_ ФИЗИКОХИМИЯ __ PACTBOPOB

УЛК 544.362:547.8

КОМПЛЕКСООБРАЗОВАНИЕ БЕНЗОАННЕЛИРОВАННЫХ ПОРФИРАЗИНОВ С АЦЕТАТАМИ ЦИНКА(II) И КОБАЛЬТА(II) В ПИРИДИНЕ

© 2022 г. А. С. Малясова^{а, *}, П. Н. Смирнова^а, О. И. Койфман^{а, b}

^аИвановский государственный химико-технологический университет, Шереметевский пр-т, 7, Иваново, 153000 Россия

^bИнститут химии растворов им. Г.А. Крестова РАН, ул. Академическая, 1, Иваново, 153045 Россия *e-mail: hubnalla@vandex.ru

Поступила в редакцию 16.08.2021 г. После доработки 09.11.2021 г. Принята к публикации 10.11.2021 г.

Исследован процесс комплексообразования трибензодиазепинопорфиразина с ацетатами Cu(II), Zn(II) и Co(II). Образование комплекса трибензодиазепинопорфиразина Cu(II) происходит мгновенно, поэтому в качестве солей использовали ацетаты Zn(II) и Co(II). Установлено, что скорости образования комплексов трибензодиазепинопорфиразина в пиридине с ионами металлов уменьшаются в ряду: Cu(II) > Zn(II) > Co(II), данный ряд хорошо согласуется с литературными данными, полученными для тетраазапорфина. При замене диазепинового фрагмента на пиразиноновый скорость реакции образования комплекса порфиразина с Zn(II) уменьшается. Предполагается, что в случае трибензодиазепинопорфиразина процесс внедрения металла протекает через стадию образования внешнего комплекса, что благоприятствует дальнейшему введению иона цинка(II) в координационный центр макроцикла. Реакции образования комплексов Zn(II) и Co(II) исследуемых порфиразинов характеризуются низкими значениями энергии и энтропии активации, что может свидетельствовать о сильной сольватации переходного состояния.

Ключевые слова: фталоцианин, скорость реакции, внешний комплекс, диазепин

DOI: 10.31857/S0044457X22030096

ВВЕДЕНИЕ

Координационные соединения фталоцианина (тетрабензопорфиразина) и их производные нашли практическое применение в различных областях науки, техники, технологии и медицины [1-3]. Эти макрогетероциклы применяются в качестве катализаторов различных химических процессов [4-6], например, при структурировании олигосилоксандиолов [7], электрохимических [8], фотохимических [9–11] процессов, сенсоров и полупроводниковых материалов [12–14], материалов для нелинейной оптики [15], стабилизаторов полимеров и стационарных фаз для газовой хроматографии [16]. Такой широкий спектр применения обусловлен строением макроциклического кольца, наличием различных заместителей, находящихся в аннелированных бензольных кольцах, а также наличием или, наоборот, отсутствием центрального атома металла. В случае замены одного или нескольких бензольных колец на гетероциклические [17], молекула приобретает дополнительные активные центры, что, в свою

очередь, оказывает существенное влияние на физико-химические свойства молекулы.

В настоящей работе исследовано комплексообразование трибензодиазепинопорфиразина с ацетатами Cu(II), Co(II) и Zn(II) в пиридине, показано влияние замены диазепинового фрагмента на пиразиноновый на скорость реакции введения иона Zn(II) в координационную полость макрокольца.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Лиганды трибензопорфиразинов H_2DzBz_3Pz и H_2PyzBz_3Pz синтезировали по методикам [18, 19] соответственно.

