ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ

УДК 544.015.3+544.013+542.06

ТРИАНГУЛЯЦИЯ В СИСТЕМЕ Li₂ZnP₂O₇-Na₂ZnP₂O₇-K₂ZnP₂O₇

© 2022 г. М. А. Петрова^{а, *}, О. Ю. Синельщикова^а

^аИнститут химии силикатов им. И.В. Гребенщикова РАН, наб. Макарова, 2, Санкт-Петербург, 199034 Россия

**e-mail: maya_petrova@inbox.ru* Поступила в редакцию 31.05.2021 г. После доработки 28.07.2021 г. Принята к публикации 04.08.2021 г.

Целесообразность изучения фазовых диаграмм состояния фосфатных систем щелочных элементов и цинка определяется перспективой их использования в качестве катализаторов, ионных проводников, люминофоров, твердотельных лазеров, пьезоэлектрических и других материалов с ценными для практики свойствами. Методом рентгенофазового анализа исследовано фазообразование в частных разрезах LiNaZnP₂O₇—NaKZnP₂O₇ и LiNaZnP₂O₇—K₂ZnP₂O₇ тройной системы Li₂ZnP₂O₇—Na₂ZnP₂O₇—K₂ZnP₂O₇—K₂ZnP₂O₇—M^{*}₂ZnP₂O₇—LiNaZnP₂O₇ (NaKZnP₂O₇, Na₂ZnP₂O₇), а также данных, полученных в настоящей работе, проведена триангуляция тройной системы Li₂ZnP₂O₇—Na₂ZnP₂O₇—K₂ZnP₂O₇ в области, ограниченной соединениями Na₂ZnP₂O₇, LiNaZnP₂O₇, LiKZnP₂O₇ и K₂ZnP₂O₇ (0 ≤ *x* ≤ 0.8, 0.2 ≤ *y* ≤ 1.0) на основе NaKZnP₂O₇ (пр. гр. *P*4₂/*mnm*). По результатам исследования уточнена диаграмма состояния системы Li₂ZnP₂O₇.

Ключевые слова: цинкофосфаты щелочных металлов, триангуляция, твердые растворы **DOI:** 10.31857/S0044457X2202012X

введение

Исследование фосфатов щелочных металлов и цинка обусловлено их значением для практики, например, для получения стекол, керамики [1-7], ионных проводников [8–11], сегнето- и пьезоэлектрических материалов [1], люминофоров, в том числе применимых для лазерной техники [6, 12–19] и в других специальных областях. Одна из возможностей расширения круга новых индивидуальных фаз и фаз переменного состава с ценными свойствами – использование различных типов изоморфных замещений как в катионной, так и в анионной подрешетке [20-24]. С этой точки зрения определенный интерес представляет изучение фазовых соотношений в соответствующих фосфатных системах, что открывает большие возможности для целенаправленного синтеза новых неорганических материалов, в том числе и композиционных.

В предшествующих работах по цинкофосфатам щелочных металлов [25–29] изучены фазовые соотношения в бинарных дифосфатных системах, которые графически могут быть представлены наружными и внутренними сторонами концентрационного треугольника $Li_2ZnP_2O_7-Na_2ZnP_2O_7-K_2ZnP_2O_7$ (рис. 1). Краткое описание ранее изученных систем приведено ниже.

Системы $M'_2 ZnP_2O_7 - M''_2 ZnP_2O_7$ (M', M'' = Li, Na, K) образованы смешанными дифосфатами цинка и являются наружными сторонами треугольника $Li_2 ZnP_2O_7 - Na_2 ZnP_2O_7 - K_2 ZnP_2O_7$ [25, 26] на рис. 1.

В системах образуется по одному эквимолярному соединению с двумя щелочными катионами LiNaZnP₂O₇ (*Cmcm*), α - и β -LiKZnP₂O₇ (*Pc* и *Pmc*2₁ соответственно) и NaKZnP₂O₇ (*P*2₁/*n*). Кроме того, в системе Na₂ZnP₂O₇—K₂ZnP₂O₇ установлено образование трех типов твердых растворов на основе Na₂ZnP₂O₇ (*P*4₂/*mnm*) и K₂ZnP₂O₇ (*P*4₂/*mnm*) с предельной растворимостью второго компонента при комнатной температуре 23 и 21 мол. % соответственно, а также на основе соединения NaKZnP₂O₇ с содержанием до 5 мол. % K₂ZnP₂O₇.

