторых порфириновых комплексов иридия и рения в протонсодержащих растворителях

а Форма, устойчивая к окислению в данных условиях.

⁶ Р – дианион 5,15*-бис*(4-метоксифенил)-3,7,13,17-тетраметил-2,8,12,18-тетраэтилпорфирина, X = Cl, OPh, OH. ^в C, %.

Попытка получить комплекс рения(VII) из исходного рений(V)коррола с использованием окислителя не увенчалась успехом, подтвердив предварительно проведенные теоретические расчеты [67].

В общем случае реакционная способность порфириновых комплексов рения(V) в растворах в основном представлена процессами обмена аксиальных лигандов [34, 69]. Однако соединения рения(V) с H_2 TPP, H_2 OEP и его *мезо*-фенилзамещенными аналогами оказались в группе соединений, для которых была обнаружена и изучена авторами данной статьи химическая генерация окисленных форм в среде аэрированных кислот HOAc, H_2 SO₄, CF₃COOH и в смесях HOAc– H_2 SO₄ (табл. 2, [70–73]). Одноэлектронное окисление протекает вследствие взаимодействия координационного центра с молекулярным O₂ в условиях избытка протонов:

$$(X)_{n-2}$$
 MP + O₂ + H⁺ \rightarrow $(X)_{n-2}$ MP⁺ + HO₂.

Отнесение интермедиатов и контроль за скоростью реакций окисления MP проводили на основании характеристичности УФ-видимых спектров π -катион-радикальных форм MP. Химическое строение промежуточных и конечных продуктов реакции подтверждали, когда это было возможно, дополнительными исследованиями методами ИК- и одно- и двумерной ЯМР-спектроскопии.

На примере $O=Re^{V}(X)P$ с различным составом координационной сферы по экваториальным и аксиальным направлениям установлено влияние природы лигандов на процессы, протекающие в сернокислых растворах комплексов по общей схеме 3 [70–73].

Схема 3. Химическое окисление $O = Re^{V}(X)P$ в концентрированной H_2SO_4 .

В комплексах, содержащих *мезо*-фенильные заместители и аксиальные хлорид-ионы в *цис*-положении к оксолиганду, замещение Cl⁻ на гидросульфат-ионы благоприятствует удалению электрона с π -системы макроциклического лиганда. В случае O=Re(Cl)OEP, O=Re(OPh)OEP, O=Re(OPh) MPOEP, а также комплексов O=Re(Cl), O=Re(OPh) и O=Re(OH) с 5,15-*бис*(4'-метоксифенил)-3,7,13,17-тетраметил-2,8,12,18-тетраэтилпорфирином реакция останавливается на стадии образования катионного комплекса с аксиально координированным кислородом и внешнесферным ионом (схема 3, верхняя строка).

Попытка химической генерации π -катион-радикала μ -оксодимерного [O=ReTPP]₂O под действием *трет*-бутилгидропероксида (C = 0.19 моль/л в бензоле), контролируемая ЭСП, приводила к реакции, включающей разрыв μ -оксомостика при координации молекулы гидропероксида с сохранением координационного центра [74]. При этом спектр ни одной из конечных форм, находящихся в равновесии в растворе, не соответствовал спектру окисленной по макроциклу формы.

В условиях избытка CF₃COOH в растворе CH₂Cl₂ гетеропорфирины STTPRe^I(CO)₃, S₂TTPRe^I(CO)₃ и Se₂TTPRe^I(CO)₃ (структуры **4**, **5**) не образуют π катион-радикалов, а лишь подвергаются протонированию по внутрициклическим атомам азота. ¹Н ЯМР-титрование соединений с использованием CF₃COOH в CDCl₃, демонстрирующее низкопольный сдвиг сигналов протонов пирролов, подтверждает протекание процесса [65, 66]. Оксапорфирин рения(V) (структура **6**) в аналогичных условиях подвергается диссоциации с образованием протонированной формы макроциклического лиганда [66]. Устойчивость к окислению этих соединений объясняется их высокими окислительными потенциалами, упомянутыми выше.

