_____ КООРДИНАЦИОННЫЕ ____ СОЕДИНЕНИЯ

УДК 546.814-31+546.057

КООРДИНАЦИОННЫЕ И СПЕКТРАЛЬНЫЕ СВОЙСТВА ОКСАЗАМЕЩЕННЫХ ПРОИЗВОДНЫХ ТЕТРАФЕНИЛПОРФИРИНА

© 2022 г. С. Г. Пуховская^{*a*, *}, Ю. Б. Иванова^{*b*}, Н. Н. Крук^{*c*}, А. О. Плотникова^{*a*}, А. С. Вашурин^{*a*}, С. А. Сырбу^{*b*}

^аИвановский государственный химико-технологический университет, Шереметевский пр-т, 7, Иваново, 153000 Россия ^bИнститут химии растворов им. Г.А. Крестова РАН, ул. Академическая, 1, Иваново, 153045 Россия ^cБелорусский государственный технологический университет, ул. Свердлова, 13а, Минск, 220006 Беларусь *e-mail: svetlana.puhovskaya@mail.ru Поступила в редакцию 08.09.2021 г. После доработки 18.09.2021 г. Принята к публикации 22.09.2021 г.

С использованием теоретических выводов из четырехорбитальной модели Гоутермана выполнен детальный анализ формирования спектров поглощения и флуоресценции свободных оснований и их комплексов с цинком для 5,10,15,20-тетрафенил-21-оксапорфирина и 5,10,15,20-тетрафенил-21,22-диоксапорфирина. Показано влияние симметрии молекулы на положение и форму полос в электронных спектрах поглощения и спектрах флуоресценции. Впервые определены кинетические параметры реакций образования комплексов оксазамещенных производных 5,10,15,20-тетрафенилорфина с солями *d*-металлов (Cu(II), Zn(II), Co(II)) при 288–308 К. Проведено сравнение полученных кинетических данных для оксазамещенных производных с результатами исследований для их классического аналога – тетрафенилпорфина.

Ключевые слова: порфирины, металлокомплексы, электронооптические свойства **DOI:** 10.31857/S0044457X22030102

введение

Простейший по структуре порфирин – порфин – представляет собой тетрапиррольный макрогетероцикл. В реакционном центре порфина расположены четыре атома азота, которые в большей части и определяют свойства молекулы [1, 2]. Модификация архитектуры молекулы, как правило, осуществляется двумя путями: во-первых, путем варьирования природы и числа периферических заместителей, во-вторых, путем изменения самого макрокольца (гидрирование, присоелинение дополнительных циклов, введение других гетероатомов). Замещение пиррольного азота на атомы VIA группы приводит к образованию новых макрогетероциклических систем - порфириноидов или гетерозамещенных порфиринов с уникальными малоизученными свойствами, которые значительно отличаются от свойств классических порфиринов [3]. Преобразование реакционного центра неизбежно влияет на электронную структуру макроцикла, при этом изменяются как физические, так и химические свойства соединения при сохранении ароматического характера π -электронной системы, устойчивости и способности образовывать комплексы с различными катионами металлов. В последние годы химия гетеропорфиринов стремительно развивается: получен практически каждый аналог порфирина и их производные, такие как хлорины, корролы, тетрабензопорфирины, определены возможности их практического использования в качестве более эффективной замены обычных металлопорфиринов [4].

Образование комплексов — неотъемлемое свойство тетрапиррольных макроциклов, поэтому изучение закономерностей их получения является актуальной и своевременной задачей современной координационной химии.

Известно, что тетрапиррольные макрогетероциклы являются эффективными преобразователями первичного аналитического сигнала в оптический отклик сенсора. Для них характерны достаточно интенсивные спектрально-люминесцентные, в частности флуоресцентные, свойства, которые могут быть использованы для этих целей. Тетрапиррольные молекулы интенсивно изучаются и в ряде случаев используются в качестве источника аналитического сигнала, что способствует решению задач, связанных с детектированием и количественным определением содержания различных ионов в растворах. Это направление химии в последнее время активно развивается с целью создания ион-чувствительных материалов [5]. В настоящей работе представлены результаты изучения и анализ оптических и координационных свойств 5,10,15,20-тетрафенил-21-оксапорфирина и 5,10,15,20-тетрафенил-21,22-диоксапорфирина, а также их структурного аналога — 5,10,15,20-тетрафенилпорфина.

