СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 544.032,546.02

СИНТЕЗ И СВОЙСТВА СЛОЖНОГО ТАНТАЛАТА ЖЕЛЕЗА САМАРИЯ СО СТРУКТУРОЙ ЭШИНИТА

© 2022 г. А. В. Егорышева^{*a*, *}, О. Г. Эллерт^{*a*}, Е. Ф. Попова^{*a*}, Д. И. Кирдянкин^{*a*}, Р. Д. Светогоров^{*b*}, П. Е. Литвинова^{*b*, *c*}

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия ^bНациональный исследовательский центр "Курчатовский институт",

пл. Академика Курчатова, 1, Москва, 123182 Россия

^сМосковский государственный университет им. М.В. Ломоносова, Ленинские горы, 1, Москва, 119991 Россия

*e-mail: anna_egorysheva@rambler.ru

Поступила в редакцию 23.03.2022 г. После доработки 06.04.2022 г. Принята к публикации 07.04.2022 г.

Синтезировано неизвестное ранее соединение SmFe_{0.5}Ta_{1.5}O₆ и по данным дифракции синхротронного излучения методом Ритвельда рассчитана его структура. Показано, что SmFe_{0.5}Ta_{1.5}O₆ относится к структурному типу эшинита (пр. гр. *Pnma*), исследованы его магнитные свойства и установлено, что соединение SmFe_{0.5}Ta_{1.5}O₆ парамагнитно.

Ключевые слова: SmFe_{0.5}Ta_{1.5}O₆, магнитные свойства **DOI:** 10.31857/S0044457X22100373

введение

Минералы со структурой типа эшинита и эвксенита широко распространены в природе в составе обогащенного редкоземельными элементами (**P3**Э) гранитного пегматита [1]. Эшинит и эвксенит имеют общую формулу AB_2O_6 , где A - P3Э, Y, Th, U и Ca, a B – Ti, Nb и Ta. Оба минерала являются орторомбическими, но эшинит кристаллизуется в пр. гр. *Рпта*, тогда как эвксенит имеет структуру с пр. гр. *Рbсп*. При этом для соединений с A-катионом большего радиуса характерен структурный тип эшинита. В структурном типе эвксенита реализуются соединения с меньшим радиусом A-катиона.

Интерес к соединениям этих структурных типов изначально был связан с их высокой емкостью по отношению к различным крупным катионам, таким как редкоземельные элементы и актиноиды [2]. Содержание РЗЭ и актинидов в природных эшините и эвксените составляет не менее 40 мас. % в зависимости от их химического состава. Поэтому соединения данных структурных типов были предложены в качестве матриц для захоронения высокорадиоактивных отходов [2].

Среди синтетических аналогов этих соединений на сегодняшний день наиболее изучены сложные титанаты РЗЭ и Y – LnTiMO₆, где Ln – трехвалентный лантаноид или иттрий, а M – Nb или Ta [3, 4]. Ниобаты LnTiNbO₆ впервые были синтезированы в 1962 г. [3], а танталаты LnTiTaO₆ – в 1974 г. [4]. Многочисленные исследования структуры этих фаз показали [4], что морфотропный переход между эшинитом и эвксенитом лежит между Dy и Ho. Основное отличие структур состоит в том, что в эшините ион РЗЭ локализован в туннеле из сопряженных (Ti/M)O₆-октаэдров, а в эвксените он находится между двумя плотноупакованными слоями, сформированными из этих октаэдров. Данные соединения уже зарекомендовали себя как перспективные диэлектрические материалы [5–9] и люминофоры [10–13].

Другое известное семейство соединений – ряд RMWO₆ ($M^{3+} = V$, Cr, Fe, R – лантаноид и Y), структура которого является производной от эшинита. Благодаря упорядочению ионов M^{3+} и W^{6+} эти соединения кристаллизуются в орторомбической сингонии в полярной пр. гр. $Pn2_1a$ [14]. Особый интерес представляют сложные вольфраматы железа RFeWO₆, в которых наблюдаются изменения сегнетоэлектрической поляризации при температурах магнитного упорядочения, что позволяет отнести эти полярные магниты к классу мультиферроиков [15–18].