Реакции аксиального замещения на ионы и молекулы среды протекания реакций, характерные для комплексов рения. предшествуют также генерации высокоокисленных форм порфиринов иридия(III) в средах (табл. 2) с высоким содержанием протонов [75, 76]. Место локализации неспаренного электрона при химическом окислении (Cl)(H₂O)IrTPP в кислотах определяется кислотностью среды и природой аксиальных лигандов. В 100%-ной АсОН комплекс медленно образует окисленную по ароматической части форму, в CF₃COOH имеет место окисление по центральному катиону металла с образованием комплекса иридия(IV), а в концентрированной H₂SO₄ последовательно проходят оба эти процесса (схема 4).

$$(Cl)(H_2O)Ir^{III}P \xrightarrow{TFA}_{c} (TFA^{-})(TFA)Ir^{III}P \xrightarrow{O_2}_{b} (AcO)(AcOH)Ir^{III}P^{+} (Cl)(H_2O)Ir^{III}P \xrightarrow{TFA}_{c} (TFA^{-})(TFA)Ir^{III}P \xrightarrow{O_2}_{d} (TFA)_2Ir^{IV}P (TFA)_2Ir^{IV}P \xrightarrow{H_2SO_4}_{g} (HSO_4)_2Ir^{IV}P^{+}$$

Схема 4. Трансформации (Cl)(H₂O)IrTPP в протонодонорных растворителях.

Координированные молекулы и анионы трифторуксусной кислоты (схема 4, реакция с), обладая электроноакцепторными свойствами, оказывают цис-влияние на координированный макроцикл и уменьшают π -электронную плотность на его атомах, поэтому окисление комплекса иридия(III) проходит не по макроциклу (схема 4, реакция d). Смешанная электронодонорно-акцепторная природа гидросульфат-ионов в (HSO₄)₂Ir^{IV}TPP. имеющих как неподеленные электронные пары, так и доступные по энергии вакантные *d*-орбитали, в сочетании с высокой кислотностью серной кислоты способствует прохождению двух последовательных реакций окисления: по центральному атому и по макроциклу (схема 4, реакции e, g). Воз-можность перехода $Ir^{III} \rightarrow Ir^{IV}$ подтверждается электрохимическими исследованиями: окислительновосстановительная пара $[(TPP)Ir]^+/[(TPP)Ir]^{2+}$ имеет относительно низкое значение $E_{1/2} \sim 1.4$ В [2].

Окисление по центральному атому металла отмечено и в ходе весьма редкой для порфириновых комплексов реакции окислительного присоединения AcOH к комплексу иридия(I) с молекулярным порфирином [IrCl(H_2O)₂]₂ H_2TPP (SAT-комплекс) (схема 5) [77].

Электронодонорно-акцепторная природа молекул окислителей, вероятно, обусловливает также различие продуктов взаимодействия комплекса (Cl)(CO)Ir^{III}TTP с некоторыми окислителями [78]. Так, реакция с пиридин-N-оксидом и триметиламин-N-оксидом ведет к координации молекул окислителя в аксиальное положение комплексов с замещением хлорид-иона без образования продуктов окисления. Пероксид водорода H_2O_2 и *мета*-хлорнадбензойная кислота не вступают в реакцию с исследуемым соединением, о чем свидетельствуют данные используемых в работе методов ¹H ЯМР и масс-спетрометрии. Лишь в ходе реакции с иодозилбензолом (PhIO)_n наблюдалось образование окисленной парамагнитной формы комплекса, предположительно, иридия(V) с потерей аксиального СО. Однако убедительных доказательств образования и структуры высоковалентной формы или интермедиата в исследовании не представлено.

Схема 5. Реакция окислительного присоединения AcOH к $[IrCl(H_2O)_2]_2H_2TPP$.

Для аксиального σ -комплекса Ir(C₈H₁₃)TPP продемонстрирована [79] возможность как химического окисления одноэлектронным окислителем [(4-BrC₆H₄)₃N](SbCl₆)) по алкильному заместителю, так и стабилизации центрального катиона в степени окисления >3+ благодаря прохождению реакций аксиального присоединения и замещения лигандов PPh₃, Cl⁻, (L_{OEt})Ru(N)Cl₂ (L_{OEt} = (η^5 -C₅H₅)Co{P(O)(OEt)₂}₃). Выводы в работе были подтверждены результатами электрохимических измерений и метода PCA.

