ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ, 2022, том 67, № 3, с. 342-359

₌ координационные ____ соединения ____

УДК 547.74/.75+543.422.3+543.482.6+544.164

ХИМИЯ И НАПРАВЛЕНИЯ ПРАКТИЧЕСКОГО ПРИМЕНЕНИЯ ДИПИРРОМЕТЕНОВЫХ ЛИГАНДОВ, СОЛЕЙ И КООРДИНАЦИОННЫХ СОЕДИНЕНИЙ КАК ОПТИЧЕСКИХ СЕНСОРОВ АНАЛИТОВ РАЗЛИЧНОЙ ПРИРОДЫ (ОБЗОР)

© 2022 г. Е. В. Антина^{*a*}, М. Б. Березин^{*a*}, А. И. Вьюгин^{*a*}, Г. Б. Гусева^{*a*}, Н. А. Бумагина^{*a*}, *, Л. А. Антина^{*a*}, А. А. Ксенофонтов^{*a*}, Е. Н. Нуранеева^{*a*}, ^{*b*}, А. А. Калягин^{*a*}, П. С. Бочаров^{*a*}, ^{*b*}, М. М. Луканов^{*a*}, ^{*b*}, З. С. Красовская^{*a*}, ^{*b*}, В. А. Калинкина^{*a*}, ^{*b*}, С. А. Догадаева^{*a*}, ^{*b*}

^аИнститут химии растворов им. Г.А. Крестова РАН, ул. Академическая, 1, Иваново, 153045 Россия ^bИвановский государственный химико-технологический университет, Шереметевский пр-т, 7, Иваново, 153000 Россия

> *e-mail: nad@isc-ras.ru Поступила в редакцию 03.09.2021 г.

После доработки 18.10.2021 г. Принята к публикации 21.10.2021 г.

Дано краткое описание результатов, полученных за последние два десятилетия сотрудниками ИХР РАН, и будущих перспективных разработок в области физической, неорганической и супрамолекулярной химии дипиррометеновых красителей и люминофоров. Основное внимание уделено описанию спектральных и других практически значимых характеристик дипиррометеновых лигандов, солей и устойчивых координационных соединений, обеспечивающих им свойства хромофорных и флуоресцентных хемосенсоров для обнаружения аналитов различной природы.

Ключевые слова: тетрапирролы с открытой цепью, хелаты цинка(II) и бора(III), люминофоры, флуоресцентное обнаружение, чувствительность

DOI: 10.31857/S0044457X22030035

введение

Фундаментальная база химии олигопиррольных соединений была заложена в первой половине XX в. основателем Мюнхенской школы синтетиков Хансом Фишером. Важнейшим достижением этой школы стало получение и изучение свойств порфина, пигментов крови – гема (1929 г.), желчи – билирубина (1931 г.), растений – хлорофиллов и фитохромов (1940 г.). В последующие десятилетия наряду с большими достижениями в химии порфиринов и желчных пигментов начинает формироваться направление химии дипиррометенов и других открытоцепных олигопиррольных соединений, построенных из двух и более дипиррометеновых доменов. Отмеченные еще Хансом Фишером интересные хромофорные и координационные свойства дипиррометенов на протяжении долгого времени оставались неизученными, а синтезированные дипиррометены, биладиены и билатриены находили применение преимущественно в качестве прекурсоров в матричном синтезе макроциклических структур. Повышенный интерес ученых к этой группе соединений возник после опубликования Хансом Фальком в 1989 г. монографии, в которой впервые были обобщены перспективные результаты исследований в области химии олигопиррольных пигментов [1].

Сформированные за прошедшие 30 лет фундаментальные представления об особенностях физико-химических свойств лигандов, солей и координационных соединений дипиррометеновых красителей стали базой для развития наиболее актуального современного направления практического применения олигопиррольных красителей и люминофоров в качестве сенсоров, маркеров, агентов фотодинамической терапии и др.

Амфотерность, обусловленная протонодонорным (>NH) и электронодонорным (\geq N) центрами, позволяет дипиррометеновому лиганду образовывать соли с кислотами и координационные соединения. Протяженная ароматическая система обеспечивает интенсивное поглощение в видимой области спектра лигандам, солям и координационным соединениям дипиррометенов. Высокая характеристичность электронных спектров поглощения (ЭСП) лигандов, солей и комплексов дипиррометенов, интенсивная флуоресценция и высокая устойчивость ряда координационных соединений обеспечивают условия для применения

Дипиррометены и их комплексы с В(III) и Zn(II)	Бис(дипиррометены) и их комплексы с В(III) и Zn(II)
$\begin{array}{c} & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ $	NH N H ₂ L
$HL \cdot HBr$	HN +
V N N F F Дипиррометенат B(III) – BODIPY	N-B F F F F F F F F
$\begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & $	$[Zn_{2}L_{2}]$

Таблица 1. Лиганды, бромистоводородные соли и комплексы с B(III) и Zn(II) дипиррометенов и 3,3'-*бис*(дипиррометенов)

различных химических форм дипиррометенов в сенсорике.

К настоящему времени известны комплексы открытоцепных *моно*- и *бис*(дипиррометенов) со многими *s*-, *p*-, *d*-элементами и лантанидами. В зависимости от природы и заряда иона-комплексообразователя, строения лиганда продуктами реакций комплексообразования дипиррометенов или *бис*(дипиррометенов) могут быть моно-, биили полиядерные, гомо- или гетеролигандные хелаты с различной трехмерной структурой, в том числе двойной и тройной спирали и др.

Синтез открытоцепных *моно-*, *бис*(дипиррометенов) и их комплексов относительно прост и менее трудоемок [1–11] по сравнению с методиками получения макроциклических олигопиррольных красителей. Алкил-, галогензамещенные *моно-* и *бис*(дипиррометены) получают в виде солей с бромистоводородной или другими минеральными кислотами [2, 3], в составе которых хромофоры наиболее стабильны по сравнению с арилзамещенными аналогами, устойчивыми в молекулярной форме [4]. Синтез дипиррометенатов осуществляют в одну стадию реакцией олигопиррола с соответствующей солью или эфиратом трифторида бора(III) в соответствующем органическом растворителе с высоким (до 97%) выходом [6–11].

Среди известных к настоящему времени олигопиррольных координационных соединений наиболее устойчивыми, фото- и термостабильными оказались комплексы бора(III), кобальта(II), никеля(II), меди(II), цинка(II), кадмия(II) и ртути(II). Сочетание этих характеристик с интенсивными хромофорными и люминесцентными свойствами придает наибольшую практическую значимость, в первую очередь комплексам дипиррометенов и *бис*(дипиррометенов) с B(III), Zn(II), Cd(II) и Hg(II). В области сенсорики лиганды, их соли с минеральными кислотами и хелаты (табл. 1) образуют группу наиболее практически перспек-

	Дипиррометены	
$\begin{array}{c} & & & \\$	C_2H_5 HHN $Br^ C_2H_5$ C_6H_6 : 494; 364 $CHCl_3$: 488; 363 PrOH: 479; 362 $ЛM\PhiA$: 438	C_4H_9 – NH HN Br ⁻ 3 $C_6H_6: 498; 368$ CHCl ₃ : 490; 362 PrOH: 480; 363 ЛМФА: 440
	Бис(дипиррометены)	
i (дипиррометен) – биладиен-а,с 4 2,2'-бис(дипиррометен) – биладиен-а,с 4 С ₆ H ₆ : 485; 366 СHCl ₃ : 482; 363 СCl ₄ : 484; 370 ДМФА: 438 (4.55)	\downarrow NH HN Br ⁻ 2,3'- <i>бис</i> (дипп 5 СHCl ₃ : 509 (5.23); 46 EtOH: 503 (5.05); 45 ДМФА: 505 (4.82); 43 ($c \sim 1 \times 10^{-1}$ ДМФА: 426 ($c \sim 1$ СHCl ₃ : 507; 4 СHCl ₃ : 502 (5.4	Вг ⁻ NH HN + иррометен) 52 (4.69); 363 (4.11) 4 (4.73); 364 (4.07) 58 (4.56); 373 (4.01) ⁴ моль/л) × 10 ⁻⁶ моль/л) 466 _{пл} ; 365 13); 461 _{пл} ; 364
	$\mu M \Phi A: 496 (4.87)$ $(c = 1 \times 10^{-1})$	у; 450 _{пл} ; 372-375 ⁴ моль/л)
Br ⁻	ДМФА: 456 (4.67) (<i>c</i>	~ 1 × 10 ⁻⁶ моль/л)
3,3'-бис(дипиррометен)	<i>(</i>	
	6	

тивных дипиррометеновых соединений, чьи сенсорные свойства обеспечиваются яркими спектральными и люминесцентными откликами следующих реакций: протонирования лигандов при взаимодействии с кислотами с образованием солей, депротонирования лигандов при диссоциации солей в присутствии сильных протоноакцепторов, комплексообразования лигандов с ионами ряда металлов с образованием хелатов, супрамолекулярного комплексообразования хелатов с полярными или ароматическими соединениями. Особенно большой практический потенциал заложен в уникально высокой чувствительности флуоресценции ряда дипиррометеновых хелатов к природе среды, обусловленной дополнительной координацией электронодонорных аналитов во внутренней координационной сфере молекулярного комплекса или супрамолекулярным комплексообразованием с протоно- и электронодонорными ароматическими аналитами за счет кислотно-основных взаимодействий или π - π -стекинга.