Пиридин сушили согласно [20]. Ацетаты цинка и кобальта марки "х.ч." перекристаллизовывали из ледяной уксусной кислоты. Для проведения кинетических измерений в термостатируемую кювету спектрофотометра помещали раствор порфиразина и ацетата цинка или кобальта известной концентрации при заданной температуре и через определенные промежутки времени измеряли оп-

тическую плотность раствора на длинах волн, соответствующих максимумам полос поглощения образующихся комплексов (при $\lambda_I=695$ и $\lambda_{II}=657$ нм для $DzBz_3PzZn$, $\lambda_I=674$ и $\lambda_{II}=640$ нм для $DzBz_3PzCo$, $\lambda_I=679$ и $\lambda_{II}=653$ нм для $PyzBz_3PzZn$). Текущие и конечные концентрации порфиразинов определяли по уравнению

$$C_{\rm H,Pz} = C_{\rm H,Pz}^0 (A_{\rm \tau} - A_{\infty}) / (A_0 - A_{\infty}),$$
 (1)

где $C_{\rm H_2Pz}^0$ и $C_{\rm H_2Pz}$ — начальная и текущая концентрации порфиразина; A_0, A_{τ} и A_{∞} — оптические плотности растворов в начальный момент времени, в момент времени τ и после завершения реакции.

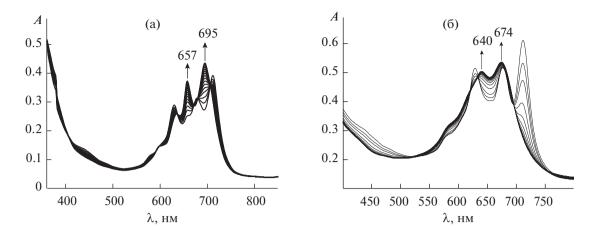
РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Порфиразины образуют внутрикомплексные соединения с ионами металлов за счет замещения внутрициклических атомов водорода с полным (или почти полным) разрушением координационной сферы исходной соли (схема). В результате происходит образование четырех связей иона металла с атомами азота координационного центра. При этом ион металла начинает оказывать сильное воздействие на лиганд за счет σ -электронного эффекта, обратного и прямого дативных π -эффектов и эффекта заряда в многозарядных ионах [21, 22], которое может вызывать искажение геометрической структуры макроцикла.

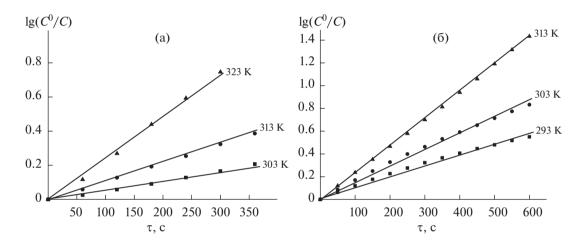
$$\begin{array}{c} \text{Ph} \\ \text{NH} \\$$

Порфиразины-лиганды вступают в реакцию комплексообразования с $M(OAc)_2$ в пиридине в соответствии с уравнением [22, 23]:

 $H_2Pz + M(OAc)_2(Py)_4 \rightarrow PzM + 2HOAc + 4Py.(2)$ Исходный лиганд трибензодиазепинопорфи-


Исходный лиганд трибензодиазепинопорфиразина (H_2DzBz_3Pz) получали по методике, описанной в [18].

Одним из факторов, определяющих скорость координации порфиринов солями металлов в пиридине, является состояние N—H-связей в реакционном центре [23]. Этот фактор играет для тетраазапорфиринов главную роль.


Наибольшие скорости комплексообразования наблюдаются с ионами Cu(II), что связано с эффектом тетрагонального искажения (эффект Яна—Теллера) координационных сфер в ионе Cu²⁺ [24, 25] и хорошим соответствием его

координационной сферы структурным параметрам макроцикла. Предпринята попытка изучения комплексообразования трибензодиазепинопорфиразина с ионом Cu(II), однако реакция протекает мгновенно. Поэтому в качестве солей, участвующих в исследуемом процессе выбрали ацетаты Zn(II) и Co(II).