Рассмотренные выше свойства окисленных форм IrP и ReP определяют перспективы практического применения порфириновых комплексов этих металлов. Высокая стабильность комплексов и в окисленном, и в восстановленном состоянии открывает возможность их применения не только в катализе, но и при создании переключателей окислительно-восстановительного потенциала. Богатая редокс-химия приведет в перспективе к разработке индикаторов оптических сенсоров на кислород. Уже описан пример ячеек для расщепления воды с фотоанодом, основанным на

Рис. 6. Промежуточный комплекс в реакции введения карбенов в связи S-H (структура 8).

порфириновом комплексе $IrO_2 \cdot nH_2O$ [80]. "Работа" устойчивых редокс-интермедиатов IrP и ReP в катализируемых ими процессах отмечается во многих исследованиях. Так, при введении карбенов, полученных из этил-, метил-, метил-, метилиси-и метил-(*n*-толил)диазоацетата, в S–H-связи ароматических и алифатических тиолов, катализируемом (5,10,15,20-тетратолилпорфиринато)метилиридием(III), при температуре окружающей среды таким интермедиатом служит нейтральная форма катализатора с избыточным электроном на иридии (рис. 6, структура 8) [21].

С учетом высокой реакционной способности по аксиальной оси можно предполагать успешное использование электронодонорных свойств IrP и ReP в координационных донорно-акцепторных парах со свойством фотоиндуцированного электронного транспорта. Две такие системы (рис. 7, структуры 9, 10) уже получены и охарактеризованы в основном состоянии физико-химическими методами в наших работах [34, 81].

ЗАКЛЮЧЕНИЕ

Краткий обзор работ последних десятилетий по комплексам иридия и рения с порфиринами и их аналогами показал, что основная проблема на пути продвижения этой темы - недостаточность описания конкретных промежуточных форм комплексов в химических и фотофизических превращениях. Координационные соединения этих редких металлов с замещенными, расширенными, N-fused, N-confused и модифицированными порфиринами, корролами, а также гетероатомными макроциклами являются отличными системами для изучения свойств и реакционной способности по различным связям. Тот факт, что эти комплексы формируют особую группу с замечательными свойствами, очевиден из приведенных данных. Они одновременно проявляют высокую

Структура 9 и 10.

Рис. 7. Химическое строение порфириновых комплексов рения(V) с монопиридилзамещенным фуллеро[60]пирролидином (стехиометрия неизвестна, показаны прекурсоры) (структура 9) и трипиридилзамещенным фуллеро[60]пирролидином (структура 10).

устойчивость по связям металл—азот и высокую реакционную способность в реакциях замещения аксиальных лигандов, что наряду с богатой редокс-химией делает их многообещающими кандидатами для применения в катализе. Комплексы с корролами структурно охарактеризованы и исследованы в качестве фотосенсибилизаторов в фотодинамической терапии рака. Несмотря на то, что IrP и ReP могут выступать в качестве отличных электронных доноров, практически совсем не изученной остается область фотоиндуцированного формирования радикальных солей в составе донорно-акцепторных пар для органических солнечных ячеек.

Для изучения окисленных форм IrP и ReP необходимо их получать в условиях, при которых они являются долгоживущими. Поэтому способы генерации этих форм должны получить дальнейшее развитие. Данные о существовании и поведении окисленных форм в различных средах и в различных реакциях позволят моделировать превращения с каталитическим участием IrP и ReP, расшифровать механизмы таких превращений, а также расширить перечень изучаемых технических процессов и биохимических реакций. Надеемся, что результаты настоящей работы помогут лучше понимать основы химии окислительновосстановительных процессов с участием макроциклических комплексов иридия и рения и поспособствуют разработке новых комплексов для потенциального применения в междисциплинарных областях и каталитических исследованиях в будущем.

БЛАГОДАРНОСТЬ

Работа выполнена в рамках Программы государственных академий наук (тема № 0092-2014-0002). Собственные данные авторов получены на оборудовании Центра коллективного пользования научным оборудованием "Верхневолжский региональный центр физико-химических исследований".