Рис. 1. Изменения в ЭСП при депротонировании соли тетрапиррола H₂L · 2HBr до молекулярного лиганда H₂L (а) и комплексообразовании алкилзамещенного 3,3'-*бис*(дипиррометена) H₂L с Zn(AcO)₂ в диметилформамиде (ДМФА) (б).

В обзоре дано краткое описание спектральных и других практически значимых характеристик дипиррометеновых лигандов, солей и важнейших координационных соединений, обеспечивающих им свойства хромофорных и флуоресцентных хемосенсоров для обнаружения аналитов различной природы.

Практически значимые спектральные свойства лигандов, солей и хелатов дипиррометенов и бис(дипиррометенов)

Лиганды и соли дипиррометенов (HL, HL · HBr) и бис(дипиррометенов) ($H_2L, H_2L \cdot 2HBr$) – высокоактивные хромофоры с интенсивной окраской от ярко-желтого до оранжево-красного цвета (табл. 2). Поглощающая способность дипиррометеновых хромофоров напрямую зависит от степени поляризации сопряженных π-электронных систем их молекул за счет специфических и универсальных контактов, возникающих при обратимом протонировании, комплексообразовании, сольватации. Среди структурных факторов заметное влияние на хромофорные свойства открытоцепных олигопирролов оказывает природа (электронные и стерические эффекты) периферийных заместителей, природа и способ присоединения межпиррольных спейсеров, а также количество дипиррометеновых доменов в олигопиррольной цепи [12-20].

Характерным признаком ЭСП протонированных форм дипиррометенов и *бис*(дипиррометенов) в составе соответствующих солей HL · HBr и H₂L · 2HBr в неполярных, ароматических, протонодонорных и высококонцентрированных электронодонорных средах является наличие высокоинтенсивной полосы S_0-S_1 с максимумом при 478–508 нм (lgε ~ 3.9–5.5) и плечом в области 458—467 нм и низкоинтенсивной полосы S_0-S_2 с максимумом при 360—380 нм (lge ~ 3.4—4.3) [3, 20]. В ЭСП разбавленных растворов ($\leq 10^{-5}$ моль/л) в электронодонорных средах длинноволновая полоса протонированного хромофора с гипсогипо-хромным эффектом преобразуется в полосу молекулярной формы лиганда (HL или H₂L) как продукта сольволитической диссоциации соли из-за связывания электронодонорным растворителем протона HBr (рис. 1а) [3, 20].

Ауксохромный эффект поляризации ароматической системы дипиррометена протоном, рассчитанный как $\Delta \lambda^{H^+} = \lambda^{conu}_{max} - \lambda^{nucanda}_{max}$, достигает 30–70 нм.

Координация лигандов с двух- и трехзарядными катионами *s*-, *p*-, *d*- или *f*-элементов в хелаты сопровождается бато- и гиперхромными эффектами интенсивной S_0-S_1 -полосы поглощения (рис. 16) [5]. Ауксохромный эффект иона-комплексообразователя ($\Delta \lambda^{M^{2+}}$) достигает 50–96 нм в зависимости от его природы и эффективности координационных взаимодействий [20, 21]. Поэтому большой интерес представляет анализ термодинамики реакций комплексообразования и особенностей координационных взаимодействий металл–лиганд в зависимости от структурных особенностей реагентов.

Анализ термодинамических констант реакций комплексообразования [20, 21] свидетельствует, что наиболее устойчивыми являются металло-комплексы дипиррометенов и *бис*(дипиррометенов) с Zn(II), Co(II), Ni(II), Cd(II), Hg(II), Cu(II) состава [ML₂] и [M₂L₂] соответственно. Константы устойчивости (lg K°) комплексов [ML₂] увеличиваются в ряду комплексообразователей Ni(II) < Zn(II) < Co(II) < Cu(II) от 7.56 до 11.88

N⁰	Хемосенсор	DL, моль/л	Флуоресцентный отклик (<i>I</i> / <i>I</i> ₀)	Ссылка	
1	HO N N N	0.77×10^{-6}	4	[30]	
2	O- N OH	1.44×10^{-7}	65	[31]	
3		3.16×10^{-6}	10	[32]	
4		0.03×10^{-6}	~2.7	[33]	
5	F F F F F F F F F F F F OH	1.28×10^{-6}	31	[34]	
6	NH2 S HN N HO O O O	6×10^{-7}	~45	[35]	

Таблица 3. Хемосенсорные характеристики красителей различной природы по отношению к катионам Zn²⁺

Таблица 3. Окончание

N⁰	Хемосенсор	DL, моль/л	Флуоресцентный отклик (<i>I</i> / <i>I</i> ₀)	Ссылка
7	ОН С ОН	1.64×10^{-7}	17	[36]
8		1.3×10^{-7}	~2.4	[37]

Примечание. DL — предел обнаружения аналита, моль/л; I/I_0 — флуоресцентный отклик.

[20]. Для геликатов $[M_2L_2]$ получена другая закономерность: термодинамические константы устойчивости (lg K°) увеличиваются от 5.91 до 13.73 в ряду Cu(II) < Cd(II) < Hg(II) < Ni(II) < < Co(II) < Zn(II) [21].

Среди координационных соединений олигопирролов ряд комплексов бора(III), цинка(II), кадмия(II) и ртути(II) отличаются интенсивной флуоресценцией, чувствительной к свойствам среды, что делает их перспективными флуоресцентными сенсорами. Для дипиррометенатов кадмия(II) и ртути(II) флуоресцентный отклик менее эффективен вследствие меньших (на порядок и более) показателей квантового выхода флуоресценции, в отличие от комплексов цинка(II). Квантовый выход флуоресценции комплексов цинка(II) может достигать 100% в неполярных и слабополярных средах, значительно уменьшаться в присутствии ароматических соединений и понижаться почти до нуля в электронодонорных средах. Схожие по эффективности флуоресцентные отклики недавно были обнаружены для бис(дипиррометенатов) бора(III) в протоно- и (особенно) электронодонорных средах.

Хемосенсоры на основе лигандов моно- и бис(дипиррометенов)

Спектральные изменения в реакциях обратимого депротонирования и комплексообразования *моно-* и *бис*(дипиррометенов), сопровождаемые визуально регистрируемым изменением цвета растворов и существенными изменениями количественных характеристик спектров поглощения и флуоресценции, а также чувствительность флуоресценции комплексов к свойствам среды открывают возможности практического применения открытоцепных олигопирролов как колориметрических и/или флуоресцентных "off-on" хемосенсоров катионов металлов, протоно- и электронодонорных соединений (рис. 2).

На примере серии солей алкилзамещенных бис(дипиррометенов) $H_2L \cdot 2HBr$ [18] нами впервые продемонстрирована возможность "nakedeye" и количественного определения аминов. В присутствии триэтиламина процесс депротонирования $H_2L \cdot 2HBr$ до молекулярной формы лиганда H_2L протекает с гипсохромным (до 20–60 нм) и гипохромным (до ~2 раз) эффектами интенсивной полосы поглощения реакционной смеси (рис. 2а). Оцененные из спектральных данных константы

Рис. 2. Изменения в ЭСП при депротонировании α -незамещенного 3,3'-*бис*(дипиррометена) H₂L · 2HBr до молекулярного лиганда H₂L в пропаноле-1 в присутствии триэтиламина (а) и в спектрах флуоресценции в реакции тетраметилзамещенного 3,3'-*бис*(дипиррометена) H₂L с ацетатом цинка(II) в среде пропанол-1/циклогексан (б).