На рис. 1 показаны изменения электронного спектра поглощения (ЭСП) трибензодиазепино-порфиразина при комплексообразовании с ацетатом цинка и кобальта. В видимой области ЭСП порфиразина в ходе комплексообразования с ацетатами металлов в пиридине наблюдается уменьшение интенсивности полос поглощения исходного лиганда порфиразина и увеличение интенсивности полос поглощения соответствующих комплексов. Комплексообразование проводили в

Рис. 1. Изменение ЭСП порфиразина H_2DzBz_3Pz в процессе комплексообразования с $Zn(OAc)_2$ (а) и $Co(OAc)_2$ (б) в пиридине.

Рис. 2. Зависимости $\lg(C^0/C)$ от времени τ для реакции комплексообразования порфиразина H_2 DzBz₃Pz. $C_{Zn(OAc)_2}^0 = 0.6 \times 10^{-4}$ моль/л (а); $C_{Co(OAc)_2}^0 = 6.0 \times 10^{-4}$ моль/л (б).

Рис. 3. Зависимости $\lg k_{3\Phi}$ от $\lg C_{\mathrm{Zn(OAc)_2}}^0$ для реакции образования $\mathrm{DzBz_3PzZn}$ (a) и $\mathrm{DzBz_3PzZo}$ (б) в пиридине.

$C_{{ m Zn(OAc)}_2}^0 imes 10^4$, моль/л	<i>T</i> , K	$k_{9\Phi} \times 10^4, \mathrm{c}^{-1}$	$k_{v} \times 10^{-4}$, с ⁻² моль ⁻² л	E, кДж/моль	ΔS [≠] , Дж/(моль K)
0.6	298	8.3*	23.05	49 ± 5	-150 ± 13
	303	16.1 ± 0.4	44.72 ± 1		
	313	30.2 ± 0.2	83.88 ± 1		
	323	56.1 ± 1.7	155.83 ± 4		
0.75	298	13.52*	24.05	43 ± 6	-163 ± 10
	303	31.0 ± 0.6	55.14 ± 1		
	313	52.2 ± 0.5	92.85 ± 1		
	323	86.3 ± 3.4	153.52 ± 6		
0.9	298	17*	21.68	46 ± 3	-152 ± 10
	303	46.1 ± 1.4	56.92 ± 2		
	313	74.0 ± 2.2	91.37 ± 3		
	323	140 ± 7	172.87 ± 8		
1.05	298	25*	22.67	43 ± 6	-162 ± 11
	303	59 ± 2	53.50 ± 2		
	313	96 ± 3	87.07 ± 3		
	323	160 ± 5	145.70 ± 5		

Таблица 1. Кинетические параметры образования $DzBz_3PzZn$ в пиридине ($C_{H_3DzBz_3Pz}^0 = 1.53 \times 10^{-5}$ моль/л)

присутствии большого избытка соли [26, 27], т.е. в условиях реакции псевдопервого порядка.

Кинетическое уравнение реакции имеет вид:

$$-dC_{H,Pz}/d\tau = k_{s\phi}C_{H,Pz}.$$
 (3)

Реакция образования комплексов цинка(II) и кобальта(II) имеет первый порядок по концентрации лиганда, о чем свидетельствуют прямолинейные зависимости $\lg(C^0/C)$ от времени протекания реакции. На рис. 2 показаны такие зависимости для исследуемого порфиразина.

В этом случае эффективные константы скорости реакции могут быть рассчитаны по уравнению:

$$k_{\rm sph} = \frac{1}{\tau} \ln \frac{C_{\rm H_2Pz}^0}{C_{\rm H_2Pz}}.$$
 (4)

Экспериментальные данные показывают, что эффективные константы скорости зависят от концентрации соли.

$$k_{\rm adv} = k_{\rm v} C_{\rm Zn(OAc)_2}^n, \tag{5}$$

 $k_{\rm 9\varphi} = k_{\rm v} C_{\rm Zn(OAc)_2}^n, \eqno(5)$ где $k_{\rm v}$ — истинная константа скорости реакции, *n* – порядок реакции по концентрации ацетата цинка. Истинная константа скорости k_{ν} не зависит от концентрации соли.