 $X = O, Y = N, HOT\Phi\Pi;$ $X = Y = O, O_2T\Phi\Pi;$ $X = Y = N, H_2T\Phi\Pi.$

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

5,10,15,20-Тетрафенилпорфин (**H**₂**ТФП**, **I**), 5,10,15,20-тетрафенил-21-оксапорфирин (**НОТФП**, **II**) и 5,10,15,20-тетрафенил-21,22-диоксапорфирин (**O**₂**ТФП**, **III**) синтезировали и выделяли по известным методикам. Спектральные характеристики полученных соединений соответствуют литературным данным [6–8].

5,10,15,20-Тетрафенилпорфин (І). ЭСП (хлороформ), λ (lgε): 413 (5.60), 513 (4.26), 546 (3.90), 590 (3.70), 650 (3.73); ¹Н ЯМР (500 МГц, CDCl₃), δ, м.д.: 8.30 (m, 8H, фенил *o*-H), 7.80 (m, 12H, фенил *m*- и *p*-H), 8.75 (8H, β-C), -3.75 (*s*, 2H, NH).

	С	Н	Ν
Найдено, %:	86.11;	4.72;	9.16.
Для C ₄₄ H ₃₀ N ₄			
рассчитано, %:	86.12;	4.75;	9.12.

FAB-спектр: найдено m/z = 613 (для $C_{44}H_{29}N_4$ рассчитано m/z = 613.24).

5,10,15,20-Тетрафенил-21-оксапорфирин (II). ЭСП (хлороформ), λ (lgɛ): 418 (5.41), 514 (4.36), 548 (3.81), 617 (3.48), 678 (3.69); ¹Н ЯМР (500 МГц, CDCl₃), $\delta_{\rm H}$, м.д.: 7.67 (m, *m*-и *p*-фенил), 8.09 (t, *o*-

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 3 2022

фенил), 8.46 (d, пиррол), 8.52 (d, пиррол), 8.80 (s, пиррол), 9.10 (s, фуран).

	С	Н	Ν	0
Найдено, %:	85.72;	4.88;	6.80;	2.58.
Для C ₄₄ H ₃₀ N ₃ O				
рассчитано, %:	85.71;	4.87;	6.81;	2.60.

FAB-спектр: найдено m/z = 615 (для C₄₄H₂₉N₃O рассчитано m/z = 615.73).

5,10,15,20-Тетрафенил-21,22-диоксапорфирин (III). ЭСП (ДМФА), λ (lgɛ): 417 (4.93), 512 (3.91), 547 (3.72), 587 (3.53), 646 (3.41). ¹Н ЯМР (CDCl₃), δ, м.д.: 9.77 и 9.68 (d, 4H, фуран); 9.01 и 8.94 (d, пиррол); 8.16 (m, 8H, *о*-фенил); 7.71–7.76 (m, 12H, *m*- и *p*-фенил).

	С	Н	Ν	0
Найдено, %:	85.55;	4.55;	4.65;	5.23.
Для $C_{44}H_{28}N_2O_2$				
рассчитано. %:	85.64:	4.55:	4.55:	5.29

FAB-спектр: найдено m/z = 617.23 (для $C_{44}H_{28}N_2O_2$ рассчитано m/z = 616.71).

Синтез и очистку комплексов цинка с лигандами (I–III) проводили по известным методикам [6, 9].

Порфирин	Длина волны, нм				
	B _{xy}	$Q_{y}(0.1)$	Q _y (0.0)	Q _x (0.1)	Q _x (0.0)
Η ₂ ΤΦΠ	419.0	514.0	547.5	593.5	650.5
НОТФП	420.5	507.5	541.5	614.0	674.0
$O_2 T \Phi \Pi$	419.0	513.5	548.5	590.0	649.0
ZnTΦΠ	423.0	_	_	549.0	589.0
ZnOTΦΠ	428.0/444.5	548.0	591.0	583.0	636.0
$ZnO_2T\Phi\Pi$	423.0	_	_	549.5	589.0

Таблица 1. Электронные спектры поглощения свободных оснований и цинковых комплексов порфиринов I–III в толуоле

Растворители (уксусная кислота, ДМФА) и ацетаты металлов марки "ч. д. а." очищали стандартными методами [10, 11].