реакции ($\lg K_a^o$) составили от 0.68 до 1.14 в зависимости от особенностей алкилирования H_2L [18].

По результатам флуориметрического титрования продемонстрирована высокая хемосенсорная чувствительность алкил-, галоген- и фенилзамещенных дипиррометенов и бис(дипиррометенов) по отношению к катионам цинка, кадмия и ртути [22–27]. "Off-on" отклик в виде разгорания флуоресценции в реакции ацетата цинка(II) с галоген- и фенилзамещенными дипиррометенами HL варьируется в диапазоне от 120 до 215 в смеси пропанол-1/циклогексан (1:30) [24, 25]. В отличие от дипиррометенов, флуоресцентные сенсоры на основе 3,3'-бис(дипиррометенов) H₂L в тех же условиях среды дают значительно более высокий (от 200 до 550-кратный) флуоресцентный отклик на присутствие катионов Zn^{2+} (рис. 26) [28]. Максимальное 550-кратное разгорание флуоресценции наблюдается для реакции ацетата цинка(II) с тетраметилзамещенным 3.3'-бис(дипиррометеном). Величина флуоресцентного отклика чувствительна также и к природе среды. Так, замена полярного растворителя (ДМФА) на среду с доминирующим содержанием неполярного сорастворителя (циклогексана) позволяет в 65 раз увеличить флуоресцентный отклик реакции ацетата цинка(II) с декаметилзамещенным бис(дипиррометеном) H₂L [27]. Весьма перспективные результаты получены при использовании метилзамещенных 3,3'-бис(дипиррометенов) H₂L как флуоресцентных хемосенсоров токсичных Cd²⁺ и Hg²⁺ [29]. Показатели "off-on" отклика (относительной интенсивности флуоресценции) реакции H₂L с ацетатами кадмия или ртути могут быть увеличены от 25 до 270 простым варьированием алкильного замещения лиганда олигопиррола.

Особенности алкилирования оказывают большое влияние и на многие практически значимые характеристики флуоресцентных Н₂L хемосенсоров – селективность и предел обнаружения (DL) ионов Zn²⁺, Cd²⁺ и Hg²⁺. Отмечена высокая селективность обнаружения катионов Zn^{2+} , Cd^{2+} и Hg²⁺ в присутствии катионов других металлов (Na⁺, K⁺, Mg²⁺, Ca²⁺, Mn²⁺, Co²⁺, Ni²⁺, Cu²⁺, Pb²⁺ и др.) [29]. Предел обнаружения катионов цинка с использованием тетрафенилзамещенного дипиррометена равен 1.4 × 10⁻⁷ моль/л. При использовании в качестве хемосенсоров галогензамещенных дипиррометенов значение DL составляет от 3.0×10^{-8} до 3.3×10^{-9} моль/л, а в случае применения декаметилзамещенного 3,3'-бис(дипиррометена) – до 10⁻¹⁰ моль/л.

Хемосенсоры на основе *моно-* и *бис*(дипиррометенов) по показателям флуоресцентного отклика, селективности и предела обнаружения превосходят большинство известных сенсоров [30–37]. *Моно-* и *бис*(дипиррометеновые) хемосенсоры имеют ряд преимуществ, включая достаточно простой синтез; яркие и мгновенные колористические "naked-eye" и спектральные отклики по отношению к аналитам; высокие "off-on" флуоресцентные отклики (до 550-кратного разгорания флуоресценции); высокие селективность и предел обнаружения катионов (до 10⁻¹⁰ моль/л) (табл. 3).

ВОDIPY-люминофоры — новые направления применения в качестве оптических сенсоров

ВОDIPY и *бис*(ВОDIPY) к настоящему времени заняли позиции наиболее перспективных и активно изучаемых координационных соединений не только среди дипиррометеновых, но и большинства других известных люминофоров. Спектр применения BODIPY очень активно расширяется и к настоящему времени уже охватывает такие разнообразные направления применения, как сенсоры, биомаркеры, средства доставки лекарственных соединений, агенты фотодинамической терапии, антибактериальные, противомикробные и противогрибковые средства, флуоресцентные переключатели, лазерные красители и др. Основными преимуществами этих красителей-люминофоров являются максимально высокие значения квантовых выходов флуоресценции, интенсивный профиль поглощения, хорошие фото- и термическая стабильность и др. [38–41].

Важно отметить, что флуоресценция большинства синтезированных и изученных к настоящему времени алкилзамещенных BODIPY оказалась практически не чувствительной к природе среды. Приведенные в большинстве работ, в том числе в [6, 38, 42], показатели свидетельствуют о том, что доходящий до 100% квантовый выход флуоресценции (ϕ) BODIPY мало изменяется в зависимости от природы сольватного окружения (структуры 7 и 8, схема 1).

м _{тах} 533 нм	λ _{max} 532 нм	λ _{max} 528 нм
$\lambda_{\max}^{\phi_{\mathcal{A}}}$ 544 нм	λ _{max} 538 нм	λ ^{фл} 538 нм
φ0.98	φ 0.91	φ 0.89
бензол	CHCl ₃	этанол

503 нм

512 нм

φ0.88

этанол

 $\lambda_{\max}^{\phi_{\Lambda}}$

В связи с нечувствительностью флуоресценции алкилзамещенных борфторидных комплексов дипиррометенов к природе среды они успешно применяются в качестве биомаркеров [38], лазерных красителей, оптических и электронных устройств различного назначения [43], но неэффективны как оптические сенсоры компонентов ближнего сольватного окружения, в том числе в биосистемах, а также токсичных аналитов в растворах и парах.

509 нм $\lambda_{\max}^{noгл}$ 508 нм $\lambda_{\max}^{noгл}$

φ 0.90

CHCl₃

λ^{фл} 516 нм

 λ_{\max}^{norn}

 $\lambda_{\max}^{\phi_{I}}$

φ0.88

бензол

517 нм

С другой стороны, результаты последних исследований [42, 44] показали, что неполярные алкил- или водорастворимые сульфозамещенные **BODIPY** являются оптимальной платформой для создания высокоселективных и простых в использовании "naked-eye" маркеров гидрофобных или гидрофильных областей транспортных белков, в том числе бычьего сывороточного альбумина. а также визуализаторов процессов взаимодействия в системах белок-лекарственное вещество. Это обусловлено наличием у транспортных белков комплементарных гидрофобных и гидрофильных полостей для локализации гидрофобных и водорастворимых BODIPY-молекул или их фрагментов. Анализ физико-химических характеристик процесса разгорания (или тушения) флуоресценции таких сенсоров при связывании с определенным сайтом белка позволяет быстро и с минимальными экспериментальными затратами получить информацию о строении и физико-химическом состоянии определенного сайта белка. выявить изменения в его трехмерной структуре или точечные мутации. Так, в работе [45] было доказано образование супрамолекулярного комплекса водорастворимого сульфозамещенного комплекса BODIPY с бычьим и человеческим сывороточными альбуминами (BSA и HSA), которое сопровождается тушением флуоресценции вследствие переноса энергии по ферстеровскому механизму (FRET), и продемонстрирована возможность использования этого эффекта для селективного качественного и количественного обнаружения BSA и HSA в физиологических жидкостях. Предел обнаружения HSA в моче человека составляет 0.05 мг/мл, что позволяет рекомендовать сульфозамещенный BODIPY-краситель в качестве эффективного флуоресцентного сенсора в клинической медицине для раннего выявления микроальбуминурии и сопутствующих заболеваний [45].

Поскольку вязкость является одним из ключевых параметров состояния в биологических средах, в настоящее время широко популярна разработка высокоэффективных роторов на основе BODIPY [46–53].

Целенаправленная функционализация молекул BODIPY путем введения объемных арильных заместителей в *мезо*-спейсер (в позицию 8 индаценового остова BODIPY, соединения **9**, **10**) [49] и алкил-арильных заместителей [46, 50, 51] позволила получить флуоресцентные сенсоры вязкости среды (схема 2).

Роторные характеристики ВОDIPY-красителей чувствительны как к дополнительной функционализации BODIPY-остова, так и к модификации самих фенильных заместителей. Разгорание флуоресценции таких красителей в высоковязких средах происходит за счет TICT-механизма и ограничения движения объемных заместителей в молекулах комплексов. Неограниченные возможности модификации за счет введения функциональных заместителей как в *мезо*-спейсер, так и в пиррольные ядра индаценового остова молекулы BODIPY позволяют целенаправленно настраивать практически значимые свойства красителей под конкретную задачу [54]. Например, введение атомов галогенов приводит к способности проявлять фосфоресценцию и генерировать синглетный кислород с квантовым выходом до 0.98 (вследствие проявления эффекта "тяжелого атома") и рекомендовать их в качестве высокоэффективных фотосенсибилизаторов [55, 56].