Так как скорости комплексообразования лигандов порфиразинов на несколько порядков меньше, чем скорости образования комплексов с простыми лигандами, они могут быть измерены обычными кинетическими методами. В табл. 1, 2 представлены кинетические параметры образования комплексов Zn(II) и Co(II).

Для определения порядка реакции по соли (n) построены зависимости $\lg k_{\text{эф}}$ от $\lg C_{\text{M(OAc)}_2}$ (рис. 3). Порядок реакции по ацетату кобальта, определенный как тангенс угла наклона, выше указанных зависимостей, он близок к 2 (1.8–2), как и в случае образования комплекса цинка.

Столь необычный факт обнаружен для реакции комплексообразования порфиразинов впервые. Второй порядок по концентрации соли может быть следствием взаимодействия ионов Zn²⁺ и Co²⁺ с атомами азота в мезо-положении макроцикла и диазепинового фрагмента с образованием первичного внешнего комплекса (рис. 4). Поскольку реакция проходит в условиях избытка соли, можно полагать, что лиганд полностью превращается во внешний комплекс, т.е. равновесие (6) сдвинуто вправо.

$$H_2DzBz_3Pz + M(OAc)_2(Py)_4 \rightleftharpoons \rightleftharpoons M(OAc)_2(Py)_2 \rightarrow H_2DzBz_3Pz + 2Py.$$
 (6)

внешний комплекс

Затем внешний комплекс реагирует со второй молекулой ацетата цинка или кобальта с образованием металлокомплекса.

$$M(OAc)_{2}(Py)_{2} \rightarrow H_{2}DzBz_{3}Pz +$$
+ $M(OAc)_{2}(Py)_{4} \rightarrow DzBz_{3}PzM + 2HOAc +$ (7)
+ $6Py + M(OAc)_{2}$,

где M = Zn(II), Co(II).

Тогда кинетическое уравнение реакции имеет

$$-\frac{dC_{\text{H}_2\text{DzBz}_3\text{Pz}}}{d\tau} = k_{\nu} C_{\text{H}_2\text{DzBz}_3\text{Pz}} C_{\text{M(OAc)}_2}^2.$$
 (8)

Справедливость данного уравнения подтверждается хорошим постоянством значения k_v реакции (табл. 1, 2).

Образование промежуточного внешнего комплекса (рис. 4) в процессе комплексообразования H₂DzBz₃Pz с ацетатами исследуемых металлов возможно вследствие того, что *n*-электронные пары атомов азота иминных N=C-групп 6H-1,4-диазепинового фрагмента выходят из плоскости макроцикла. Факт искажения кольца подтвержден данны-

^{*} Рассчитано по уравнению Аррениуса.

Рис. 4. Внешний комплекс.

ми рентгеноструктурного анализа 5,7-дифенил-2,3-дициано-6H-1,4-диазепина [28]. Реакции образования комплексов Zn(II) и Co(II) характеризуются низкими значениями энергии и энтропии активации, что может свидетельствовать о сильной сольватации переходного состояния.

Известно [27], что скорости образования комплексов тетраазапорфирина H_2TAP в пиридине с ионами металлов уменьшаются в ряду: Cu(II) > Zn(II) > Cd(II) > Co(II), данный ряд хорошо согласуется с экспериментальными данными, полученными в настоящей работе.

Скорости реакции и различия в скоростях образования комплексов металлов определяются в основном особенностями координационной сферы соли, стерическими факторами, действующими в переходном состоянии, а также полярностью связей N-H в макроцикле.

В ряду металлокомплексов энергетические параметры комплексообразования сильно зависят

от иона металла. Уменьшению скорости комплексообразования с Co(II) по сравнению с Zn(II) соответствует увеличение значений E и ΔS^{\neq} .