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Koren K., Dmitriev R.I., Borisov S.M. et al. // ChemBioChem. 2012. V. 13. P. 1184. https://doi.org/10.1002/cbic.201200083
- Lam T.L., Ka Chung T., Yang C. et al. // Chem. Sci. 2019. V. 10. P. 293. https://doi.org/10.1039/c8sc02920b
- 3. Thomassen I.K., McCormick-McPherson L.J., Borisov S.M. et al. // Scientific Reports. 2020. V. 10. Art. 7551.
 - https://doi.org/10.1038/s41598-020-64389-3
- Naoda K., Osuka A. // J. Porphyrins and Phthalocyanines. 2014. V. 18. P. 652. https://doi.org/10.1142/s1088424614500382
- Alemayehu A.B., Vazquez-Lima H., Teat S.J. et al. // ChemistryOpen. 2019. V. 8. P. 1298. https://doi.org/10.1002/open.201900271
- Borisov S.M., Einrem R.F., Alemayehu A.B. et al. // Photochem. Photobiol. Sci. 2019. V. 18. P. 1166. https://doi.org/10.1039/c8pp00473k
- Majumder S., Borah B.P., Bhuyan J. // Dalton Transactions. 2020. V. 49. P. 8419. https://doi.org/10.1039/d0dt00813c
- Xie J., Liang C., Luo S. et al. // ACS Appl. Mater. Interfaces. 2021. V. 13. P. 27934. https://doi.org/10.1021/acsami.1c06381
- Zhang L.P., Geng Y., Li L.J. et al. // Chem. Sci. 2021. V. 12. P. 5918. https://doi.org/10.1039/d1sc00126d

- Majumder S., Borah B.P., Bhuyan J. // Dalton Trans. 2020. V. 49. P. 8419. https://doi.org/10.1039/d0dt00813c
- Huang X., Groves J.T. // Chem. Rev. 2018. V. 118. P. 2491. https://doi.org/10.1021/acs.chemrev.7b00373
- 12. *Machan C.W.* // ACS Catal. 2020. V. 10. P. 2640. https://doi.org/10.1021/acscatal.9b04477
- Passard G., Dogutan D.K., Qiu M. et al. // ACS Catal. 2018 V. 8. P. 8671. https://doi.org/10.1021/acscatal.8b01944
- Lomova T., Tsaplev Y., Klyueva M., Ovchenkova E. // J. Organomet. Chem. 2021. V. 945. P. 121880. https://doi.org/10.1016/j.jorganchem.2021.121880
- 15. *Hartwig J.F., Key H.M., Dydio P. et al.* // U.S. Patent, WO 2017/066562 A2, 2017.
- Wang J.-C., Xu Z.-J., Guo Z. et al. // Chem. Commun. 2012. V. 48. P. 4299. https://doi.org/10.1039/C2CC30441D
- Anding B.J., Ellern A., Woo L.K. // Organometallics. 2012. V. 31. P. 3628. https://doi.org/10.1021/om300135f
- Anding B.J., Woo L.K. // Organometallics. 2013. V. 32. P. 2599. https://doi.org/10.1021/om400098v
- Dydio P., Key H.M., Hayashi H. et al. // J. Am. Chem. Soc. 2017. V. 139. P. 1750. https://doi.org/10.1021/jacs.6b11410
- 20. Wang Y., Cui H., Wei Z.-W. et al. // Chem. Sci. 2017. V. 8. P. 775. https://doi.org/10.1039/c6sc03288e
- Dairo T.O., Woo L.K. // Organometallics. 2017. V. 36. P. 927. https://doi.org/10.1021/acs.organomet.6b00947
- 22. Yang W., Zhang H., Li L. et al. // Organometallics. 2016. V. 35. P. 3295.
- https://doi.org/10.1021/acs.organomet.6b00490
- 23. Shum W.P., Kesling H.S. // U.S. Patent. 5103027. 1992.
- 24. Buchler J., Schmidt M., Prascher G. // U.S. Patent. 4973718.1990.
- 25. Buchler J., Kruppa S., Schmidt M., Prascher G. // U.S. Patent. 4987226. 1991.
- 26. Zaragoza J.P.T., Siegler M.A., Goldberg D.P. // Chem. Commun. 2016. V. 52. P. 167. https://doi.org/10.1039/C5CC07956J
- Toganoh M., Fujino K., Ikeda S., Furuta H. // Tetrahedron Lett. 2008 V. 49. P. 1488. https://doi.org/10.1016/j.tetlet.2007.12.117
- Yamamoto T., Toganoh M., Furuta H. // Dalton Trans. 2012. V. 41. P. 9154. https://doi.org/10.1039/c2dt30885a
- 29. Wang H.X., Wu K., Che C.M. // Synlett. 2021. V. 32. P. 249. https://doi.org/10.1055/s-0040-1707221
- Bian Y.J., Qu X.Y., Chan K.S. // Organometallics. 2020. V. 39. P. 1376. https://doi.org/10.1021/acs.organomet.0c00100
- Manas S., Armando J.L.P., José Armando L. da Silva // Coord. Chem. Rev. 2014. V. 439. P. 213911. https://doi.org/10.1016/j.ccr.2021.213911