Таким образом, круг синтетических соединений со структурами эшинита и эвксенита весьма ограничен, несмотря на очевидно высокую изоморфную емкость данных структурных типов.

Рис. 1. Дифрактограммы образца после гидротермальной обработки (НТ) и последующего отжига.

В настоящей работе синтезирована новая фаза $SmFe_{0.5}Ta_{1.5}O_6$ со структурой эшинита, уточнена ее структура и изучены магнитные свойства.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез. В качестве исходных веществ использовали следующие реактивы: $Sm(NO_3)_3 \cdot 6H_2O$ (чистотой не ниже 99.99%), $Fe(NO_3)_3 \cdot 9H_2O$ (ч.), $TaCl_5$ (х. ч.), NH_4OH (ос. ч.), C_2H_5OH (х. ч.). Предварительно все твердые реагенты проверяли на соответствие заявленного состава методом гравиметрического анализа.

Синтез SmFe_{0.5}Ta_{1.5}O₆ проводили двумя способами. Первый способ, соответствующий ранее разработанной для Ln₂FeTaO₇ методике синтеза [19, 20], основан на методе обратного соосаждения аммиаком из спиртовых растворов нитратов самария, железа(III) и хлорида тантала с последующим высокотемпературным отжигом. Однако данный метод не позволяет получить чистый образец. Во всех синтезированных образцах независимо от температуры и продолжительности синтеза присутствовала примесь SmTa₃O₉. Поэтому была разработана новая методика синтеза SmFe_{0.5}Ta_{1.5}O₆ с предварительной обработкой прекурсоров в гидротермальных условиях.

Навески нитратов, взятые в стехиометрическом отношении из расчета на 0.1 г конечного продукта, растворяли в 2 мл этанола и смешивали с 2 мл раствора $\text{TaCl}_{5(\text{EtOH})}$ ($C_{\text{Ta}_2\text{O}_5} = 63.57$ г/л). Далее спиртовой раствор солей осаждали концентрированным раствором аммиака (25%, 8 мл). Полученную суспензию вымешивали в течение 30 мин на магнитной мешалке, после чего переносили в стальной автоклав с тефлоновым вкла-

Рис. 2. Экспериментальная и теоретическая дифрактограммы $SmFe_{0.5}Ta_{1.5}O_6$: *1* – эксперимент, *2* – расчет, *3* – разностная кривая.

дышем (V = 20 мл) и выдерживали при 240°С в течение 48 ч. После гидротермальной обработки осадок центрифугировали, многократно промывали дистиллированной водой до достижения нейтрального рН и сушили 24 ч при 50°С.

Рентгенофазовый анализ полученного порошка показал наряду с целевой фазой $SmFe_{0.5}Ta_{1.5}O_6$ наличие флюоритоподобной примеси, поэтому порошок дополнительно отжигали в аллундовом тигле при 1350°C в течение 48 ч (рис. 1). По окончании синтеза образец имел оранжевый цвет.

Исследование свойств. Определение фазового состава образцов осуществляли методом РФА с помощью рентгеновского дифрактометра Bruker D8 Advance (Си K_{α} -излучение, Ni-фильтр, Lynxeye детектор). Регистрацию проводили в диапазоне углов 20 от 20° до 60° с шагом 0.02° и временем накопления 0.4 с/шаг.

Структурный анализ проводили методом Ритвельда на основе данных порошковой рентгеновской дифракции на станции РСА Курчатовского источника синхротронного излучения, оснащенной двумерным ССD-детектором Rayonix SX165. Данные регистрировали в диапазоне углов 20 от 5° до 53° на длине волны $\lambda = 0.74$ Å при комнатной температуре в геометрии пропускания. Подробное описание условий регистрации и расчета приведено в работе [21].