Ранее показана возможность модификации диазепинового кольца либо при проведении сублимации H_2DzBz_3Pz [29], либо в условиях реакции циклотетрамеризации. В ходе синтеза H_2DzBz_3Pz при темплатной конденсации фталодинитрила и 2,3-дициано-5,7-дифенил-1,4-диазепина в присутствии алкоголята лития получен 5-фенилтрибензо-1,4-пиразин-1(1H)-6-он-2,3-порфиразин H_2PyzBz_3Pz [19]. Образование данного соединения, вероятно, обусловлено высокой щелочностью среды при использовании алкоголята лития.

Для данного соединения изучена реакция комплексообразования с ацетатом цинка [19]. Реакцию проводили в присутствии большого избытка соли. Прямолинейные зависимости $\lg(C_0/C)$ от времени прохождения реакции подтверждают первый порядок по концентрации лиганда. На рис. 5 показаны спектральные изменения в ходе процесса образования комплекса $\text{РуzBz}_3\text{PzZn}$, а на рис. 6 — зависимости $\lg k_{\text{эф}}$ от $\lg C_{\text{Zn}(\text{OAc})_2}^0$. В табл. 3 представле-

ны кинетические параметры образования Zn(II) комплекса.

Для реакции образования комплекса PyzBz₃PzZn порядок реакции по концентрации соли оказался равным 1. В соответствии с представлениями о механизме комплексообразования порфиринов

равным 1. В соответствии с представлениями о механизме комплексообразования порфиринов [21, 30] установлено, что реакция протекает по бимолекулярному механизму, установленному ранее для большинства порфиринов. Необходимо отметить, что в пределах изученных концентраций соли в пиридиновых растворах состав сольватной координационной сферы ацетата цинка,

структура и свойства растворителя практически

Таблица 2. Кинетические параметры образования $DzBz_3PzCo$ в пиридине ($C_{H_2DzBz_3Pz}^0 = 1.53 \times 10^{-5}$ моль/л)

$C_{\text{Co(OAc)}_2}^0 \times 10^4$, моль/л	<i>T</i> , K	$k_{9\phi} \times 10^4, \mathrm{c}^{-1}$	$k_v \times 10^{-4}$, c^{-2} моль $^{-2}$ л	E, кДж/моль	ΔS^{\neq} , Дж/(моль K)
1.5	298	1.34*	0.39	61 ± 3	-122 ± 12
	293	1.34 ± 0.61	0.39 ± 0.3		
	303	3.59 ± 0.51	1.04 ± 0.2		
	313	6.72 ± 0.32	1.95 ± 0.1		
3.0	298	5.4*	0.39	59 ± 3	-118 ± 14
	293	5.4 ± 1.3	0.39 ± 0.1		
	303	11.69 ± 1	0.85 ± 0.1		
	313	25.15 ± 1	1.83 ± 0.1		
4.5	298	11.43*	0.37	51 ± 3	-138 ± 13
	293	11.43 ± 4	0.37 ± 0.2		
	303	23.33 ± 1	0.75 ± 0.1		
	313	43.93 ± 2	1.42 ± 0.1		
6.0	298	16.54*	0.30	46 ± 3	-152 ± 14
	293	16.53 ± 3	0.30 ± 0.1		
	303	36.24 ± 4	0.67 ± 0.1		
	313	55.31 ± 2	1.02 ± 0.1		

^{*} Рассчитано по уравнению Аррениуса.