Соединения со стехиометрией, подобной $M_2ZnP_2O_7$ (M = Na, K), для лития не установлены. Согласно фазовой диаграмме состояния си-

Рис. 1. Фазовый треугольник системы Li₂ZnP₂O₇–Na₂ZnP₂O₇–K₂ZnP₂O₇. Полужирными линиями указаны твердые растворы при 25°С: тетрагональные Na_{2 – x}K_xZnP₂O₇ ($0.0 < x \le 0.46$) – T'_{ss} и Na_xK_{2 – x}ZnP₂O₇ ($0 < x \le 0.42$) – T''_{ss} , моноклинные Na_{1 – x}K_{1 + x}ZnP₂O₇ ($0 \le x \le 0.1$) и Li_xNa_{1 – x}KZnP₂O₇ ($0 \le x \le 0.8$) – M_{ss} , орторомбический LiNa_{1 – x}K_xZnP₂O₇ ($0 \le x \le 0.85$) – R_{ss} ; 1 и 2 – исследуемые разрезы.

стемы $Zn_2P_2O_7$ –Li₄ P_2O_7 [25], составу Li₂Zn P_2O_7 соответствует смесь двух фаз: соединения Li₁₂Zn₄(P₂O₇)₅ и твердого раствора Li_{2x}Zn_{2-x}P₂O₇ (0.3 $\leq x \leq 0.56$). Исходя из этого субсолидусные фазовые соотношения между несуществующей фазой Li₂Zn P_2O_7 и соответствующими соединениями LiNaZn P_2O_7 и LiKZn P_2O_7 (рис. 1) находятся в области трехфазных равновесий, так как данные части систем являются политермическими сечениями в поле тройных систем (Li₁₂Zn₄(P₂O₇)₅ + + Li_{2x}Zn_{2-x}P₂O₇ + LiMZnP₂O₇ (M = Na, K)).

Системы LiKZnP₂O₇—LiNaZnP₂O₇ (NaKZnP₂O₇, Na₂ZnP₂O₇) являются внутренними сечениями концентрационного треугольника Li₂ZnP₂O₇— Na₂ZnP₂O₇—K₂ZnP₂O₇ (рис. 1). В системах LiKZnP₂O₇—LiNaZnP₂O₇ и LiKZnP₂O₇—NaKZnP₂O₇ установлены общирные области ограниченных твердых растворов, содержащих одновременно три щелочных катиона: ромбический LiNa_{1-x}K_xZnP₂O₇ ($0 \le x \le 0.85$) на основе LiNaZnP₂O₇ (пр. гр. *Стст*) и моноклинный Li_xNa_{1-x}KZnP₂O₇ ($0 \le x \le 0.80$) на основе NaKZnP₂O₇ (пр. гр. *P*2₁/*n*) [24, 25]. На рис. 1 они обозначены как *R*_{ss} и *M*_{ss} соответственно.

Система LiKZnP₂O₇-Na₂ZnP₂O₇ является эвтектической. Субсолидусные фазовые соотношения в ней представлены смесью исходных компо-

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 2 2022

нентов; взаимодействие между ними не обнаружено [29].

С целью разбиения упомянутой тройной системы $Li_2ZnP_2O_7-Na_2ZnP_2O_7-K_2ZnP_2O_7$ на элементарные треугольники в настоящей работе в дополнение к ранее изученным системам исследовано фазообразование в системах $LiNaZnP_2O_7-NaKZnP_2O_7$ и $LiNaZnP_2O_7-K_2ZnP_2O_7$ (разрезы 1 и 2 на рис. 1).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы в разрезах 1 и 2 готовили из предварительно синтезированных соответствующих исходных компонентов систем LiNaZnP₂O₇, NaKZnP₂O₇ и K₂ZnP₂O₇, которые, в свою очередь, были получены по методике, описанной в [24, 25] с использованием следующих реактивов: ZnO, Li₂CO₃, NaPO₃, KPO₃ (х. ч.) и NH₄H₂PO₄ (ос. ч.). Смеси исходных компонентов, взятых в необходимых соотношениях, прессовали в таблетки и обжигали при температуре 550°C в течение 11 ч. Образцы после обжига исследовали с помощью рентгенофазового анализа (**РФА**). Съемку проводили на дифрактометре ДРОН-3М (излучение CuK_α) при комнатной температуре в интервале брэгговских углов 20 10°-70° с шагом 0.02°.