- 32. Sorokin A.B. // Coord. Chem. Rev. 2019. V. 389. P. 141. https://doi.org/10.1016/j.ccr.2019.03.016
- 33. Xiao M.L., Zhu J.B., Li G.R. et al. // Angew. Chem. Int. Ed. 2019. V. 58. P. 9640. https://doi.org/10.1002/anie.201905241
- Бичан Н.Г., Тюляева Е.Ю., Ломова Т.Н., Семейкин А.С. // Журн. орг. химии. 2014. Т. 50. № 9. С. 1376. [Bichan N.G., Tyulyaeva E.Yu., Lomova T.N., Semeikin A.S. // Russ. J. Org. Chem. 2014. V. 50. P. 1361. https://doi.org/10.1134/S1070428014090218]
- 35. Tritton D.N., Bodedla G.B., Tang G.L. et al. // J. Mater. Chem. A. 2020. V. 8. P. 3005. https://doi.org/10.1039/c9ta12492f
- 36. *Lomova T.N.* // Appl. Organomet. Chem. 2021. Art. e6254.
- https://doi.org/10.1002/aoc.6254
- Tański T., Jarka P., Szindler M. et al. // Appl. Surf. Sci. 2019. V. 491. P. 807. https://doi.org/10.1016/j.apsusc.2019.04.274
- Castro M.C.R., Ben Sedrine N., Monteiro T., Machado A.V. // Spectrochim. Acta, Part A: Molecular and Biomolecular Spectroscopy. 2020. V. 235. P. 118309. https://doi.org/10.1016/j.saa.2020.118309
- Morishima I., Takamuki Y., Shiro Y. // J. Am. Chem. Soc. 1984. V. 106. P. 7666. https://doi.org/10.1021/ja00337a002
- 40. Dolphin D., Forman A., Borg D.C. et al. // Proc. Natl. Acad. Sci. USA. 1971. V. 68. P. 614.
- Carnieri N., Harriman A. // Inorg. Chim. Acta. 1982.
 V. 62. P. 103. https://doi.org/10.1016/S0020-1693(00)88485-6
- 42. Satoh T., Minoura M., Nakano H. et al. // Angew. Chem. Int. Ed. 2016. V. 55. P. 2235. https://doi.org/10.1002/anie.201510734
- 43. Sudoh K., Satoh T., Amaya T., et al. // Chem. Eur. J. 2017. V. 23. P. 16364. https://doi.org/10.1002/chem.201703664
- 44. Mutoh M., Sudoh K., Furukawa K. et al. // Asian J. Org. Chem. 2019. V. 8, P. 352. https://doi.org/10.1002/ajoc.201900085
- Matano Y. // 11th International Conference on Porphyrins and Phthalocyanines. Buffalo. USA. 2021. Book of Abstacts. Society of Porphyrins & Phthalocyanines. P. 145.
- 46. Ovchenkova E.N., Bichan N.G., Tsaturyan A.A. et al. // J. Phys. Chem. C. 2020. V. 124. P. 4010. https://doi.org/10.1021/acs.jpcc.9b11661
- 47. Shimomura E.T., Phillippi M.A., Goff H.M. et al. // J. Am. Chem. Soc. 1981. V. 103. P. 6778. https://doi.org/10.1021/ja00412a055
- El-Attar M.A., Xu N., Awasabisah D. et al. // Polyhedron. 2012. V. 40. P. 105. https://doi.org/10.1016/j.poly.2012.03.034
- Dey S., Sil D., Pandit Y.A., Rath S.P. // Inorg. Chem. 2016. V. 55. P. 3229. https://doi.org/10.1021/acs.inorgchem.5b02065
- 50. Pandit Y.A., Shah S.J., Rath S.P. // Z. Anorg. Allg. Chem. 2018. V. 644. P. 856. https://doi.org/10.1002/zaac.201800247
- 51. Tran T.T.H., Chang Y.-R., Hoang T.K.A. et al. // J. Phys. Chem. A. 2016. V. 120. P. 5504. https://doi.org/10.1021/acs.jpca.6b03538