Использованный для измерения спектров флуоресценции толуол фирмы Aldrich (содержание воды не более 0.03%) применяли без дополнительной очистки.

¹Н ЯМР-спектры растворов соединений I–III регистрировали на спектрометре Bruker-500 с рабочей частотой 500 МГц в CDCl₃ (внутренний стандарт – тетраметилсилан).

Спектры флуоресценции тетрапиррольных соединений и их комплексов измеряли на флуориметре Cary Eclipse фирмы Varian при температуре 298 K.

ЭСП растворов порфиринов и скорость реакций образования комплексов порфиринов I—III определяли на спектрофотометрах Shimadzu UV-1800 и Hitachi U-2000.

Скорость реакции комплексообразования измеряли с применением термостатируемых кювет в интервале температур от 288 до 348 К. Колебание температуры не превышало 0.1 К.

Первый кинетический порядок реакции образования металлопорфиринов был определен на основании прямолинейной зависимости $lg(c_{H_2P}^0/c_{H_2P})$ –

au, где $c_{{
m H}_2{
m P}}^0$ и $c_{{
m H}_2{
m P}}$ — начальная и текущая концентрации порфирина.

Концентрацию растворов в ходе эксперимента контролировали по изменению оптической плотности. Кинетический эксперимент выполняли при ~50–100-кратном избытке концентрации раствора соли по сравнению с раствором макрогетероцикла, что позволило рассчитать эффективные константы скорости ($k_{эф}$) реакции комплексообразования по уравнению псевдопервого порядка:

$$k_{\rm sp} = (1/\tau) \ln \left[(A_o - A_{\rm sc}) / (A - A_{\rm sc}) \right], \qquad (1)$$

где A_0 , A, A_{∞} — оптическая плотность раствора порфирина в начальный момент, в момент времени τ и по окончании реакции соответственно. Измерение оптической плотности растворов проводили для каждого порфирина на двух длинах волн, соответствующих максимумам поглощения лиганда и комплекса. При этом среднеквадратичная ошибка в определении k_{30} не превышала 3%.

Константы скорости (*n* + 1)-порядка рассчитывали по уравнению:

$$k_{n+1} = k_{\rm bb} / c_{\rm M(OAc)_{\rm s}}^n, \tag{2}$$

где n – порядок реакции (2) по соли $M(OAc)_2$.

Энергию активации (E_a) для изученного температурного диапазона рассчитывали по уравнению Аррениуса:

$$E_a = 19.1[(T_1T_2)/(T_2 - T_1)] \lg(k_2/k_1), \qquad (3)$$

где $k_2, k_1 - эффективные константы скорости реак$ $ции при <math>T_2$ и T_1 соответственно, а энтропию процесса образования переходного состояния (ΔS^{\neq}) – по уравнению:

$$\Delta S^{\neq} = 19.1 \lg k_v + E_a / T - 253. \tag{4}$$

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Замена одного или двух центральных атомов азота атомами халькогенов приводит к существенным изменениям в электронно-оптических свойствах полученных тетрапиррольных и макрогетероциклов по сравнению с классическими аналогами (табл. 1).

Детальный анализ формирования спектров поглощения свободных оснований при 21- и 21,23-гетерозамещении, представленный нами в работе [12], позволил сделать заключение о значительных изменениях в конфигурационном составе электронных переходов.

В результате данных изменений полоса $Q_x(0,0)$ длинноволнового электронного перехода 21-ОНТФП в толуоле по сравнению с соответствующей полосой молекулы H_2 ТФП батохромно сдвигается от 650 к 674 нм, а максимум полосы поглощения $Q_y(0,0)$ гипсохромно смеща-

Рис. 1. НВМО и ВЗМО порфиринового макроцикла: $a - HBMO c_1$; $6 - HBMO c_2$; $B - B3MO b_1$; $r - B3MO b_2$. Размер кругов пропорционален атомным орбитальным коэффициентам. Положительный и отрицательный знаки коэффициентов показаны соответственно белыми и черными кругами. На панели в) показана ось *x*, направленная вдоль NH–NH (O–NH или O–O), и ось *y*, направленная вдоль N–N.

ется к 542 нм. Противоположное направление спектральных сдвигов полос поглощения $Q_x(0,0)$ и $Q_y(0,0)$ объясняется с привлечением четырехорбитальной модели Гоутермана [13] (на рис. 1 показано распределение электронной плотности на молекулярных орбиталях макроцикла).