Рис. 2. Дифрактограммы (1 - x)LiNaZnP₂O₇ : xNaKZnP₂O₇ (разрез 1) при комнатной температуре. T'_{ss} (Na_{2-y}K_yZnP₂O₇ при 0 ≤ y ≤ 0.46) и Na₂ZnP₂O₇ (Na_{2-y}K_yZnP₂O₇ при y = 0) (I), α -LiKZnP₂O₇ (2).

Результаты РФА образцов в указанных системах представлены на рис. 2, 3 и в табл. 1.

В системе $LiNaZnP_2O_7-K_2ZnP_2O_7$ обнаружена область гомогенности на основе $K_2ZnP_2O_7$ с содержанием $LiNaZnP_2O_7$ до 10 мол. % (рис. 2). Об-

разование твердых растворов в указанной системе и в системе $Na_2ZnP_2O_7-K_2ZnP_2O_7$ [25] свидетельствует о возможности их существования и в системе $Li_2ZnP_2O_7-K_2ZnP_2O_7$ [28]. Для проверки существования подобных твердых растворов и в

Рис. 3. Дифрактограммы (1 - x)LiNaZnP₂O₇ : xK_2 ZnP₂O₇ (разрез 2) при комнатной температуре. M_{ss} (Li_xNa_yK_{2-(x + y)}ZnP₂O₇ при $0 \le x \le 0.74$, $0.26 \le y \le 1.0$) (1); T'_{ss} (Na_{2-y}K_yZnP₂O₇ при $0 \le y \le 0.46$) и Na₂ZnP₂O₇ (Na_{2-y}K_yZnP₂O₇ при y = 0.0) (2); α -LiKZnP₂O₇ (3).

ПЕТРОВА, СИНЕЛЬЩИКОВА

LiNaZnP ₂ O ₇ -NaKZnP ₂ O ₇		LiNaZnP ₂ O ₇ -K ₂ ZnP ₂ O ₇	
xNaKZnP ₂ O ₇	состав	$xK_2ZnP_2O_7$	состав
0.1; 0.2; 0.3; 0.4	$Na_2ZnP_2O_7 + R_{ss}$	0.1; 0.2	$Na_2ZnP_2O_7 + R_{ss}$
0.5	$Na_2ZnP_2O_7 + LiKZnP_2O_7$	0.33	$Na_2ZnP_2O_7 + LiKZnP_2O_7$
0.6	$T'_{\rm ss}$ + LiKZnP ₂ O ₇	0.4	$T_{\rm ss}' + M_{\rm ss} + {\rm LiKZnP_2O_7}$
0.7; 0.8; 0.9	$T_{\rm ss}' + M_{\rm ss}$	0.5	$M_{ m ss}$
		0.6	$M_{\rm ss} + T_{\rm ss}^{"}$
		0.7; 0.8	$T_{\rm ss}^{"}$ + LiKZnP ₂ O ₇
		0.9; 0.95	<i>T</i> "

Таблица 1. Фазовый состав в системах	LiNaZnP ₂ O ₇ -NaKZnP	207 и LiNaZnP2	$O_7 - K_2 Zn P_2 O_7$
--------------------------------------	---	----------------	------------------------

системе $Li_2ZnP_2O_7-K_2ZnP_2O_7$ были синтезированы образцы с содержанием $Li_2ZnP_2O_7 0.05, 0.075$ и 0.1 мол. % (рис. 1) при температуре 550°С (11 ч). По данным РФА, у двух первых образцов все рефлексы отвечали структуре $K_2ZnP_2O_7$, примесных фаз не обнаружено, в отличие от состава 0.1 мол. %

 $Li_2ZnP_2O_7$. Оба образца затем были обожжены при температуре 635°С в течение 2 ч (выше температуры эвтектики (630°С) в данной системе). Дифракционная картина после обжига сохранилась, подплавление образцов не наблюдалось. Таким образом, в системе $Li_2ZnP_2O_7$ — $K_2ZnP_2O_7$ установ-

Рис. 4. Фазовая диаграмма состояния системы $Li_2ZnP_2O_7-K_2ZnP_2O_7$. $Li_{2x}Zn_{2-x}P_2O_7$ ($0.3 \le x \le 0.56$), $Li_xK_{2-x}ZnP_2O_7$ ($0 \le x \le 0.17$).