- Scheidt W.R., Cheng B., Reddy K.V., Brancato K.E. // J. Porphyrins Phthalocyanines. 2017. V. 21. P. 273. https://doi.org/10.1142/S1088424617500080
- Nemykin V.N., Dudkin S.V., Fathi-Rasekh M. et al. // Inorg. Chem. 2015. V. 54. P. 10711. https://doi.org/10.1021/acs.inorgchem.5b01614
- Nevonen D.E., Ferch L.S., Chernii V.Y. et al. // J. Porphyrins Phthalocyanines. 2020. V. 24. P. 894. https://doi.org/10.1142/s1088424619502043
- 55. *Walker F.A.* // Inorg. Chem. 2003. V. 42. P. 4526. https://doi.org/10.1021/ic026245p
- 56. Mack J., Stillman M.J. // J. Porphyrins Phthalocyanines. 2001. V. 5. P. 67. https://doi.org/10.1002/1099-1409(200101)5:1<67::AID-JPP300>3.0.CO;2-3
- Swistak C., Cornillon J.L., Anderson J.E., Kadish K.M. // Organometallics. 1987. V. 6. P. 2146. https://doi.org/10.1021/om00153a020
- Palmer J.H., Brock-Nannestad T., Mahammed A. et al. // Angew. Chem. Int. Ed. 2011. V. 50. P. 9433. https://doi.org/10.1002/anie.201102913
- 59. Cornillon J.-L., Anderson J.E., Swistak C., Kadish K.M. // J. Am. Chem. Soc. 1986. V. 108. P. 7633. https://doi.org/10.1021/ja00284a030
- Yeung S.K., Chan K.S. // Organometallics. 2005. V. 24. P. 6426. https://doi.org/10.1021/om050661a
- Kadish K.M., Deng Y.J., Yao C.-L., Anderson J.E. // Organometallics. 1988. V. 7. P. 1979. https://doi.org/10.1021/om00099a012
- Kadish K.M., Schaeper D., Bottomley L.A. et al. // J. Inorg. Nucl. Chem. 1980. V. 42. P. 469. https://doi.org/10.1016/0022-1902(80)80030-3
- Murata K., Koike Y., Ishii K. // Chem. Commun. 2020. V. 56. P. 13760. https://doi.org/10.1039/d0cc04625f
- 64. *Yamamoto T., Toganoh M., Mori S. et al.* // Chemical Science. 2012. V. 3. P. 3241. https://doi.org/10.1039/c2sc20708g
- 65. *Kaur T., Lee W.-Z., Ravikanth M.* // Inorg. Chem. 2016. V. 55. P. 5305.

https://doi.org/10.1021/acs.inorgchem.6b00214

- 66. Ghosh A., Ravikanth M. // Inorg. Chem. 2012. V. 51. P. 6700. https://doi.org/10.1021/ic300344g
- 67. Einrem R.F., Gagnon K.J., Alemayehu A.B., Ghosh A. // Chem. Eur. J. 2016. V. 22. P. 517. https://doi.org/10.1002/chem.201504307
- 68. Toganoh M., Ikeda S., Furuta H. // Chem. Commun. 2005. P. 4589.

