ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ

УДК 544.016.2

ФАЗОВЫЕ РАВНОВЕСИЯ В СТАБИЛЬНОМ ТЕТРАЭДРЕ LiF-LiCl-Li₂CrO₄-KCl ЧЕТЫРЕХКОМПОНЕНТНОЙ ВЗАИМНОЙ СИСТЕМЫ Li, K||F, Cl, CrO₄

© 2022 г. М. А. Демина^{*a*}, Е. М. Егорова^{*a*}, *, И. К. Гаркушин^{*a*}, Е. О. Игнатьева^{*a*}

^аСамарский государственный технический университет, ул. Молодогвардейская, 244, Самара, 443100 Россия

*e-mail: dvoryanova_kat@mail.ru Поступила в редакцию 07.02.2022 г. После доработки 03.03.2022 г. Принята к публикации 27.03.2022 г.

Четырехкомпонентные системы на основе галогенидов и хроматов щелочных металлов используются в качестве расплавляемых электролитов для химических источников тока, теплоаккумулирующих материалов, сред для синтеза различных соединений и др. Проанализирована четырехкомпонентная взаимная система Li, K||F, Cl, CrO₄. Проведено ее разбиение на симплексы с использованием теории графов. Построено древо фаз системы, на основании которого осуществлен прогноз числа и состава кристаллизующихся фаз в стабильных элементах. В стабильном треугольнике LiF–KCl–K₂CrO₄ с помощью рентгенофазового анализа подтверждены кристаллизующиеся фазы. Методом дифференциального термического анализа исследованы фазовые равновесия в стабильном тетраэдре LiF–LiCl–Li₂CrO₄–KCl, установлены характеристики четырехкомпонентной эвтектики (экв. %): LiF – 1.0, LiCl – 29.8, Li₂CrO₄ – 45.5, KCl – 23.7, температура плавления 305°C.

Ключевые слова: дифференциальный термический анализ, рентгенофазовый анализ, эвтектика, ликвидус, электролит, теплоаккумулирующий материал

DOI: 10.31857/S0044457X22100154

введение

В современной науке и технике увеличивается практическое использование расплавленных солевых смесей, представляющих собой в большинстве случаев многокомпонентные системы. Исследование солевых конденсированных систем проводится в России и за рубежом, при этом результаты экспериментального изучения четырех-. пятикомпонентных и более систем в основном встречаются в российских источниках [1-4]. Композиции на основе солей применяются для получения расплавляемых электролитов химических источников тока, теплоаккумулирующих материалов, сред для синтеза различных соединений, электролитных сред для электроосаждения редкоземельных элементов [5-11]. Расплавленные галогенидные соли с высокой ионной проводимостью и термической стабильностью являются основными электролитами для стационарных жидкометаллических батарей [12].

ТЕОРЕТИЧЕСКИЙ АНАЛИЗ

Объектом исследования являлась четырехкомпонентная взаимная система Li, K||F, Cl, CrO₄, треугольная призма и развертка граневых элементов, которой представлены на рис. 1. На первом этапе изучения системы разбивали на симплексы с применением теории графов [13]. Объект Li, K \parallel F, Cl, CrO₄ состоит из девяти двухкомпонентных, двух трехкомпонентных и трех трехкомпонентных взаимных систем, данные о характере ликвидусов которых взяты из источников [14–20].

В трехкомпонентных взаимных системах в точках конверсии (на рис. 1 обозначены K_1, K_2, K_3) протекают реакции ионного обмена, для которых

рассчитаны $\Delta_r H_{298}^{\circ}$ и $\Delta_r G_{298}^{\circ}$: точка K_1 (система Li, K||F, Cl)

 $LiCl + KF \rightleftharpoons LiF + KCl$

 $(\Delta_r H_{298}^\circ = -153.5 \text{ кДж}; \Delta_r G_{298}^\circ = -148.9 \text{ кДж}),$ точка K_2 (система Li, K||Cl, CrO₄)

$$2\text{LiCl} + \text{K}_2\text{CrO}_4 \rightleftharpoons \text{Li}_2\text{CrO}_4 + 2\text{KCl}$$

 $(\Delta_r H_{298}^\circ = -40.4 \text{ кДж}; \Delta_r G_{298}^\circ = -27.6 \text{ кДж}),$ точка K_3 (система Li, K||F, CrO₄)

Li₂CrO₄ + 2KF
$$\rightleftharpoons$$
 2LiF + K₂CrO₄
($\Delta_r H_{298}^{\circ} = -113.1 \text{ кДж}; \Delta_r G_{298}^{\circ} = -121.2 \text{ кДж}$).