При введении фенильных заместителей в положения С_т макроцикла энергия орбитали b₁ заметно повышается, и одноэлектронная конфигурация $b_1 \rightarrow c_1$ вносит наибольший вклад в конфигурационный состав перехода. Монооксазамещение приводит к понижению энергии орбиталей b₁ и c₁ изза меньшей электронной плотности на гетероатоме, а увеличение электронной плотности на атомах углерода C_a и C_b обусловливает слабое увеличение энергии орбиталей b_2 и c_2 . Таким образом, полоса Q_x(0,0) длинноволнового электронного перехода испытывает батохромный сдвиг, а полоса $Q_{\nu}(0,0)$ смещается гипсохромно. Аналогичный механизм был предложен для объяснения прогрессивных батохромных спектральных сдвигов при увеличении количества гетероатомов в макроцикле в 21,23-гетеропорфиринах [12].

Замещение соседних пиррольных колец фурановыми (21,22-замещение) приводит к несколько иному характеру спектральных сдвигов (табл. 1). Это обусловлено тем, что, во-первых, симметрия 21,22-замещенных производных ниже, чем таковая для 21,23-замещенных производных, и, вовторых, иным характером сдвигов молекулярных орбиталей. Так, энергии орбиталей b_1 и c_1 уменьшаются примерно одинаково, это приводит к тому, что энергия доминирующей одноэлектронной конфигурации $b_1 \rightarrow c_1$ практически не изменяется: максимум полосы поглощения Q_x(0,0) наблюдается при 649 нм. Орбиталь с2 испытывает тенденцию к понижению энергии из-за меньшей электронной плотности на гетероатоме, что обусловлено совместным действием отрицательного индуктивного и более сильного мезомерного эффектов. Однако в то же время орбиталь c_2 стремится к увеличению энергии из-за увеличения электронной плотности на атомах углерода C_a и C_b . В результате положение орбитали с2 практически не меняется. Аналогичная ситуация наблюдается для орбитали b₂. В результате совокупности данных взаимодействий электронный спектр поглоще-

A 0.4 0.2 0 0 - 400600 λ , HM

Рис. 2. Спектр поглощения ZnOHTФП в толуоле.

Рис. 3. Спектр поглощения $ZnO_2T\Phi\Pi$ в толуоле.

ния $21,22-O_2T\Phi\Pi$ практически не отличается от спектра поглощения исходного $H_2T\Phi\Pi$ (табл. 1).

Образование металлокомплексов 21- и 21,22-оксазамещенных молекул ТФП с ионом Zn^{2+} сопровождается значительными изменениями электронных спектров поглощения, однако они имеют более сложную структуру, чем спектры металлокомплексов "классических" порфиринов. Рассмотрим формирование электронного спектра поглощения молекулы ZnOHTФП (рис. 2).

Спектр характеризуется двумя особенностями: во-первых, в видимой области спектра наблюдаются три Q-полосы, а не две, как у "классических" металлокомплексов; во-вторых, полоса Соре расщепляется на две полосы. Основная причина таких спектральных проявлений заключается, по нашему мнению, в более низкой симметрии молекулы Zn-OHTФП по сравнению с классическими порфиринами. Если последние относятся к точечной группе симметрии D_{4h} , то для металлокомплексов 21-гетеропорфиринов симметрия не может быть выше, чем $C_{2\nu}$, равно как и для их свободных оснований, в то время как свободные основания классических порфиринов обладают симметрией D_{2h}. Переход к металлокомплексу в классических порфиринах сопровождается двукратным вырождением орбиталей, величина расщепления между которыми у свободного основания порфирина составляет ~3000 см⁻¹ [14]. Вследствие более низкой симметрии металлокомплексов 21-гетеропорфиринов молекулярные орбитали сближаются, однако вырождения не происходит. В результате полосы $Q_{\nu}(0,1)$ и $Q_{\nu}(0,0)$ вибронного спутника соответственно первого и второго электронных переходов перестраиваются. Действительно, вторая полоса поглощения имеет асимметричный контур с максимумом при 591