Магнитные свойства SmFe_{0.5}Ta_{1.5}O₆ исследовали на автоматизированном комплексе PPMS-9 фирмы Quantum Design для изучения физических свойств материалов с опцией измерения AC- и DC-намагниченности с внешним магнитным по-

Рис. 3. Структура SmFe_{0.5}Ta_{1.5}O₆.

Таблица 1. Структурные параметры SmFe_{0.5}Ta_{1.5}O₆, рассчитанные по данным дифракции рентгеновского синхротронного излучения

Параметр	Значение		
Брутто-формула	Sm _{0.95} Fe _{0.56} Ta _{1.44} O ₆		
Сингония	Орторомбическая		
Пр. гр.	Pnma		
<i>a</i> , Å	11.1011(2)		
<i>b</i> , Å	7.50482(17)		
<i>c</i> , Å	5.32986(12)		
$V, Å^3$	593.63(3)		
Ζ	4		
$ ho_{ m pac4}$, г/см ³	7.2272		
μ, мм ⁻¹	45.09		
GOOF	2.27		
wR_2	0.0430		
Rp	0.0464		
Rwp	0.0757		

Таблица 2. Координаты атомов SmFe_{0.5}Ta_{1.5}O₆

лем до 5 Т в интервале температур 2.3-300 К. Измерения в магнитном поле H = 100 Э проводили в режимах охлаждения (FC) и в нулевом поле (ZFC).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Методом Ритвельда рассчитана структура Sm-Fe_{0.5}Ta_{1.5}O₆ и подтверждено ее отнесение к орторомбической пр. гр. *Pnma* (рис. 2). Структурные параметры SmFe_{0.5}Ta_{1.5}O₆, рассчитанные по данным дифракции рентгеновского синхротронного излучения, а также координаты атомов приведены в табл. 1 и 2.

Трехмерный каркас структуры $SmFe_{0.5}Ta_{1.5}O_6$ образован димерами (Fe/Ta)₂O₁₀, состоящими из соединенных по ребру искаженных октаэдров (Fe/Ta)O₆ (рис. 3). Сопряженные по вершинам (Fe/Ta)₂O₁₀-группы образуют бесконечную сеть в плоскости *ac*. Причем два различных (Fe/Ta)₂O₁₀димера имеют только одну общую вершину. В направлении оси *b* димеры (Fe/Ta)₂O₁₀ расположе-

Атом	x/a	y/b	<i>z/c</i>	Occ.	$U_{ m iso}$
Sm(1)	0.04377(18)	0.25	0.0434(5)	0.95(2)	0.0003(7)
Ta(1)	0.35707(12)	0.0063(2)	0.0430(2)	0.72(3)	0.0019(5)
Fe(1)	0.35707(12)	0.0063(2)	0.0430(2)	0.28(3)	0.0019(5)
O(1)	0.382(2)	0.25	0.163(4)	1	0
O(2)	0.138(2)	0.25	0.447(5)	1	0.008(6)
O(3)	0.2982(14)	0.565(2)	0.380(3)	1	0.009(7)
O(4)	0.0252(14)	0.538(2)	0.255(3)	1	0

Рис. 4. Температурная зависимость намагниченности M(T) в поле 5000 Э. Внизу приведена дифференциальная кривая (а). Намагниченность M(T), измеренная в режиме ZFC-FC в слабом магнитном поле 100 Э (б).

ны один под другим и соединяются через две общие вершины. При этом в направлении оси b формируются туннели, в которых занимают позиции катионы Sm³⁺.