Введение определенного типа функциональных заместителей в молекулы BODIPY позволяет также получать сенсоры различных катионов, pH среды, температурных датчиков и т.д. [41, 54, 57–59].

Особую группу флуоресцентных сенсоров среды на основе функционализированных BODIPYлюминофоров представляют "red-emitting" стирилзамещенные BODIPY [60–62]. В отличие от алкил- и галогензамещенных BODIPY, стирилзамещенные аналоги за счет увеличения контура сопряжения характеризуются интенсивным поглощением в ИК-области, что делает их наиболее интересными объектами для биохимии и медицины. На примере стирил-BODIPY **11** и **12** (схема 3) показано, что при увеличении полярности среды квантовый выход флуоресценции комплексов заметно снижается [63, 64].

Схема 3.

350

Рис. 3. Квантовый выход флуоресценции CH(R)-*бис*(BODIPY) **14–18** в неполярных и полярных протоно- и электронодонорных растворителях (а) и зависимость относительной интенсивности флуоресценции CH(R)-*бис*(BODIPY) **14–18** от вязкости бинарных систем этанол–глицерин (б).

Кроме того, в работе [65] продемонстрирована чувствительность дистирилзамещенного BODIPY 13 к pH среды. Процесс обратимого протонирования изучен при добавлении к раствору 13 в хлороформе небольшого количества трифторуксусной кислоты (схема 4). Полученный спектр поглощения соответствует спектру дважды протонированной частицы.

Особый интерес представляет новый класс димерных аналогов BODIPY – алкилзамещенные *бис*(BODIPY) [7, 66–72].

Спектральные и сенсорные свойства BODIPYдимеров зависят как от типа ковалентного связывания дипиррометеновых доменов по C_{α} - и C_{β} -атомам проксимальных пиррольных ядер, так и от химической природы спейсера и периферийных заместителей. В общем случае сопоставление характеристик электронных спектров поглощения мономеров и димеров в органических растворителях свидетельствует о существенном гиперхромном эффекте и красном сдвиге максимума первой полосы S₀-S₁, вызванном экситонными взаимодействиями димеризованных через -СН2- спейсер доменов. В спектрах поглощения бис(BODIPY), в отличие от моно-BODIPY, наблюдается экситонное расщепление интенсивной длинноволновой полосы на две благодаря взаимодействию дипольных моментов переходов близко расположенных друг к другу хромофоров. Именно этот фактор обусловливает важные особенности физико-химических свойств, в том числе и сенсорных, бис(BODIPY), в отличие от моно-BODIPY. Так, весьма высокая чувствительность характеристик флуоресценции к природе среды обнаружена у 2,2'-, 2,3'- и 3,3'-СН(R)-бис(BODIPY)-димеров (структуры 14-18) [7, 66]. Квантовый выход флуоресценции СН(R)-бис(BODIPY) 14-18 достигает 80-95% в неполярных предельных и ароматических углеводородах (циклогексан, гептан, бензол, толуол) и снижается в ~12 раз в спиртах и до 2 порядков в электронодонорных ацетоне, ДМФА, ДМСО и пиридине (рис. 3, схема 5).

На примере соединений 14–16 показано [7, 66], что эффект тушения флуоресценции CH(R)бис(BODIPY) в спиртах и электронодонорных средах обусловлен реакциями самосборки устойчивых супрамолекулярных комплексов CH₂-бис(BODIPY) · 2Solv за счет образования водородных связей между протоном гидроксильной группы спирта и одного из атомов фтора каждого координационного узла или электронодонорных молекул с атомом водорода метинового спейсера каждого BODIPY-домена. Значения логарифмов констант (lg *K*) процессов образования супрамолекулярных продуктов CH₂бис(BODIPY) · 2Solv укладываются в диапазон от 2.4 до 5.2, что свидетельствует о сравнительно высокой устойчивости супрамолекулярных структур бис(BODIPY) со спиртами и электронодонорами (ДМФА, ДМСО).

Кроме того, конформационная подвижность, свойственная CH(R)- δuc (BODIPY) за счет колебания BODIPY-доменов относительно центрального метиленового ($-CH_2-$) спейсера, а также колебания *мезо*-арильных заместителей в случае *мезо*-фенил- и *мезо*-метоксифенилзамещенных димеров **17** и **18** обеспечивают чувствительность характеристик флуоресценции к микровязкости сольватного окружения.

Доминирующее влияние эффектов полярности, протоно- и электронодорных свойств растворителей не позволяет однозначно судить об эффекте вязкости среды в смесях различных по природе растворителей, особенно в области составов с невысокими значениями вязкости. В смеси полярных протонодорных растворителей этанол-глицерин при изменении вязкости от 1.096 сП (C₂H₅OH; $f_{\text{глицерин}} = 0$ об. %) до 630 сП ($f_{\text{глицерин}} = 90$ об. %) относительная интенсивность флуоресценции СН(Ar)-бис(BODIPY) 17 и 18 увеличивается в среднем в два раза, при этом константы Ферстера-Хоффмана (от 0.04 до 0.12) оказываются ниже значений для известных эффективных флуоресцентных BODIPY-роторов [43-50]. Значительное (до 60 раз) разгорание флуоресценции мезо-метоксифенилзамещенного димера 18 обнаружено при увеличении вязкости до 330 сП за счет роста объемного содержания слабополярного касторового масла до 90% в его смеси с электронодонорным ДМФА. Этот эффект вызван в первую очередь понижением содержания электронодонорного полярного компонента (ДМФА), который тушит флуоресценцию CH(Ar)-бис(BODIPY) за счет образования супрамолекулярных комплексов.

В последнее время активно появляются работы, посвященные разработке флуоресцентных сенсоров полярности среды [73]. Причем сенсорный отклик многих из них основан на смещении полосы испускания люминофора и времени жизни флуоресценции в зависимости от природы окружения, как, например, для производных пиразина [74] и 3-пиразолил-2-пиразолина [75]. Вместе с тем наличие высокой чувствительности интенсивности флуоресценции к природе растворителя димерных красителей СН(R)-*бис*(BODIPY) **14–18**, в отличие от большинства алкил- и арил-BODIPY-прекурсоров, позволяет рекомендовать их в качестве флуоресцентных зондов в средах с определенными комбинациями показателей вязкости, полярности, протоно- и электронодорной способности.

Флуоресцентные зонды на основе люминесцентных комплексов цинка(II) с моно- и бис(дипиррометенами)

Одной из наиболее перспективных платформ для создания полифункциональных флуоресцентных сенсоров оказался новый класс люминофоров на основе хелатов цинка(II) с *моно-* и *бис*(дипиррометеновыми) лигандами.

Долгое время металлокомплексы открытоцепных олигопирролов, в том числе с цинком(II), "скрывали" свою способность к флуоресценции. Первые отрицательные результаты исследования люминесцентных свойств хелатов цинка(II) с *мезо*-арилзамещенными дипиррометеновыми лигандами были опубликованы в 1987 г. [76]. И только в 2004 г. [77] было выяснено, что причина отсутствия флуоресценции заключается в подвижности *мезо*-арильных групп, колебания которых приводят к увеличению вероятности безызлуча-

Рис. 4. Спектры флуоресценции (a, б) и зависимость квантового выхода флуоресценции (в) хелатов [ZnL₂] ($c \sim 1.0 \times 10^{-7}$ моль/л) в растворах циклогексана с варьируемой от 0 до 1 мольной доли полярного компонента Solv: **19** – C₆H₁₂–C₂H₅OH (a), **20** – C₆H₁₂– AcOH (б), **20** (в).

тельных переходов и почти полному тушению флуоресценции комплексов. Проведенная впоследствии замена *мезо*-арильной группы на почти неподвижную мезитильную вызвала многократное разгорание флуоресценции и вернула интерес ученых к люминофорам на основе дипиррометенатов цинка(II) [77].

Комплексы цинка(II) с *бис*(дипиррометенами) не уступают BODIPY по спектральным, термическим и ряду других свойств [78]. Их электронные спектры содержат интенсивные полосы поглощения в области ~500–550 нм (ε ~ 100000– 300000 л/(моль см)) и флуоресценции в диапазоне ~535–565 нм. Соответствующие значения квантового выхода флуоресценции моно- и бис (дипиррометенатов) цинка (II) достигают 20 и 100% в неполярных средах [79], что отличает их от более слабо флуоресцирующих дипиррометенатов кадмия (II), ртути (II), некоторых лантанидов и полностью нефлуоресцирующих устойчивых комплексов дипиррометенов с другими металлами.