нм и плечом при 583 нм. Если принять плечо при 583 нм за полосу $Q_{\nu}(0,1)$, а максимум — за полосу $Q_{\nu}(0,0)$, то для каждого из электронных переходов частота вибронного повтора составит 1380 ± 50 см⁻¹, а расщепление между электронными состояния- $MU - 1200 \text{ см}^{-1}$, что сопоставимо с расшеплением монопротонированной формы порфиринов, относящейся к той же точечной группе симметрии [14]. Соответственно, из-за низкой симметрии полоса Соре расщепляется на две компоненты: B_{x} с максимумом при 444.5 нм и B_v с максимумом при 428 нм. Заметим, что у свободного основания 21-ОНТФП расщепления не наблюдается, хотя полоса Соре заметно уширена по сравнению с молекулой H₂TФП. По нашему мнению, отличия вызваны различной степенью вовлечения гетероатома в формирование сопряженной π-системы. У свободного основания гетероатом "включается" слабее, а у металлокомплексов гетероатом непосредственно вовлечен в формирование координационной связи с ионом металла и оказывает большее влияние.

Симметрия молекулы $ZnO_2T\Phi\Pi$ возрастает (точечная группа симметрии C_{2h}), в результате чего полоса Соре уширена, но не расщеплена на компоненты, как у молекулы ZnOHT $\Phi\Pi$ (рис. 3). В видимой области спектра наблюдаются две полосы поглощения (табл. 1), как и у "классических" порфиринов.

Исследуемые гетеропорфирины и в форме свободного основания, и в форме металлокомплекса флуоресцируют. Для спектров флуоресценции выполняется правило частот, т.е. положение максимумов в спектрах флуоресценции примерно зеркально симметрично положению максимумов в спектрах поглощения (рис. 4). Величина сдвига

Рис. 4. Нормированные на максимум спектры флуоресценции цинковых комплексов: *1* – ZnTФП, *2* – ZnOHTФП, *3* – ZnTФП, *4* – ZnO₂TФП. Длина волны возбуждения 500 нм.

Стокса для молекулы ZnOHTФП составляет 220 см⁻¹, для молекулы $ZnO_2T\Phi\Pi$ она возрастает до 340 см⁻¹. Рост величины при переходе от 21-окса- к 21,22-диоксазамещенному производному указывает на возрастание релаксационных процессов в нижнем возбужденном синглетном состоянии. Действительно, согласно рентгеноструктурным данным [15], молекула ZnOHTФП имеет неплоскую молекулярную конформацию макроцикла. С одной стороны, это обусловлено тем, что к иону цинка присоединяется аксиальный лиганд (противоион соли, ацетат), который индуцирует формирование куполообразной структуры. С другой стороны, несколько меньший радиус атома кислорода по сравнению с азотом обусловливает сжатие макроцикла и частичный выход из плоскости фуранового кольца с формированием макроцикла рифленого типа. Перераспределение

электронной плотности в возбужденном состоянии создает предпосылки для структурной релаксации, величина которой растет с увеличением числа гетероатомов в ядре макроцикла.

Введение атомов кислорода в макроциклическое кольцо приводит не только к изменению основности соединений [16, 17] и размера внутренней полости, но и к отсутствию одного или двух протонов ядра. Эти изменения существенно влияют на такие характерные свойства порфиринов, как ароматичность и способность связывать металлы.

К настоящему времени хорошо изученная реакция координации порфиринов двухзарядными катионами переходных металлов в неводных растворителях происходит в соответствии с уравнением (5), что убедительно показано в работах [1, 2]:

$$H_2 P + [MX_2 (Solv)_{n-2}] \rightarrow$$

$$\rightarrow MP + 2HX + (n-2)Solv.$$
(5)

Однако в литературе отсутствуют данные об особенностях протекания процессов координации для гетерозамещенных аналогов порфиринов. В настоящей работе впервые измерены константы скорости и определены энергетические параметры реакции образования комплексов цинка, меди и кобальта гетерозамещенных порфиринов II и III в сравнении с тетрафенилпорфирином в ДМФА (табл. 2).

Известно, что для классических порфиринов реакция (5) подчиняется кинетическому уравнению первого порядка по макроциклу [1, 2]:

$$-dc_{\rm H,P}/d\tau = kc_{\rm H,P}c_{\rm MX_2}^n,\tag{6}$$

где k — константа скорости реакции, $c_{MX_2}^n$ — концентрация соли, c_{H_2P} — концентрация порфирина.