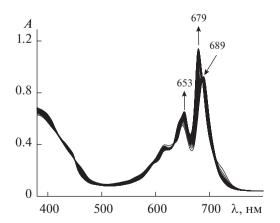

$C_{\rm Zn(OAc)_2}^0 \times 10^4$, моль/л	T, K	$k_{9\Phi} \times 10^4, \mathrm{c}^{-1}$	k_{v} , c^{-1} моль $^{-1}$ л	Е, кДж/моль	ΔS^{\neq} , Дж/(моль K)
3.75	288	4.5 ± 0.2	1.20 ± 0.05	6 ± 1	-280 ± 12
	298	8.0 ± 0.4	2.11 ± 0.10		
	308	17.0 ± 0.5	4.45 ± 0.13		
11.25	288	13.0 ± 0.5	1.22 ± 0.04	6 ± 1	-280 ± 12
	298	29.0 ± 1.2	2.90 ± 0.11		
	308	48.0 ± 0.9	4.30 ± 0.08		
18.75	288	22.0 ± 1.1	1.22 ± 0.06	6 ± 1	-277 ± 10
	298	48.0 ± 1.4	2.61 ± 0.07		
	308	78.0 ± 1.6	4.22 ± 0.09		
26.25	288	27.0 ± 1.0	1.01 ± 0.04	5 ± 1	-278 ± 12
	298	64.0 ± 1.9	2.43 ± 0.07		
	308	110.0 ± 3.3	4.22 ± 0.13		
37.5	288	41.0 ± 1.6	1.13 ± 0.04	6 ± 1	-274 ± 10
	298	86.0 ± 2.6	2.31 ± 0.07		
	308	150.0 ± 3.0	4.01 ± 0.08		

Таблица 3. Кинетические параметры образования $PyzBz_3PzZn$ в пиридине ($C_{H,PvzBz,Pz}^0 = 6.72 \times 10^{-5}$ моль/л)

не изменяются. Таким образом, кинетическое уравнение образования комплекса $PyzBz_3PzZn$ имеет вид:

$$-\frac{dC_{\rm H_2PyzBz_3Pz}}{d\tau} = k_{\rm v} C_{\rm H_2PyzBz_3Pz} C_{\rm Zn(OAc)_2}.$$
 (9)

Полагаем, что порфиразин $PyzBz_3PzZn$ имеет более плоскую сопряженную структуру по сравнению с $DzBz_3PzZn$, и периферическое взаимодействие иона Zn(II) с атомами пиразинонового фрагмента становится невозможным. Более плоская сопряженная структура пиразинонового кольца в молекуле H_2PyzBz_3Pz подтверждается характером его ЭСП. В отличие от порфиразина H_2DzBz_3Pz , в этом случае исключается возможность сопряжения n-орбитали азометинового атома азота гетероциклического фрагмента с π -системой макроцикла и Q_n -полоса не проявляется. Более подробное исследование анома-

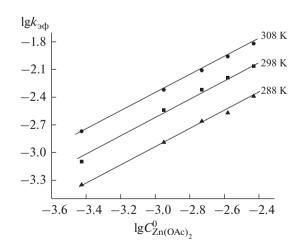


Рис. 5. Изменение ЭСП порфиразина H_2 Руз Bz_3 Рz в процессе комплексообразования с $Zn(OAc)_2$ (а) и $Co(OAc)_2$ (б) в пиридине.

лии электронного спектра поглощения диазепинотрибензопорфиразина проведено в работе [31].

ЗАКЛЮЧЕНИЕ

Исследованы реакции комплексообразования трибензопорфиразинов, содержащих диазепиновое кольцо H_2DzBz_3Pz и пиразиноновое кольцо H_2PyzBz_3Pz , с ацетатами Zn(II) и Co(II). Сравнение констант скоростей комплексообразования показало, что реакция образования $DzBz_3PzZn$ протекает быстрее, чем $PyzBz_3PzZn$. Можно предположить, что образование внешнего комплекса благоприятствует внедрению иона цинка(II) в координационный центр макроцикла. Уменьшение скорости образования $PyzBz_3PzZn$ возможно за счет увеличения сольватации переходного состояния в случае порфиразина $DzBz_3PzZn$.

Рис. 6. Зависимости $\lg k_{9\Phi}$ от $\lg C_{Zn(OAc)_2}^0$ для реакции образования PyzBz₃PzZn в пиридине.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания Министерства образования и науки Российской Федерации, тема № FZZW-2020-0008.