Рис. 5. Триангуляция системы Li₂ZnP₂O₇–Na₂ZnP₂O₇–K₂ZnP₂O₇ в области, ограниченной соединениями Na₂ZnP₂O₇, LiNaZnP₂O₇, LiKZnP₂O₇ и K₂ZnP₂O₇; 1–10 – элементарные фазовые треугольники, 6 – моноклинный твердый раствор Li_xNa_yK_{2 – (x + y)}ZnP₂O₇ ($0 \le x \le 0.8, 0.2 \le y \le 1.0$) – M_{ss} ; 10 – тетрагональный твердый раствор

$$\text{Li}_{x}\text{Na}_{y}\text{K}_{2-(x+y)}\text{ZnP}_{2}\text{O}_{7} (0 \le x \le 0.17, 0 \le y \le 0.42) - T_{ss}^{"}$$

лено существование тетрагонального твердого раствора $\text{Li}_{x}\text{K}_{2-x}\text{ZnP}_{2}\text{O}_{7}$ ($0 \le x \le 0.17$) на основе $\text{K}_{2}\text{ZnP}_{2}\text{O}_{7}$ (рис. 4).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Обнаружение тетрагональных твердых растворов в системе $Li_2ZnP_2O_7-K_2ZnP_2O_7$ вносит коррективы в изученную нами ранее систему $Li_2ZnP_2O_7-K_2ZnP_2O_7$ [25]; уточненный вариант диаграммы приведен на рис. 4.

Таким образом, твердые растворы на основе $K_2ZnP_2O_7$ установлены в трех системах: $Na_2ZnP_2O_7-K_2ZnP_2O_7$, $Li_2ZnP_2O_7-K_2ZnP_2O_7$ и LiNa $ZnP_2O_7-K_2ZnP_2O_7$, что дает основание выделить в плоскости концентрационного треугольника $Li_2ZnP_2O_7-Na_2ZnP_2O_7-K_2ZnP_2O_7$ область гомогенности с тетрагональной структурой (пр. гр. $P4_2/mnm$). В координатах тройной системы поле упомянутой тетрагональной фазы может быть записано как $Li_xNa_yK_{2-(x+y)}ZnP_2O_7$ ($0 \le x \le 0.17, 0 \le y \le 0.42$).

В тройной системе $Li_2ZnP_2O_7-Na_2ZnP_2O_7-K_2ZnP_2O_7$ выделен также твердый раствор с моноклинной структурой (пр. гр. $P2_1/n$). Предпосылкой для его существования является наличие твердых растворов на основе NaKZnP₂O₇, которые реализуются в системах Na₂ZnP₂O₇— K_2 ZnP₂O₇ и LiKZnP₂O₇—NaKZnP₂O₇. Положение моноклинного твердого раствора на фазовом треугольнике может быть записано формулой Li_xNa_yK_{2-(x + y)}ZnP₂O₇ (0 ≤ x ≤ 0.8, 0.2 ≤ y ≤ 1.0).

Как следует из данных табл. 1, изученные системы LiNaZnP₂O₇—NaKZnP₂O₇ и LiNaZnP₂O₇— $K_2ZnP_2O_7$ не являются истинными, так как фазовые соотношения в них представлены фазами, не находящимися на соединительной прямой между исходными компонентами. Оба сечения проходят через несколько фазовых полей с одно-, двухи трехфазными равновесиями. Однофазному равновесию соответствуют моноклинный твердый раствор на основе NaKZnP₂O₇ и тетрагональный на основе $K_2ZnP_2O_7$.