Для всех изученных систем нами установлено, что реакция образования металлопорфиринов II, III также имеет первый кинетический порядок, что подтверждается прямолинейностью зависи-

мостей в координатах $lg(c_{H_2P}^0/c_{H_2P})-\tau$ ($c_{H_2P}^0$ и c_{H_2P} – начальная и текущая концентрации лиганда) и наличием четких изобестических точек. Характерные спектральные изменения в процессе комплексообразования показаны на рис. 5.

Как следует из данных табл. 2, не удалось измерить кинетику реакций координации 5,10,15,20-тетрафенил-21,22-диоксапорфирина ацетатами перечисленных металлов в ДМФА, однако при использовании в качестве растворителя уксусной кислоты наблюдается комплексообразование [17].

Замена одного из атомов азота пиррольного фрагмента макроциклического соединения на атом кислорода приводит к возрастанию основных свойств лиганда примерно на два порядка [17]. Рост частичного отрицательного заряда на атомах реакционного центра способствует упрочнению

Порфирин	$C_{\rm M(OAc)_2} \times 10^3$, моль/л	$k_{ m s\phi}^{298} imes 10^3$	k_v^{298} , л моль ⁻¹ с ⁻¹	E_a , кДж/моль	Δ𝗲, Дж/(моль К)
		Zn(O	$Ac)_2$		
$O_2 T \Phi \Pi$	1.3	Реакция не идет			
ΗΟΤΦΠ	1.3	8.97 ± 0.10	6.9 ± 0.02	57 ± 4	-45 ± 6
$H_2T\Phi\Pi$	1.3	6.52 ± 0.10	5.02 ± 0.02	61 ± 4	-35 ± 6
$Co(OAc)_2$					
$O_2 T \Phi \Pi$	1.5	Реакция не идет			
ΗΟΤΦΠ	1.5	2.25 ± 0.10	1.5 ± 0.02	62 ± 4	-100 ± 8
$H_2T\Phi\Pi$	1.7	0.15 ± 0.10	0.1 ± 0.02	91 ± 4	-46 ± 6
Cu(OAc) ₂					
$O_2 T \Phi \Pi$	0.11	Реакция не идет			
НОТФП	0.11	$5.99 \pm 0.02^{**}$	0.57 ± 0.02	8 ± 1	-232 ± 10
$H_2T\Phi\Pi$	0.11	$0.02 \pm 0.002^{**}$	0.002 ± 0.0002	20 ± 1	-200 ± 20

Таблица 2. Кинетические параметры реакции координации 5,10,15,20-тетрафенил-21-оксапорфирина в сравнении с 5,10,15,20-тетрафенилпорфином ацетатами цинка, кобальта и меди в ДМФА*

* Порядок реакции по соли в ДМФА определен авторами [18].

** Размерность k_v^{298} , $\pi^{0.5}$ моль $^{-0.5}$ с $^{-1}$.

связей с третичными атомами азота $N \rightarrow M$ в переходном состоянии и тем самым обусловливает увеличение скорости реакции комплексообразования по сравнению с классическим аналогом. В координирующем слабоосновном растворителе

ДМФА при переходе от НОТФП к H₂ТФП константа скорости реакции комплексообразования (5) возрастает при одновременном снижении энергии активации. Наиболее ярко это наблюдается при образовании комплексов меди: констан-

Рис. 5. Изменение ЭСП в ходе реакции координации НОТФП ацетатом цинка в ДМФА при 298 K; на вставке представлена зависимость $lg(c_{H_2P}^0/c_{H_2P})$ от τ для реакции образования ZnOTФП при 288, 298 и 308 K ($c_{Zn(OAC)_2} = 1.3 \times 10^{-3}$ моль/л).

341

та скорости возрастает в ~280 раз при снижении энергии активации на ~12 кДж/моль.

ЗАКЛЮЧЕНИЕ

Проведен детальный анализ формирования ЭСП и спектров флуоресценции как свободных оснований, так и комплексов цинка оксазамещенных производных тетрафенилпорфина. Показано, что на положение и интенсивность полос в спектрах оказывает существенное влияние не только введение гетероатома, но и геометрия (симметрия) молекулы. Взаимно противоположное влияние этих факторов приводит к спектрам 5,10,15,20-тетрафенил-21,22-диоксапорфирина, близким к классическому H₂TФП, большие различия наблюдаются для 5,10,15,20-тетрафенил-21-оксапорфирина.