Рис. 1. Призма составов и развертка граневых элементов четырехкомпонентной взаимной системы Li, K || F, Cl, CrO₄.

Продукты реакций являются стабильными диагоналями в трехкомпонентных взаимных системах (на рис. 1 секущие LiF–KCl, KCl–Li₂CrO₄, LiF–K₂CrO₄). В двухкомпонентных системах Li₂CrO₄–K₂CrO₄ и KF–K₂CrO₄ образуются соединения конгруэнтного плавления LiKCrO₄ и K₃FCrO₄. В трехкомпонентной взаимной системе Li, K||F, CrO₄ соединение K₃FCrO₄ выклинивается, следовательно, секущая LiF–K₃FCrO₄ отсутствует [20]. Информация об элементах огранения и стабильных диагоналях служит основой для составления матрицы смежности системы Li, K||F, Cl, CrO₄ (табл. 1).

На основании табл. 1 составлено логическое выражение, представляющее собой произведение сумм индексов несмежных вершин:

$$(X_1 + X_4 X_6 X_7)(X_2 + X_4 X_7)(X_4 + X_6).$$

Таблица 1. Матрица смежности системы Li, K $\|F$, Cl, CrO₄

Вещество	Индекс	X_1	X_2	<i>X</i> ₃	X_4	X_5	<i>X</i> ₆	X_7
LiCl	<i>X</i> ₁	1	1	1	0	1	0	0
Li ₂ CrO ₄	X_2		1	1	0	1	1	0
LiF	<i>X</i> ₃			1	1	1	1	1
KF	X_4				1	1	0	1
KCl	X_5					1	1	1
LiKCrO ₄	<i>X</i> ₆						1	1
K_2CrO_4	<i>X</i> ₇							1

После всех преобразований с учетом закона поглощения получен набор однородных несвязных графов:

$$X_1X_2X_4 + X_1X_2X_6 + X_1X_4X_7 + X_4X_6X_7$$

Путем выписывания недостающих вершин для несвязных графов получен набор стабильных ячеек и отвечающие им соли:

I.
$$X_3X_5X_6X_7$$
 (LiF-KCl-LiKCrO₄-K₂CrO₄).
II. $X_1X_2X_6$ (LiF-KF-KCl-K₂CrO₄).
III. $X_1X_4X_7$ (Li₂CrO₄-LiF-KCl-LiKCrO₄).
IV. $X_4X_6X_7$ (LiCl-Li₂CrO₄-LiF-KCl).

Общие элементы каждой пары смежных симплексов образуют секущие элементы (стабильные треугольники): LiF-KCl-LiKCrO₄, LiF-Li₂CrO₄-KCl и LiF-KCl-K₂CrO₄. Четырехкомпонентная взаимная система Li, K∥F, Cl, CrO₄ разбивается тремя секущими треугольниками на четыре стабильных тетраэдра: LiF-LiCl-Li₂CrO₄-KCl, LiF-Li₂CrO₄-KCl-LiKCrO₄, LiF-KCl-K₂CrO₄-LiKCrO₄, LiF-KF-KCl-K₂CrO₄.

Исходя из проведенного разбиения системы $Li, K||F, Cl, CrO_4$, построено древо фаз (рис. 2), на основании которого можно осуществить прогноз числа и состава кристаллизующихся фаз в секущих и стабильных элементах системы. Поскольку в ограняющих системах присутствует эвтектический тип взаимодействия и твердых растворов замещения не образуется, можно прогнозировать, что количество кристаллизующихся фаз будет

Рис. 2. Древо фаз четырехкомпонентной взаимной системы Li, K F, Cl, CrO₄.