На основании результатов рентгенофазового анализа разрезов LiNaZnP₂O₇–NaKZnP₂O₇ и LiNaZnP₂O₇–K₂ZnP₂O₇ с учетом данных по фазовым равновесиям в ранее изученных вышеупомянутых системах [25–29] проведена триангуляция системы Li₂ZnP₂O₇–Na₂ZnP₂O₇–K₂ZnP₂O₇ в области, ограниченной соединениями Na₂ZnP₂O₇, LiNaZnP₂O₇, LiKZnP₂O₇ и K₂ZnP₂O₇. Эта область может быть разбита на 10 элементарных треуголь-

Номер элементарного треугольника	Состав	Номер элементарного треугольника	Состав
1	$R_{ss} + Na_2 Zn P_2 O_7$	6	$M_{ m ss}$
2	$R_{\rm ss} + {\rm Na}_2 {\rm ZnP}_2 {\rm O}_7 + {\rm LiKZnP}_2 {\rm O}_7$	7	$M_{\rm ss} + T_{\rm ss}^{\prime\prime}$
3	$T'_{\rm ss}$ + LiKZnP ₂ O ₇	8	$M_{\rm ss} + T_{\rm ss}^{"} + {\rm LiKZnP_2O_7}$
4	$T_{\rm ss}' + {\rm LiKZnP_2O_7} + M_{\rm ss}$	9	$T_{\rm ss}^{"}$ + LiKZnP ₂ O ₇
5	$T'_{\rm ss} + M_{\rm ss}$	10	T _{ss} "

Таблица 2. Фазовый состав в элементарных треугольниках системы Li₂ZnP₂O₇-Na₂ZnP₂O₇-K₂ZnP₂O₇

ников (рис. 5), где в равновесии находятся фазы, указанные в табл. 2.

ЗАКЛЮЧЕНИЕ

Анализ совокупности данных, полученных в работах [25–29], а также в настоящей работе по изучению фазовых соотношений в частных разрезах тройной системы $Li_2ZnP_2O_7$ – $Na_2ZnP_2O_7$ – $K_2ZnP_2O_7$, позволил провести разбиение указанной системы в области, ограниченной соединениями $Na_2ZnP_2O_7$, $LiNaZnP_2O_7$, $LiKZnP_2O_7$ и $K_2ZnP_2O_7$, на 10 элементарных треугольников с одно-, двух- и трехфазными равновесиями. В плоскости фазового треугольника данной системы установлено существование двух твердых растворов состава $Li_xNa_yK_{2-(x + y)}ZnP_2O_7$ ($0 \le x \le 0.17$, $0 \le y \le 0.42$) с тетрагональной (пр. гр. $P4_2/mnm$) и $Li_xNa_yK_{2-(x + y)}ZnP_2O_7$ ($0 \le x \le 0.8$, $0.2 \le y \le 1.0$) с моноклинной (пр. гр. $P2_1/n$) структурой.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания ИХС РАН при поддержке Минобрнауки России (тема № АААА-А19-119022290092-5).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Kharroubi M., Assad H., Gacem L., Henn F. // Int. J. Emerging Technol. Adv. Engineer. 2014. V. 4. № 7. P. 49.
- Сычева Г.А. // Физика и химия стекла. 2018. Т. 44. № 6. С. S27. https://doi.org/10.1134/S013266511807017X
- Caldiño U., Lira A., Meza-Rocha A.N. et al. // J. Lumin. 2018. V. 194. P. 231. https://doi.org/10.1016/j.jlumin.2017.10.028