Значения квантового выхода флуоресценции таких комплексов (структуры **19–21**, схема 6) очень чувствительны к полярности среды. Флуоресценция комплексов, максимально интенсивная в неполярных средах, существенно тушится в ароматических и почти полностью в полярных электронодонорных растворителях. Аналогичная закономерность была обнаружена для *бис*(дипиррометенатов) цинка(II) [79].

	$\lambda_{\max}^{noгл}; \ \lambda_{\max}^{\phi_{\Lambda}},$ нм	φ	$\lambda_{\max}^{noгn}; \ \lambda_{\max}^{\phi_n},$ нм	φ	$\lambda_{\max}^{noгл}; \lambda_{\max}^{\phi_n},$ нм	φ
Циклогексан	488; 501	0.024	509; 520	0.148	574; 608	0.331
Бензол	490; 503	0.028	509; 521	0.060	575; 615	0.157
Этанол	485; 497	0.001	503; 513	0.002	572; 607	0.007

Схема 6.

Рис. 5. Молекулярная структура сольватов $[ZnL_2(Solv)_2]$ с C_2H_5OH и ДМФА [82].

Согласно опубликованным данным [80, 81], причины тушения флуоресценции алкил- и галогензамещенных дипиррометенатов цинка(II) [ZnL₂] в бинарных смесях циклогексан—Solv (Solv: этанол, ацетон, ДМФА, пиридин, диэтиламин и триэтиламин) заключаются в увеличении вероятности безызлучательных переходов вследствие образования супрамолекулярных структур [ZnL₂(Solv)_n]. На примере соединений **19**, **20** и других дипиррометенатов цинка(II) [80] было показано, что добавка в циклогексан полярного компонента Solv до мольной доли $\chi < 0.2$ вызывает гипсохромный сдвиг (на 1–13 нм) максимума полосы испускания и резкое тушение флуоресценции люминофоров [ZnL₂] (рис. 4).

Полученные экспериментальные результаты позволяют рекомендовать люминофоры на основе олигопиррольных комплексов цинка(II) в качестве флуоресцентных сенсоров специфически сольватирующих электроно-, протонодонорных и ароматических соединений [78, 80] наряду с известными флуоресцентными сенсорами [73].

В общем случае алкил- и галогензамещенные хелаты [ZnL₂] образуют супрамолекулярные комплексы состава $[ZnL_2(Solv)_2]$ с пиридином и О-содержащими аналитами (ацетоном, этанолом, ДМФА) и состава [ZnL₂Solv] с N-электронодонорными ди- и триэтиламинами. При этом устойчивость молекулярных галогензамещенных комплексов $[ZnL_2(Solv)_n]$ до ~15 раз выше по сравнению с алкилзамещенными аналогами [80]. Важно отметить, что тушение флуоресценции алкил- и галогензамещенных дипиррометенатов цинка(II) в присутствии О-содержащих аналитов существенно (до ~5 раз) выше по сравнению с аминами. Эффективность тушения флуоресценции дипиррометенатов цинка(II) [ZnL₂] увеличивается с ростом электронодонорной способности и полярности кислородсодержащих компонентов в последовательности: ацетон \rightarrow этанол \rightarrow ДМФА. Обратная закономерность отмечена для группы N-содержащих соединений, что вызвано стерическими факторами, затрудняющими доступ объемных молекул пиридина, диэтаноламина (ДЭА) и триэтаноламина (ТЭА) к координационным центрам люминофоров.

Согласно результатам теоретических и экспериментальных исследований кристаллосольватов 4,4'-дибромзамещенного дипиррометената цинка(II) [ZnL₂] с этанолом и ДМФА [82], сольват [ZnL₂(ДМФА)₂] формируется за счет дополнительной координации молекулярных лигандов атомом цинка (Zn^{$\delta+$} \leftarrow :O) (рис. 5).

Дополнительный вклад в стабилизацию супрамолекулярной структуры $[ZnL_2(C_2H_5OH)_2]$ вносят водородные связи между протонами гидроксильных групп спирта и атомами азота $(C_2H_5OH \leftarrow :N \le)$ дипиррометенового лиганда в составе хелата (рис. 5) [82].

Пределы обнаружения О- и N-содержащих аналитов с использованием алкил- и галогензамещенных люминофоров [ZnL₂] в среде циклогексана достаточно высоки (от 8×10^{-5} до 7×10^{-6} моль/л) [80], что позволяет рекомендовать данный тип люминофоров в качестве высокочувствительных и селективных "on-off" флуоресцентных сенсоров следовых количеств полярных растворителей в органических средах.

Разработана экспериментально-теоретическая база для практического применения *бис*(дипиррометенатов) цинка(II) (например, структуры **22** и **23**, схема 7) в качестве высокочувствительных и селективных флуоресцентных сенсоров электронодонорных и ароматических соединений в органических средах. Результаты исследований [78, 83–90] 3,3'-, 2,3'- и 2,2'-*бис*(дипиррометенатов) цинка(II) показали, что в присутствии N- или О-электронодонорных (X) и ароматических (Ar) соедине-

ний происходят реакции самосборки устойчивых супрамолекулярных комплексов $[Zn_2L_2X_n]$ (n = 1, 2, 4) и $[Zn_2L_2Ar_n]$ (n = 1, 2), что отражается спектрально и визуально регистрируемым эффектом тушения флуоресценции комплексов. По данным квантово-химических расчетов (B3LYP(PCM)/6-31G(d,p)), в составе сольватокомплексов $[Zn_2L_2X_n]$ и $[Zn_2L_2Ar_n]$ *бис*(дипиррометенат) цинка(II) является акцептором, а молекулярные лиганды X/Ar – донорами электронов.

Тушение флуоресценции сольватов происходит за счет внутримолекулярного переноса электрона с высшей занятой молекулярной орбитали X/Ar на высшую занятую молекулярную орбиталь акцептора — флуорофора [Zn_2L_2], т.е. по РеТ-механизму [78], а рассматриваемые сенсоры электронодонорных и ароматических молекул на основе *бис*(дипиррометенатов) цинка(II) могут быть отнесены к "on-off" типу.

	$\lambda_{\max}^{noгл}$, нм	$\lambda_{\max}^{\phi_{I}}$, нм	φ		λ_{\max}^{noen} , нм	$\lambda_{\max}^{\phi_{I}}$, нм	φ
Циклогексан	530	543	0.91	Циклогексан	529	537	0.39
Толуол	531	545	0.64	Толуол	530	547	0.08
ДМФА	525	543	0.002	ДМФА	527	561	0.007

Схема 7.

Понижение термической (от 427 до 366 К) и энергетической стабильности супрамолекулярных структур наблюдается в последовательности 2,2'-, 2,3'- и 3,3'-*бис*(дипиррометенатов) цинка(II) и с уменьшением электронодонорной способности координируемых лигандов [78]. Аналогичные закономерности изменения констант устойчивости супрамолекулярных комплексов в растворах получены на основании данных ¹Н ЯМР и спектрофлуориметрического титрования [78].

Определены аналитические флуоресцентные характеристики сенсоров на основе геликатов $[Zn_2L_2]$. Обосновано использование показателя относительного изменения интенсивности на двух выбранных длинах волн полосы испускания $[Zn_2L_2]$ в качестве селективного аналитического критерия идентификации N-, О-донорных и ароматических аналитов и их количественного определения. Пределы обнаружения исследованных ароматических соединений (бензол, толуол, ксилолы) с использованием [Zn₂L₂] в среде циклогексана составляют от 1.2×10^{-7} до 9.9×10^{-5} моль/л, пределы обнаружения электронодонорных соединений (ДМФА, ДМСО, пиридин) в среде циклогексана — от 2.5×10^{-7} до 9.3×10^{-5} моль/л, что сопоставимо и в некоторых случаях на порядок выше по сравнению с описанными ранее дипиррометенатами цинка(II) [78, 80].