Температурные зависимости намагниченности M(T) в сильном магнитном поле H = 5000 Э для SmFe_{0.5}Ta_{1.5}O₆ представлены на рис. 4. На кривых отсутствуют какие-либо особенности во всем изученном интервале температур, что характерно для парамагнетиков. Измерения в переменном поле для SmFe_{0.5}Ta_{1.5}O₆ также не выявили никаких переходов (рис. 5). Магнитные параметры SmFe_{0.5}Ta_{1.5}O₆ рассчитывали по температурной зависимости обратной магнитной восприимчивости $\chi^{-1}(T)$ (рис. 6). Поскольку для редкоземельного иона Sm³⁺ (4f⁵, $\mu =$ = 0.84 μ_B) характерны большие значения температурно-независимого парамагнетизма χ_0 [22], расчеты осуществляли в рамках модифицированного закона Кюри–Вейса: $\chi = C/(T - \Theta) + \chi_0$, где C – константа Кюри, Θ – температура Вейса, χ_0 – температурно-независимый парамагнетизм. Результаты приближения приведены в табл. 3. Температура Вейса $\Theta = -14$ К для SmFe_{0.5}Ta_{1.5}O₆ мала и отрицательна, это свидетельствует о возможном

Рис. 5. Действительная часть магнитной восприимчивости SmFe_{0.5}Ta_{1.5}O₆.

Рис. 6. Температурная зависимость обратной восприимчивости $\chi^{-1}(T)$: *1* – эксперимент, *2* – расчет.

Таблица 3. Теоретические и расчетные магнитные моменты (μ_{reop} , μ_{adb}), температура Вейса (Θ), температурно-

независимый парамагнетизм (χ_0) для SmFe _{0.5} Ta _{1.5} O ₆							
Параметр	Θ, Κ	μ_{reop}/μ_B	$\mu_{ m op}/\mu_B$	χ ₀ , см ³ /моль			
SmFe _{0.5} Ta _{1.5} O ₆	-14.7(2)	6.03	5.03(1)	0.00344(8)			

Рис. 7. Полевая зависимость намагниченности M(H) для SmFe_{0.5}Ta_{1.5}O₆ при T = 300 и 2.3 К. На вставке показана M(H) в малых полях.

присутствии небольшого количества антиферромагнитно взаимодействующих ионов в образце. Величина эффективного магнитного момента $\mu_{эф} = 5.03\mu_B$ немного занижена по сравнению с теоретическим значением $\mu_{reop} = [2(\mu_{Sm})^2 + (\mu_{Fe})^2]^{1/2} = 6.03 \ \mu_B$ для этого сложного оксида. Значительная величина $\chi_0 = 0.00344 \ \text{см}^3/\text{моль}$ свидетельствует о его существенном вкладе в общую намагниченность.

Полевые зависимости M(H) при T = 300 и 2.3 К также являются типичными для парамагнетиков. На зависимости M(H) при температуре 2.3 К наблюдается большая намагниченность без насыщения моментов (рис. 7) и гистерезис с коэрцитивной силой ~4 Э. Эти данные подтверждают отсутствие дальнего магнитного порядка в SmFe_{0.5}Ta_{1.5}O₆.

ЗАКЛЮЧЕНИЕ

Разработана методика синтеза нового соединения — SmFe_{0.5}Ta_{1.5}O₆, относящегося к структурному типу эшинита. Рассчитана его структура и изучены магнитные свойства. Синтез данного соединения расширяет узкий круг известных синтетических фаз со структурой эшинита и показывает перспективность получения новых соединений путем гетеровалентного замещения.