https://doi.org/10.1039/b508208k

- 69. Buchler J.W., Kruppa S.B. // Z. Naturforsch. 1990. V. 45. P. 518.
- 70. Тюляева Е.Ю., Бичан Н.Г., Ломова Т.Н. // Журн. неорган. химии. 2013. Т. 58. № 11. С. 11522. [*Туиlyaeva E.Yu., Bichan N.G., Lomova T.N.* // Russ. J. Inorg. Chem. 2013. V. 58. С. 1366. https://doi.org/10.1134/S0036023613110223]
- 71. Бичан Н.Г., Тюляева Е.Ю., Ломова Т.Н. // Журн. неорган. химии. 2014. Т. 59. С. 1692. [Bichan N.G., Tyulyaeva E.Yu., Lomova T.N. // Russ. J. Inorg. Chem.

2014. V. 59. P. 1445. https://doi.org/10.1134/S0036023614120079] https://doi.org/10.7868/S0044457X14120071

- Бичан Н.Г., Тюляева Е.Ю., Ломова Т.Н. // Журн. физ. химии. 2014. Т. 88. С. 1528. [Bichan N.G., Tyulyaeva E.Yu., Lomova T.N. // Russ. J. Phys. Chem. 2014. V. 88. P. 1719. https://doi.org/10.1134/S0036024414100045] https://doi.org/10.7868/S0044453714100057
- Бичан Н.Г., Тюляева Е.Ю., Ломова Т.Н., Семейкин А.С. // Журн. неорган. химии. 2017. Т. 62.
 № 12. С. 1585. [Bichan N.G., Tyulyaeva E.Yu., Lomova T.N., Semeikin A.S. // Russ. J. Inorg. Chem. 2017.
 V. 62. P. 1576. https://doi.org/10.1134/S0036023617120208] https://doi.org/10.7868/S0044457X17120054
- 74. Симонова О.Р., Зайцева С.В., Бичан Н.Г., Тюляева Е.Ю. // Тез докл. XII Всерос. конф. с междунар. уч. "Проблемы сольватации и комплексообразования в растворах. От эффектов в растворах к новым материалам". Иваново, 2015. С. 201.
- Тюляева Е.Ю., Можжухина Е.Г., Бичан Н.Г., Ломова Т.Н. // Журн. неорган. химии. 2015. Т. 60. № 2. С. 194. [*Tyulyaeva E.Yu., Mozhzhukchina E.G., Bichan N.G., Lomova T.N.* // Russ. J. Inorg. Chem. 2015. V. 60. Р. 157.

https://doi.org/10.1134/S0036023615020199] https://doi.org/10.7868/S0044457X15020208

- Тюляева Е.Ю., Бичан Н.Г., Можжухина Е.Г., Ломова Т.Н. // Журн. физ. химии. 2016. Т. 90. № 1. С. 28. [*Tyulyaeva E.Yu., Bichan N.G., Mozhzhukchina E.G., Lomova T.N.* // Russ. J. Phys. Chem. 2016. V. 90. Р. 37. https://doi.org/10.1134/S0036024416010325] https://doi.org/10.7868/S0044453716010325
- Ломова Т.Н. Аксиально координированные металлопорфирины в науке и практике. М.: Красанд, 2018. 704 с. https://www.rfbr.ru/rffi/ru/books/o_208717
- Park-Gehrke L.S. // A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy; University of Washington. 2010. 171 p.
- 79. So S.-C., Cheung W.-M., Chiu W.-H. et al. // Dalton Trans. 2019. V. 48. P. 8340. https://doi.org/10.1039/c9dt00244h
- Sherman B.D., Pillai S., Kodis G. et al. // Can. J. Chem. 2011. V. 89. P. 152. https://doi.org/10.1139/V10-118
- Бичан Н.Г., Овченкова Е.Н., Ломова Т.Н. // Журн. физ. химии. 2019. Т. 93. № 4. С. 558. [Bichan N.G., Ovchenkova E.N., Lomova T.N. // Russ. J. Phys. Chem. A. 2019. V. 93. № 4. Р. 703. https://doi.org/10.1134/S003602441904006X]