На основе допированного в этилцеллюлозу 3,3'-бис(дипиррометената) цинка(II) авторами [78, 84] разработан новый сенсор паров ацетона и этанола. Предел обнаружения паров ацетона в газовой смеси с использованием сенсора составляет 1.68 ppb, этанола – 0.56 ppt. Для полученного флуоресцентного сенсора характерны мгновенный отклик, высокая чувствительность и селективность к присутствию паров ацетона и этанола, не уступающие известным флуоресцентным сенсорам, например, на основе производных о-карборана [91], металлоорганических полимеров [92]. Простота использования полученного сенсора [75, 81] позволяет рекомендовать его для мониторинга содержания паров ацетона и этанола в промышленных и лабораторных помещениях, а также для неинвазивной диагностики сахарного диабета и в качестве альтернативной основы карманных алкотестеров.

Комплексы 3,3'-бис (дипиррометената) цинка(II) предложены также в качестве флуоресцентных сенсоров для обнаружения петлевых диуретиков, в том числе фуросемида и торасемида, в органических средах и физиологических жидкостях с пределом обнаружения 65–78 мг/л [83, 93].

Наличие в структуре молекул диуретиков и их метаболитов нескольких электронодонорных гетероатомов (Cl, N, O, S и т.д.) в сочетании с ароматическими фрагментами (бензола, пиридина, фурана и т.д.) создает возможность образования супрамолекулярных комплексов с бис(дипиррометенатами) цинка(II) за счет конкретного набора специфических взаимодействий. Специфика межчастичных взаимодействий в супрамолекулярных комплексах *бис*(дипиррометенатов) цинка(II) с диуретиками и их метаболитами [Zn₂L₂X_n] обеспечивает высокую индивидуальность быстрого флуоресцентного отклика реакции комплексообразования и представляет возможность рекомендовать их для детектирования микроколичеств диуретиков и их метаболитов при помощи дипиррометеновых сенсоров.

ЗАКЛЮЧЕНИЕ

Таким образом, хромофорные и люминесцентные лиганды, соли и координационные соединения с дипиррометеновыми доменами наряду с теоретическим представляют и значительный практический интерес, в том числе в области хемосенсорики.

Индивидуальность ЭСП лигандов, протонированных форм олигопирролов и их комплексов, яркие колористические и флуоресцентные отклики процессов депротонирования и комплексообразования, значительные различия в количественных характеристиках ЭСП дипиррометенов и *бис*(дипиррометенов), их солей и комплексов являются основой для развития прикладных аспектов использования олигопирролов в качестве оптических сенсоров. Очевидна перспективность развития направлений применения:

– солей олигопирролов как колориметрических ("naked-eye") и оптических хемосенсоров для качественного анализа и количественного спектрофотометрического определения следовых количеств (C_2H_5)₃N и других аминов в органических средах с условной чувствительностью аналитического определения не менее 1.0×10^{-8} моль/л;

– лигандов олигопирролов в качестве эффективных флуоресцентных хемосенсоров катионов Zn^{2+} , Cd^{2+} и Hg^{2+} с высокими показателями чувствительности (флуоресцентный отклик I/I_0 до 550), селективности и предела обнаружения катионов от 10^{-7} до 10^{-10} моль/л;

– дипиррометеновых комплексов цинка(II) как колориметрических ("naked-eye") и флуоресцентных хемосенсоров для качественного и количественного спектрального анализа N-, О-донорных и ароматических аналитов с высокими показателями флуоресцентного отклика и высокими (до 10⁻⁵–10⁻⁷ моль/л) пределами обнаружения; BODIPY-люминофоров как наиболее востребованных в настоящее время биомаркеров, а также высокоэффективных "naked-eye" маркеров транспортных белков и сенсоров вязкости биологических сред;

- *бис*(**BODIPY**) в качестве сенсоров полярности среды и микровязкости сольватного окружения в средах с определенными комбинациями показателей вязкости, полярности, протоно- и электронодорной способности.

Результаты исследований авторов в области физической, координационной и супрамолекулярной химии олигопиррольных соединений, эффективность и чувствительность их спектральных откликов на кислотно-основные и координационные взаимодействия, а также супрамолекулярное комплексообразование создают научную базу для получения новых спектральных сенсоров соединений различных классов (наркотики, стероиды, витамины и другие биоактивные вещества и их метаболиты).

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при поддержке государственного задания Министерства науки и высшего образования Российской Федерации "Развитие подходов и методов физической химии в исследовании многокомпонентных супрамолекулярных, молекулярных и ион-молекулярных систем как перспективных материалов АААА-А21-121011490059-5". Исследования галогензамещенных дипиррометенатов цинка(II) как "on-off" флуоресцентных сенсоров полярных сред выполнены при финансовой поддержке гранта РФФИ 19-33-60052 "Перспектива".

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Falk H*. The Chemistry of Linear Oligopyrroles and Bile Pigments. Vienna: Springer, 1989. V. 1.
- Berezin M.B., Semeikin A.S., Antina E.V. et al. // Russ. J. Gen. Chem. 1999. V. 69. № 12. Р. 1949. [Березин М.Б., Семейкин А.С., Антина Е.В. и др. // Журн. общей химии. 1999. Т. 69. № 12. С. 2040.]
- 3. Antina E.V., Guseva G.B., Dudina N.A. et al. // Russ. J. Gen. Chem. 2009. V. 79. № 11. Р. 2425. [Антина E.B., Гусева Г.Б., Дудина Н.А. и др. // Журн. общей химии. 2009. Т. 79. № 11. С. 1903.] https://doi.org/10.1134/S1070363209110243
- Rogers M.A.T. // J. Chem. Soc. 1943. P. 590. https://doi.org/10.1039/JR9430000590
- Shikha Singh R., Prasad Paitandi R., Kumar Gupta R., Shankar Pandey D. // Coord. Chem. Rev. 2020. V. 414. P. 213269. https://doi.org/10.1016/j.ccr.2020.213269

- 6. Bumagina N.A., Antina E.V., Berezin M.B., Kalyagin A.A. // Spectrochim. Acta, Part A. 2017. V. 173. P. 228. https://doi.org/10.1016/j.saa.2016.09.026
- Antina L.A., Ksenofontov A.A., Kalyagin A.A. et al. // Spectrochim. Acta, Part A. 2019. V. 218. P. 308. https://doi.org/10.1016/j.saa.2019.03.117
- Yutanova S.L., Berezin M.B., Semeikin A.S. et al. // Russ. J. Gen. Chem. 2013. V. 83. № 3. Р. 545. [Ютанова С.Л., Березин М.Б., Семейкин А.С. и др. // Журн. общей химии. 2013. Т. 83. № 3. С. 492.] https://doi.org/10.1134/S1070363213030237
- Antina E.V., Berezin M.B., Dudina N.A. et al. // Russ. J. Gen. Chem. 2010. V. 80. № 6. Р. 1216. [Антина Е.В., Березин М.Б., Дудина Н.А. и др. // Журн. общей химин. 2010. Т. 80. № 6. С. 1048.] https://doi.org/10.1134/S1070363210060332
- Marfin Y.S., Rumyantsev E.V. // Spectrochim. Acta, Part A. 2014. V. 130. P. 423. https://doi.org/10.1016/j.saa.2014.04.031
- 11. Antina E.V., Berezin M.B., Dudina N.A. et al. // Russ. J. Inorg. Chem. 2014. V. 59. № 10. Р. 1187. [Антина Е.В., Березин М.Б., Дудина Н.А. и др. // Журн. неорган. химии. 2014. Т. 59. № 1. С. 1427.] https://doi.org/10.1134/S0036023614100027
- Semeikin A.S., Berezin M.B., Chernova O.M. et al. // Russ. Chem. Bull. 2003. V. 52. № 8. P. 1807. https://doi.org/10.1023/A:1026064923515
- Berezin M.B., Chernova O.M., Shatunov P.A. et al. // Molecules. 2000. V. 5. № 12. P. 809. https://doi.org/10.3390/50600809
- 14. Guseva G.B., Antina E.V., Berezin M.B. et al. // Russ. J. Gen. Chem. 2002. V. 72. № 1. Р. 126. [Гусева Г.Б., Антина Е.В., Березин М.Б. и др. // Журн. общей химии. 2002. Т. 72. № 1. С. 135.] https://doi.org/10.1023/A:1015318017581
- Antina E.V., Zakharova S.P., Rumyantsev E.V. // Russ. J. Gen. Chem. 2006. V. 76. № 7. Р. 1157. [Антина Е.В., Захарова С.П., Румянцев Е.В. // Журн. общей химии. 2006. Т. 76. № 7. С. 1205.] https://doi.org/10.1134/S1070363206070279
- 16. *Makarova S.P., Rumyantsev E.V., Antina E.V. //* Russ. J. Gen. Chem. 2008. V. 78. № 9. Р. 1770. [*Макарова С.П., Румянцев Е.В., Антина Е.В. //* Журн. общей химии. 2008. Т. 78. № 9. С. 1539.] https://doi.org/10.1134/S107036320809020X
- Guseva G.B., Dudina N.A., Antina E.V. et al. // Russ. J. Gen. Chem. 2008. V. 78. № 6. Р. 1215. [Гусева Г.Б., Дудина Н.А., Антина Е.В. и др. // Журн. общей химии. 2008. Т. 78. № 6. С. 987.] https://doi.org/10.1134/S1070363208060200
- Antina E.V., Guseva G.B., Dudina N.A., V'yugin A.I. // Russ. J. Inorg. Chem. 2010. V. 55. № 8. Р. 1172. [Антина Е.В., Гусева Г.Б., Дудина Н.А., Вьюгин А.И. // Журн. неорган. химии. 2010. Т. 55. № 8. С. 1246.] https://doi.org/10.1134/S0036023610080036
- Berezin M.B., Semeikin A.S., Yutanova S.L. et al. // Russ. J. Gen. Chem. 2012. V. 82. № 7. Р. 1287. [Березин М.Б., Семейкин А.С., Ютанова С.Л. и др. // Журн. общей химии. 2012. Т. 82. № 7. С. 1189.] https://doi.org/10.1134/S1070363212070183
- 20. *Антина Е.В., Румянцев Е.В.* Химия билирубина и его аналогов. М.: Красанд, 2009. 352 с.