Исследование проведено с использованием ресурсов Центра коллективного пользования научным оборудованием ИГХТУ (при поддержке Минобрнауки России, соглашение № 075-15-2021-671.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Койфман О.И., Агеева Т.А., Базанов М.И. и др. Функциональные материалы на основе тетрапиррольных макрогетероциклических соединений, М.: Ленанд, 2019. 848 с.
- Koifman O.I., Ageeva T.A., Beletskaya I.P. et al. // Macroheterocycles. 2020. V. 13. № 4. P. 311. https://doi.org/10.6060/mhc200814k
- 3. *Kaigorodova E.Y., Mamardashvili G.M., Mamardashvili N.Z.* // Russ. J. Inorg. Chem. 2018. V. 63. № 9. P. 1192. [*Кайгородова Е.Ю., Мамардашвили Г.М., Мамардашвили Н.Ж.* // Журн. неорган. химии. 2018. Т. 63. № 9. С. 1167.] https://doi.org/10.1134/S0036023618090061
- 4. *Khelevina O.G.*, *Malyasova A.S.*, *Koifman O.I.* // Russ. J. Gen. Chem. 2016. V. 86. № 6. Р. 1494. [*Хелевина О.Г.*, *Малясова А.С.*, *Койфман О.И.* // Рос. хим. журн. 2014. Т. 58. № 3-4. С. 62.] https://doi.org/10.1134/S1070363216060451
- Malyasova A.S., Ishutkina M.V., Maizlish V.E. et al. // Macroheterocycles. 2012. V. 5. № 2. P. 166. https://doi.org/10.6060/mhc2012.120574k
- 6. *Vashurin A., Filippova A., Znoyko S. et al.* // J. Porph. Phthal. 2015. V. 19. P. 983. https://doi.org/10.1142/S1088424615500753
- 7. Хелевина О.Г., Малясова А.С., Койфман О.И. // Журн. общ. химии. 2020. Т. 90. № 9. С. 1387. [Khelevina O.G., Malyasova A.S., Koifman O.I. // Russ. J. Gen. Chem. 2020. V. 90. № 9. Р. 1646.] https://doi.org/10.1134/S1070363220090108
- 8. Koptyaev A.I., Khamdoush M., Fedoseev A.N. et al. // Macroheterocycles. 2018. V. 11. № 4. P. 412. https://doi.org/10.6060/mhc181114p
- 9. *Torre P.V., Agullo-Lopez F., Torres T.* // Chem. Rev. 2004. V. 104. P. 3723. https://doi.org/10.1021/cr030206t
- 10. Mikhina P.A., Mishchenko D.V., Lapshina M.A. et al. // Macroheterocycles. 2020. V. 13. № 2. P. 113. https://doi.org/10.6060/mhc200391g
- 11. Bichan N.G., Ovchenkova E.N., Mozgova V.A. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 5. P. 605. [Бичан Н.Г., Овченкова Е.Н., Мозгова В.А. и др. // Журн. неорган. химии. 2019. Т. 64. № 5. С. 490.] https://doi.org/10.1134/S0036023619050024
- 12. Ouedraogo S., Meunier-Prest R., Kumar A. et al. // ACS Sens. 2020. V. 5. P. 1849. https://doi.org/10.1021/acssensors.0c00877
- 13. *Radiunas E., Dapkevičius M., Raišys S. et al.* // Phys. Chem. 2020. V. 22. P. 7392. https://doi.org/10.1039/D0CP00144A