Впервые изучена кинетика реакций координации солей переходных металлов оксазамещенными производными в сравнении с классическим аналогом H₂TФП.

Показано, что модификация макроцикла путем замены одного из атомов азота пиррольного фрагмента на атом кислорода способствует увеличению скорости реакции при закономерном снижении энергии и энтропии активации.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке РФФИ (грант № 19-03-00214 А) с привлечением оборудования центра коллективного пользования "Верхневолжский региональный центр физико-химических исследований".

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Березин Б.Д.* Координационная химия порфиринов и фталоцианина. М.: Наука, 1978. 280 с.
- 2. Березин Б.Д., Ениколопян Н.С. Металлопорфирины. М.: Наука, 1988. 158 с.
- 3. Syrbu S.A., Pukhovskaya S.G., Dao T.N. et al. // Macroheterocycles. 2019. V. 12. № 2. Р. 135. [Сырбу С.А., Пуховская С.Г., Дао Тхе Нам и др. // Макрогетеро-

циклы. 2019. Т. 12. № 2. С. 135.] https://doi.org/10.6060/mhc190557s

- Ziolkowski P., Milach J., Symonowicz K. et al. // Tumori. 1995. V. 81. № 5. P. 364. https://doi.org/10.1177/030089169508100512
- Kamaljit Singh, Amit Sharma, Shivali Sharma // Adv. Heterocycl. Chem. 2012. V. 106. P. 111. https://doi.org/10.1016/B978-0-12-396531-8.00002-X
- You Y., Gibson S.L., Hilf R. et al. // J. Med. Chem. 2003. V. 46. № 17. P. 3734. https://doi.org/10.1021/jm030136i
- Buchler J.W. Synthesis and properties of metalloporphyrins. Porphyrins. N.Y.: Academic Press, 1978. V. 1. 483 p. https://doi.org/10.1016/B978-0-12-220101-1.50017-2
- 8. Chmielewski P.J., Latos-Gra zy'nski L., Olmstead M.M. et al. // Chem. Eur. J. 1997. V. 3. № 2. P. 268. https://doi.org/10.1002/chem.19970030216
- 9. *Won-Seob Cho, Chang-Hee Lee* // Bull. Korean Chem. Soc. 1998. V. 19. № 3. P. 314.
- 10. Карякин Ю.В., Ангелов И.И. Чистые химические реактивы. М.: Химия, 1974. 407 с.
- Вайсбергер А., Проскауэр Э., Риддик Дж. Органические растворители. Физические свойства и методы очистки. М.: Изд-во иностр. литер., 1958. 518 с.
- Вершиловская И.В., Люлькович Е.С., Пуховская С.Г. и др. // Журн. прикл. спектроскопии. 2020. Т. 87. № 2. С. 181.
- 13. *Gouterman M*. The Porphyrins. V. 3. New York: Academic Press, 1978. 165 p.
- Kruk M., Starukhin A., Maes W. // Macroheterocycles. 2011. V. 4. № 2. Р. 69. [Крук Н., Старухин А., Maec B. // Макрогетероциклы. 2011. Т. 4. № 2. С. 69.] https://doi.org/10.6060/mhc2011.2.01
- Gloe R., Suite S., Goetzke L. et al. // Inorg. Chem. 2013.
 V. 52. № 3. P. 1515. https://doi.org/10.1021/ic302268h
- 16. Syrbu S.A., Ivanova Y.B., Pukhovskaya S.G. et al. // Russ. J. Gen. Chem. 2019. V. 89. № 2. Р. 255. [Сырбу С.А., Иванова Ю.Б., Пуховская С.Г. и др. // Журн. общей химии. 2019. Т. 89. № 2. С. 258.] https://doi.org/10.1134/S0044460X19020148
- Pukhovskaya S.G., Ivanova Y.B., Plotnikova A.O. et al. // Russ. J. Gen. Chem. 2020. V. 90. № 7. Р. 1292. [Пуховская С.Г., Иванова Ю.Б., Плотникова А.О. и др. // Журн. общей химии. 2020. Т. 90. № 7. С. 1110.] https://doi.org/10.31857/S0044460X2007015X
- 18. *Кувшинова Е.М., Пуховская С.Г., Голубчиков О.А. и др.* // Коорд. химия. 1993. Т. 19. № 8. С. 630.