- Dudina N.A., Antina E.V., Guseva G.B. // Russ. J. Coord. Chem. 2011. V. 37. № 5. Р. 333. [Дудина Н.А., Антина Е.В., Гусева Г.Б. // Коорд. химия. 2011. Т. 37. № 5. С. 331.] https://doi.org/10.1134/S1070328411040026
- 22. Nuraneeva E.N., Guseva G.B., Antina E.V. // Russ. J. Gen. Chem. 2017. V. 87. № 7. Р. 1550. [Нуранеева Е.Н., Гусева Г.Б., Антина Е.В. // Журн. общей химии. 2017. Т. 87. № 7. С. 1157.] https://doi.org/10.1134/S1070363217070180
- Dudina N.A., Antina E.V., Guseva G.B., Vyugin A.I. // J. Fluoresc. 2014. V. 24. № 1. P. 13. https://doi.org/10.1007/s10895-013-1278-7
- 24. Bumagina N.A., Antina E.V., Nikonova A.Y. et al. // J. Fluoresc. 2016. V. 26. № 6. P. 1967. https://doi.org/10.1007/s10895-016-1890-4
- 25. Nuraneeva E.N., Guseva G.B., Antina E.V. // J. Fluoresc. 2021. V. 31. № 2. P. 415. https://doi.org/10.1007/s10895-020-02670-4
- 26. Nuraneeva E.N., Guseva G.B., Antina E.V. et al. // Russ. Chem. Bull. 2018. V. 67. № 7. P. 1231. https://doi.org/10.1007/s11172-018-2206-4
- 27. Dudina N.A., Antina E.V., Guseva G.B. et al. // Russ. J. Org. Chem. 2013. V. 49. № 12. Р. 1734. [Дудина Н.А., Антина Е.В., Гусева Г.Б. и др. // Журн. орг. химии. 2013. Т. 49. № 12. С. 1754.] https://doi.org/10.1134/S107042801312004X
- 28. Dudina N.A., Antina E.V., Sozonov D.I., V'yugin A.I. // Russ. J. Org. Chem. 2015. V. 51. № 8. Р. 1155. [Дудина Н.А., Антина Е.В., Созонов Д.И., Вьюеин А.И. // Журн. орг. химии. 2015. Т. 51. № 8. С. 1174.] https://doi.org/10.1134/S107042801508014X
- Bumagina N.A., Antina E.V., Sozonov D.I. // J. Lumin. 2017. V. 183. P. 315. https://doi.org/10.1016/j.jlumin.2016.11.057
- Bie F, Cao H., Yan P. et al. // Inorg. Chim. Acta. 2020. V. 508. P. 119652. https://doi.org/10.1016/j.ica.2020.119652
- Dong W.-K., Akogun S.F., Zhang Y. et al. // Sens. Actuators, B: Chem. 2017. V. 238. P. 723. https://doi.org/10.1016/j.snb.2016.07.047
- Erdemir S., Malkondu S. // Sens. Actuators, B: Chem. 2013. V. 188. P. 1225. https://doi.org/10.1016/j.snb.2013.08.031
- Moradi S.E., Molavipordanjani S., Hosseinimehr S.J., Emami S. // Photochem. Photobiol. A. Chem. 2020. V. 389. P. 112184. https://doi.org/10.1016/j.jphotochem.2019.112184
- 34. *Shi Z., Tu Y., Pu S.* // RSC Adv. 2018. V. 8. P. 6727. https://doi.org/10.1039/C7RA13592K
- 35. Wang L., Li W., Zhi W. et al. // Sens. Actuators. B. Chem. 2018. V. 260. P. 243. https://doi.org/10.1016/j.snb.2017.12.200
- Xu J., Xiong J., Qin Y. et al. // Mater. Chem. Front. 2020. V. 4. P. 3338. https://doi.org/10.1039/D0QM00446D
- Yan L., Wen X., Fan Z. // Anal. Bioanal. Chem. 2020. V. 412. P. 1453. https://doi.org/10.1007/s00216-019-02378-w

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 3 2022

- 38. Loudet A., Burgess K. // Chem. Rev. 2007. V. 107. № 11. P. 4891. https://doi.org/10.1021/cr078381n
- 39. Solomonov A.V., Marfin Y.S., Rumyantsev E.V. // Dyes Pigm. 2019. V. 162. P. 517. https://doi.org/10.1016/j.dvepig.2018.10.042
- 40. Squeo B.M., Ganzer L., Virgili T., Pasini M. // Molecules. 2021. V. 26. № 1. P. 153. https://doi.org/10.3390/molecules26010153
- 41. *Bañuelos J.* // Chem. Record. 2016. V. 16. № 1. P. 335. https://doi.org/10.1002/tcr.201500238
- 42. Antina L.A., Ksenofontov A.A., Kalyagin A.A. et al. // J. Mol. Liq. 2020. V. 304. P. 112717. https://doi.org/10.1016/i.mollia.2020.112717
- Kuznetsova R. T., Aksenova I.V., Prokopenko A.A. et al. // J. Mol. Liq. 2019. V. 278. P. 5. https://doi.org/10.1016/j.molliq.2019.01.049
- Ksenofontov A.A., Bocharov P.S., Antina E.V. // J. Photochem. Photobiol., A. 2019. V. 368. P. 254. https://doi.org/10.1016/j.jphotochem.2018.10.002
- Ksenofontov A.A., Bocharov P.S., Ksenofontova K.V., Antina E.V. // J. Mol. Liq. 2021. V. 33. P. 117031. https://doi.org/10.1016/j.molliq.2021.117031
- 46. Lee S.-C., Heo J., Woo H.C. et al. // Chemistry. Eur. J. 2018. V. 24. № 52. P. 13706. https://doi.org/10.1002/chem.201801389
- 47. Dong B., Zhong K., Lu Y. // Dyes Pigm. 2019. V. 164.
 № 11. P. 156. https://doi.org/10.1016/j.dyepig.2019.01.017
- Lou Z., Hou Y., Chen K. et al. // J. Phys. Chem. C. 2018.
 V. 122. № 1. P. 185. https://doi.org/10.1021/acs.jpcc.7b10466
- 49. Marfin Y.S., Merkushev D.A., Usoltsev S.D. et al. // J. Fluoresc. 2015. V. 25. № 5. P. 1517. https://doi.org/10.1007/s10895-015-1643-9
- 50. Polita A., Toliautas S., Žvirblis R., Vyšniauskas A. // Phys. Chem. Chem. Phys. 2020. V. 22. № 16. P. 8296. https://doi.org/10.1039/c9cp06865a
- 51. Vyšniauskas A., Lopez-Duarte I., Thompson A.J. et al. // Methods and applications in Fluorescence. 2018. V. 6. № 3. P. 34001. https://doi.org/10.1088/2050-6120/aabb2c
- 52. Vyšniauskas A., López-Duarte I., Duchemin N. et al. // Phys. Chem. Chem. Phys. 2017. V. 19. № 37. P. 25252. https://doi.org/10.1039/c7cp03571c
- 53. *Raut S., Kimball J., Fudala R. et al.* // Phys. Chem. Chem. Phys. 2014. V. 16. № 48. P. 27037. https://doi.org/10.1039/c4cp04260c
- 54. Lakshmi V., Sharma R., Ravikanth M. // Rep. Org. Chem. 2016. V. 6. P. 1. https://doi.org/10.2147/ROC.S60504
- 55. *Zhang X.-F.* // J. Photochem. Photobiol., A. 2018. V. 355. P. 431.