- Soriano-Romero O., Lozada-Morales R., Meza-Rocha A.N. et al. // J. Lumin. 2020. V. 217. P. 116791. https://doi.org/10.1016/j.jlumin.2019.116791
- 5. *Shwetha M., Eraiah B. //* J. Non-Cryst. Solids. 2021. V. 555. P. 120622.
- https://doi.org/10.1016/j.jnoncrysol.2020.120622
- Kundu H.K., Massand O.P., Marathe P.K., Venkataraman G. // Nucl. Instrum. Methods. 1980. V. 175. P. 363. https://doi.org/10.1016/0029-554X(80)90749-1
- 7. Quinn C.J., Beall G.H., Dickenson J.E. // Bull. Span. Soc. Ceram. Glasses. 1992. V. 4. P. 79.
- 8. Sunitha A.M., Gopalakrishna G.S., Byrappa K. // J. Int. Acad. Res. Multidisciplinary. 2016. V. 4. № 2. P. 329.
- Kalai C., Kharroubi M., Gacem L. et al. // Glass. Phys. Chem. 2019. V. 45. P. 503. https://doi.org/10.1134/S1087659619060087
- Voronin V.I., Sherstobitova E.A., Blatov V.A., Shekhtman G.Sh. // J. Solid State Chem. 2014. V. 211. P. 170. https://doi.org/10.1016/j.jssc.2013.12.015
- Saha S., Rousse G., Fauth F. et al. // Inorg. Chem. 2019.
 V. 58. № 3. P. 1774. https://doi.org/10.1021/acs.inorgchem.8b01800
- Kumar B.V., Vithal M. // Physica B. 2012. V. 407. № 12. P. 2094. https://doi.org/10.1016/j.physb.2012.02.013
- 13. *Rim B., Lakhdar G., Bachir B. et al.* // Luminescence. 2021. V. 36. № 2. P. 489. https://doi.org/10.1002/bio.3968
- Bhake A.M., Parauha Y.R., Dhoble S.J. // J. Mater. Sci. —Mater. Electron. 2020. V. 31. P. 548. https://doi.org/10.1007/s10854-019-02559-4
- Guerbous L., Gacem L. // Acta Phys. Pol., A. 2012.
 V. 122. № 3. P. 535. https://doi.org/10.12693/APhysPolA.122.535
- Amara A., Gacem L., Gueddim A. et al. // Phys. B. 2018.
 V. 545. P. 408. https://doi.org/10.1016/j.physb.2018.07.008
- 17. *Fhoula M., Dammak M.* // J. Lumin. 2019. V. 210. P. 1. https://doi.org/10.1016/j.jlumin.2019.01.058
- Gacem L., Artemenko A., Ouadjaout D. et al. // Solid State Sci. 2009. V. 11. P. 1854. https://doi.org/10.1016/j.solidstatesciences.2009.08.006

- Belbal R., Gacem L., Bentria B. // Inorg. Chem. Commun. 2018. V. 97. P. 39. https://doi.org/10.1016/j.inoche.2018.09.007
- Chen Z., Fang Y., Zhang W. et al. // Inorg. Chem. 2018.
 V. 57. № 17. P. 10568. https://doi.org/10.1021/acs.inorgchem.8b01140
- Dong L., Ge X., Zhang P. et al. // Z. Anorg. Allg. Chem. 2019. V. 645. № 14. P. 944. https://doi.org/10.1002/zaac.201900045
- Song H., Zhang S., Li Y. et al. // Solid State Sci. 2019. V. 95. 105940. https://doi.org/10.1016/j.solidstatesciences.2019.105940
- Song Z., Yu H., Wu H. et al. // Inorg. Chem. Front. 2020. V. 7. № 18. P. 3482. https://doi.org/10.1039/D0QI00689K
- Wang H., Geng L., Wang Y.-J. et al. // J. Alloys Compd. 2020. V. 820. Art. 153176. https://doi.org/10.1016/j.jallcom.2019.153176
- 25. Петрова М.А., Микиртичева Г.А., Гребенщиков Р.Г. // Неорган. материалы. 2007. Т. 43. № 9. С. 1141.

[*Petrova M.A., Mikirticheva G.A., Grebenshchikov R.G. //* Inorg. Mater. 2007. V. 43. № 9. P. 1024. https://doi.org/10.1134/S0020168507090208]

- 26. Лапшин А.Е., Петрова М.А. // Физика и химия стекла. 2012. Т. 38. № 6. С. 718. [Lapshin A.E., Petrova M.A. // Glass Phys. Chem. 2012. V. 38. № 6. P. 491. https://doi.org/10.1134/S108765961206003X]
- Петрова М.А., Волков С.Н., Бубнова Р.С. // Физика и химия стекла. 2014. Т. 40. № 4. С. 592. [Petrova М.А., Volkov S.N., Bubnova R.S. // Glass Phys. Chem. 2014. V. 40. № 4. Р. 447. https://doi.org/10.1134/S1087659614040087]
- Volkov S., Petrova M., Sinel'shchikova O. et al. // J. Solid State Chem. 2019. V. 269. P. 486. https://doi.org/10.1016/j.jssc.2018.10.029
- 29. Петрова М.А., Попова В.Ф. // Физика и химия стекла. 2017. Т. 43. № 4. С. 431. [Petrova М.А., Popova V.F. // Glass Phys. Chem. 2017. V. 43. № 4. P. 380. https://doi.org/10.1134/S1087659617040125]