Структурные данные SmFe_{0.5}Ta_{1.5}O₆ депонированы в Кембриджском банке структурных данных (CCDC № 2174416). Их можно получить по адресу deposit@ccdc.cam.ac.uk или https://www. ccdc.cam.ac.uk/structures/.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследования выполнены при финансовой поддержке РНФ (грант № 22-23-00365) с использованием оборудования ЦКП ФМИ ИОНХ РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет известных конкурирующих финансовых интересов или личных отношений, которые могли бы повлиять на работу, описанную в этой статье.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Ercit T.S.* // Can. Mineral. 2005. V. 43. P. 1291. https://doi.org/10.2113/gscanmin.43.4.1291
- Gong W.L., Ewing R.C., Wang L. et al. // MRS Proceed. 1995. V. 412. P. 377. https://doi.org/10.1557/PROC-412-377
- Котков А.И., Белопольский М.П., Чернорук С.Г. и др. // Докл. АН СССР. 1962. Т. 147. С. 687.
- Thorogood G.J., Avdeev M., Kennedy B.J. // Solid State Sci. 2010. V. 12. P. 1263. https://doi.org/10.1016/j.solidstatesciences.2010.02.036
- Sebastian M.T., Ratheesh R., Sreemoolanathan H. et al. // Mater. Res. Bull. 1997. V. 32. P. 1279. https://doi.org/10.1016/S0025-5408(97)00095-0
- Lei Y., Reaney I.M., Liu Y.C. et al. // Adv. Mater. Res. 2011. V. 197–198. P. 285. https://doi.org/10.4028/www.scientific.net/AMR.197-198.285
- Zhang J., Zuo R. // J. Am. Ceram. Soc. 2017. V. 100. P. 5249. https://doi.org/10.1111/jace.15077
- John F., Solomon S. // Phys. Lett. A. 2020. V. 384. P. 126731. https://doi.org/10.1016/j.physleta.2020.126731
- 9. John F, Solomon S. // J. Aust. Ceram. Soc. 2022. V. 58. P. 29. https://doi.org/10.1007/s41779-021-00664-4
- Hirano M., Iwata T., Komaki K. et al. // J. Ceram. Soc. Jpn. 2020. V. 128. P. 875. https://doi.org/10.2109/jcersj2.20124
- Ma Q., Zhang A., Lu M. et al. // J. Phys. Chem. B. 2007. V. 111. P. 12693. https://doi.org/10.1021/jp0739162

- Hirano M., Sakurai M., Makino H. // J. Ceram. Soc. Jpn. 2020. V. 129. P. 432. https://doi.org/10.2109/jcersj2.21036
- Su L., Fan X., Liu Y. et al. // Opt. Mater. 2019. V. 98. P. 109403. https://doi.org/10.1016/j.optmat.2019.109403
- 14. Salmon R., Baudry H., Grannec J. et al. // Rev. Chim. Miner. 1974. V. 11. P. 71.
- 15. *Jahnberg L.* // Acta Chem. Scand. 1963. V. 17. P. 2548. https://doi.org/10.3891/acta.chem.scand.17-2548
- Ghara S., Suard E., Fauth F. et al. // Phys. Rev. B. 2017. V. 95. P. 224416. https://doi.org/10.1103/PhysRevB.95.224416
- Yanda P., Mishra S., Sundaresan A. // Phys. Rev. Mater. 2021. V. 5. P. 074406. https://doi.org/10.1103/PhysRevMaterials.5.074406

- Dhital C., Dally R.L., Pham D. et al. // J. Magn. Magn. Mater. 2022. V. 544. P. 168725. https://doi.org/10.1016/j.jmmm.2021.168725
- Egorysheva A.V., Popova E.F., Tyurin A.V. et al. // Russ. J. Inorg. Chem. 2019. V. 64. P. 1342. https://doi.org/10.1134/S0036023619110056
- Egorysheva A.V., Popova E.F., Tyurin A.V. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 11. P. 1649. https://doi.org/10.1134/S003602362111005X
- 21. Ellert O.G., Egorysheva A.V., Golodukhina S.V. et al. // Russ. Chem. Bull. 2021. V. 70. P. 2397. https://doi.org/10.1007/s11172-021-3359-0
- Egorysheva A.V., Ellert O.G., Popova E.F. et al. // J. Chem. Thermodyn. 2021. V. 161. P. 106565. https://doi.org/10.1016/j.jct.2021.106565