- 14. *Motorina E.V., Lomova T.N., Mozhzhukhina E.G. et al.* // Russ. J. Inorg. Chem. 2019. V. 64. № 12. Р. 1538. [*Моторина Е.В., Ломова Т.Н., Можжухина Е.Г. и др.* // Журн. неорган. химии. 2019. Т. 64. № 12. С. 1294.] https://doi.org/10.1134/S0036023619120106
- Ibrahim-Ouali M., Dumur F. // Molecules. 2019. V. 2. P. 1412.
 - https://doi.org/10.3390/molecules24071412
- 16. *Kuvshinova S.A.*, *Novikov I.V.*, *Kuvshinov G.V. et al.* // Russ. J. Gen. Chem. 2019. V. 89. № 3. Р. 574. [*Кувшинова С.А.*, *Новиков И.В.*, *Кувшинов Г.В. и др.* // Рос. хим. журн. 2016. Т. 60. № 5–6. С. 40.] https://doi.org/10.1134/S1070363219030381
- 17. *Rodríguez-Morgade M.S.*, *Stuzhin P.A.* // J. Porph. Phthal. 2004. V. 8. № 9. P. 1129. https://doi.org/10.1142/S1088424604000490
- Donzello M.P., Ercolani K., Mannina L. et al. // Austral. J. Chem. 2008. V. 61. P. 262. https://doi.org/10.1071/CH08071
- 19. *Malyasova A.S., Kokareva E.A., Tarakanov P.A. et al.* // Russ. J. Org. Chem. 2013. V. 49. № 12. Р. 1812. [*Малясова А.С., Кокарева Е.А., Тараканов П.А. и др.* // Журн. орган. химии. 2013. Т. 49. № 12. С. 1830.] https://doi.org/10.1134/S1070428013120178
- Органикум: практикум по органической химии. Т. 2. М.: Мир, 1979. 392 с.
- 21. *Березин Б.Д.* Координационные соединения порфиринов и фталоцианина. М.: Наука, 1978. 280 с.
- 22. Khelevina O.G., Bubnova A.S., Romanenko Yu.V. // Russ. J. Coord. Chem. 2007. V. 33. № 9. Р. 634. [Хелевина О.Г., Бубнова А.С., Романенко Ю.В. // Коорд. химия. 2007. Т. 33. № 9. С. 646.] https://doi.org/10.1134/S1070328407090023
- 23. *Berezin B.D., Koifman O.I.* // Russ. Chem. Rev. 1973. V. 42. №11. P. 922. [*Березин Б.Д., Койфман О.И.* // Успехи химии. 1973. T. 42. № 11. C. 2007.] https://doi.org/10.1070/RC1973v042n11ABEH002775
- 24. Берсукер И.Б. Строение и свойства координационных соединений. Л.: Химия, 1976. 352 с.
- 25. *Березин Б.Д.* // Теорет. эксперим. химия. 1973. Т. 9. № 4. С. 500.
- 26. Успехи химии порфиринов / Под ред. Голубчикова О.А. СПб.: НИИ химии СПбГУ, 1997. 170 с.
- 27. *Khelevina O.G.*, *Malyasova A.S.* // J. Porph. Phthal. 2019. V. 23. № 11-12. P. 1251. https://doi.org/10.1142/S1088424619300246
- 28. Donzello M.-P., Ercolani C., Stuzhin P.A. et al. // Eur. J. Inorg. Chem. 1999. P. 2075. https://doi.org/10.1002/(SICI)1099-0682(199911)1999:11<2075::AID-EJIC2075>3.0.CO;2-X
- 29. *Kokareva E.A., Khelevina O.G.* // Russ. J. Org. Chem. 2012. V. 48. № 11. Р. 1484. [*Кокарева Е.А., Хелевина О.Г.* // Журн. орган. химии. 2012. Т. 48. № 11. С. 1500.] https://doi.org/10.1134/S1070428012110115
- 30. *Koifman O.I.*, *Trifonova I.P.*, *Burmistrov V.A.* // Russ. Chem. Bull. 2015. V. 64. № 11. Р. 2562. [*Койфман О.И.*, *Трифонова И.П.*, *Бурмистров В.А.* // Изв. АН. Сер. хим. 2015. № 11. С. 2562.] https://doi.org/10.1007/s11172-015-1191-0
- 31. Knyukshto V.N., Kuzmitsky V.A., Borisevich E.A. et al. // J. Appl. Spectr. 2009. V. 76. № 3. Р. 341. [Кнюкшто В.Н., Кузьмицкий В.А., Борисевич Е.А. и др. // Журн. при-кл. спектроскопии. 2009. Т. 76. № 3. С. 365.] https://doi.org/10.1007/s10812-009-9189-8