https://doi.org/10.1016/j.jphotochem.2017.07.019

56. Nuraneeva E.N., Guseva G.B., Antina E.V. et al. // Russ. J. Gen. Chem. 2016. V. 86. № 4. Р. 840. [Нуранеева Е.Н., Гусева Г.Б., Антина Е.В. и др. // Журн. общей химии. 2016. Т. 86. № 4. С. 653.] https://doi.org/10.1134/S1070363216040149

- 57. Boens N., Leen V., Dehaen W. // Chem. Soc. Rev. 2012. V. 41. № 3. P. 1130. https://doi.org/10.1039/C1CS15132K
- 58. Hecht M., Kraus W., Rurack K. // Analyst. 2013. V. 138. № 1. P. 325. https://doi.org/10.1039/C2AN35860C
- 59. *Müller B.J., Rappitsch T., Staudinger C. et al.* // Anal. Chem. 2017. V. 89. № 13. P. 7195. https://doi.org/10.1021/acs.analchem.7b01373
- 60. *Peterson J.A., Wijesooriya C., Gehrmann E.J. et al.* // J. Am. Chem. Soc. 2018. V. 140. № 23. P. 7343. https://doi.org/10.1021/jacs.8b04040
- 61. *Tzeli D., Petsalakis I.D., Theodorakopoulos G.* // Int. J. Quantum. Chem. 2019. V. 119. № 16. P. 47. https://doi.org/10.1002/qua.25958
- 62. Sutter A., Elhabiri M., Ulrich G. // Chemistry. Eur. J. 2018. V. 24. № 43. P. 11119. https://doi.org/10.1002/chem.201801540
- 63. Wang S., Liu H., Mack J. et al. // Chem. Commun. 2015. V. 51. № 69. P. 13389. https://doi.org/10.1039/C5CC05139H
- 64. *Rurack K., Kollmannsberger M., Daub J.* // Angew. Chem. Int. Ed. 2001. V. 40. № 2. P. 385. https://doi.org/10.1002/1521-3773(20010119)40:2<385:AID-ANIE385>3.0.CO;2-F
- Deniz E., Isbasar G.C., Bozdemir Ö.A. et al. // Org. Lett. 2008. V. 10. № 16. P. 3401. https://doi.org/10.1021/ol801062h
- 66. Antina L.A., Kalyagin A.A., Ksenofontov A.A. et al. // J. Mol. Liq. 2021. V. 337. P. 116416. https://doi.org/10.1016/i.mollig.2021.116416
- 67. *Knippenberg S., Bohnwagner M.V., Harbach P.H.P. et al.* // J. Phys. Chem. A. 2015. V. 119. № 8. P. 1323. https://doi.org/10.1021/acs.jpca.5b00637
- 68. Lundrigan T., Baker A.E.G., Longobardi L.E. et al. // Org. Lett. 2012. V. 14. № 8. P. 2158. https://doi.org/10.1021/o1300681w
- 69. Savoldelli A., Paolesse R., Fronczek F.R. et al. // Org. Biomol. Chem. 2017. V. 15. № 35. P. 7255. https://doi.org/10.1039/c7ob01797a
- 70. *Ventura B., Marconi G., Bröring M. et al.* // New J. Chem. 2009. V. 33. № 2. P. 428. https://doi.org/10.1039/B813638F
- 71. Liu Y., Zhao J., Iagatti A. et al. // J. Phys. Chem. C. 2018. V. 122. № 5. P. 2502. https://doi.org/10.1021/acs.jpcc.7b10213
- 72. Stachelek P, Harriman A. // J. Phys. Chem. A. 2016. V. 120. № 41. P. 8104. https://doi.org/10.1021/acs.jpca.6b08284
- Xiaoa H., Lia P., Tanga B. // Coord. Chem. Rev. 2021. V. 427. P. 213582. https://doi.org/10.1016/j.ccr.2020.213582
- 74. Saito R., Matsumura Y., Suzuki S., Okazaki N. et al. // Tetrahedron. 2010. V. 66. P. 8273. https://doi.org/10.1016/j.tet.2010.08.036
- 75. Sarkar A., Mandal T., Rana D.K. et al. // J. Lumin. 2010. V. 130. P. 2271. https://doi.org/10.1016/j.jlumin.2010.07.004
- 76. Ганжа В.А., Гуринович Г.П., Джагаров Б.М. и др. // Журн. прикладной спектроскопии. 1987. Т. 47. С. 84.

ХИМИЯ И НАПРАВЛЕНИЯ ПРАКТИЧЕСКОГО ПРИМЕНЕНИЯ

https://doi.org/10.1016/j.molliq.2018.11.025

Chem. Soc. 2004. V. 126. № 9. P. 2664. https://doi.org/10.1021/ja038763k

79. Antina E.V., Kuznetsova R.T., Antina L.A. et al. // Dyes Pigm. 2015. V. 113. № 20. P. 664. https://doi.org/10.1016/j.dyepig.2014.10.002

77. Sazanovich I.V., Kirmaier C., Hindin E. et al. // J. Am.

- Nuraneeva E.N., Guseva G.B., Antina E.V., V'yugin A.I. // J. Mol. Liq. 2020. V. 298. № 5. P. 112026. https://doi.org/10.1016/j.molliq.2019.112026
- Ksenofontov A.A., Guseva G.B., Antina E.V. et al. // J. Fluoresc. 2015. V. 25. № 6. P. 1875. https://doi.org/10.1007/s10895-015-1680-4
- Nuraneeva E.N., Guseva G.B., Antina E.V. // Thermochim. Acta. 2021. V. 699. P. 178911. https://doi.org/10.1016/j.tca.2021.178911
- Ksenofontov A.A., Stupikova S.A., Bocharov P.S. et al. // J. Photochem. Photobiol., A. 2019. V. 382. P. 111899. https://doi.org/10.1016/j.jphotochem.2019.111899
- Ksenofontov A.A., Guseva G.B., Stupikova S.A., Antina E.V. // J. Fluoresc. 2018. V. 28. № 2. P. 477. https://doi.org/10.1007/s10895-018-2220-9
- Ksenofontov A.A., Guseva G.B., Antina E.V., Nuraneeva E.N. // J. Lumin. 2017. V. 192. P. 1203. https://doi.org/10.1016/J.JLUMIN.2017.08.058

- 86. Ksenofontov A.A., Guseva G.B., Antina E.V., Nuraneeva E.N. // Spectrochim. Acta, Part A. 2017. V. 173. P. 222. https://doi.org/10.1016/j.saa.2016.09.014
- Ksenofontov A.A., Guseva G.B., Antina E.V. et al. // Sens. Actuators, B. 2017. V. 251. P. 858. https://doi.org/10.1016/j.snb.2017.05.143
- 88. Guseva G.B., Ksenofontov A.A., Antina E.V. et al. // J. Coord. Chem. 2016. V. 69. № 5. P. 901. https://doi.org/10.1080/00958972.2016.1147562
- Guseva G.B., Ksenofontov A.A., Antina E.V. et al. // J. Therm. Anal. Calorim. 2016. V. 126. № 3. P. 1481. https://doi.org/10.1007/s10973-016-5647-8
- 90. Guseva G.B., Ksenofontov A.A., Antina E.V. // J. Mol. Struct. 2017. V. 1130. P. 385. https://doi.org/10.1016/j.molstruc.2016.10.048
- 91. Huang R., Liu K., Liu H. et al. // Anal. Chem. 2018. V. 90. P. 14088. https://doi.org/10.1021/acs.analchem.8b04897
- 92. Yi F.-Y., Yang W., Sun Zh.-M. et al. // J. Mater. Chem. 2012. V. 22. P. 23201. https://doi.org/10.1039/C2JM35273G
- 93. Ksenofontov A.A., Lukanov M.M., Antina E.V. // Dyes Pigm. 2020. V. 179. P. 108389. https://doi.org/10.1016/j.dyepig.2020.108389