Рис. 3. Развертка граневых элементов тетраэдра LiF–LiCl–Li $_2$ CrO₄–KCl четырехкомпонентной взаимной системы Li, K||F, Cl, CrO₄.

равно мерности симплекса: в стабильных треугольниках три фазы, а в тетраэдрах — четыре. Вершины фигур — это кристаллизующиеся фазы, например, в треугольнике LiF—KCl—LiKCrO₄ будут кристаллизоваться три фазы: фторид лития, хлорид калия и соединение LiKCrO₄.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Экспериментальные исследования проводили методом дифференциального термического анализа (ДТА) в платиновых микротиглях с использованием комбинированной Pt—Pt/Rh-термопары в интервале температур 300—900°С. Холодные

Рис. 4. Политермическое сечение kdf тетраэдра LiF-LiCl-Li₂CrO₄-KCl.

спаи термопар термостатировали при 0°С в сосуде Дьюара с тающим льдом. Масса навесок составляла 0.3 г. Все составы – эквивалентные доли, выраженные в процентах [21–24]. Исходные реактивы имели квалификацию "х. ч." (LiCl), "ч. д. а." (LiF, KCl), "ч." (Li₂CrO₄, K₂CrO₄), индифферентное вещество – свежепрокаленный оксид алюминия. Температуры плавления веществ и полиморфных переходов ($\alpha \rightleftharpoons \beta(Li_2CrO_4) =$ = 430°С, $\alpha \rightleftharpoons \beta(K_2CrO_4) = 666°$ С) соответствовали справочным данным [25, 26]. Рентгенофазовый анализ (**РФА**) составов проводили на дифрактометре ARL X'TRA. Съемку дифрактограмм осуществляли при Cu K_{α} -излучении с никелевым βфильтром.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Изучен стабильный тетраэдр LiF–LiCl– Li₂CrO₄–KCl, развертка граневых элементов которого приведена на рис. 3. Все двухкомпонентные и трехкомпонентные системы характеризуются эвтектическим типом плавления: LiCl–KCl [14], LiF–LiCl [15], LiCl–Li₂CrO₄ [16], Li₂CrO₄–KCl [20], $LiF-LiCl-Li_2CrO_4$ [16], $LiCl-L_2CrO_4-KCl$ [20], LiF-LiCl-KCl [19]. Стабильный треугольник LiF-Li₂CrO₄-KCl исследован ранее, в нем определена трехкомпонентная эвтектика [27]. Планирование эксперимента в системе LiF-LiCl-Li2CrO4-KCl проведено в соответствии с правилами проекционно-термографического метода. Исходя из расположения точек нонвариантного равновесия в системах низшей мерности, для определения температуры плавления и состава четырехкомпонентной эвтектики выбрано политермическое сечение kdf, треугольник которого представлен на рис. 4: k[LiF - 40%; KCl - 60%] - d[LiF - 40%;Li₂CrO₄ – 60%]–*f*[LiF – 40%; LiCl – 60%]. Сечение kdf расположено в объеме кристаллизации фторида лития. Точки $\overline{E}_1, \overline{E}_2, \overline{E}_3$ являются проекциями соответствующих эвтектик, нанесенных из вершины фторида лития на стороны сечения kdf.

В сечении *kdf* для экспериментального изучения выбран одномерный политермический разрез *WH*: *W*[LiF – 40%; Li₂CrO₄ – 30%; KCl – 30%]– *H*[LiF – 40%; LiCl – 30%; KCl – 30%], *T*–*x*-диаграмма которого приведена на рис. 5. На основании *T*–*x*-диаграммы разреза *WH* установлено направле-

Рис. 5. T-x-диаграмма разреза *WH* тетраэдра LiF–LiCl–Li₂CrO₄–KCl.

ние на проекцию четырехкомпонентной эвтектики $\overline{\overline{E}}^{\Box}$ и соотношение концентраций хлорида и хромата лития в эвтектике.

В результате исследования политермического разреза $k \to \overline{\overline{E}}^{\square} \to \overline{E}^{\square}$ (рис. S1) определен состав сплава, отвечающий точке \overline{E}^{\square} , которая является проекцией четверной эвтектики на двумерное политермическое сечение *kdf*. Точка \overline{E}^{\square} характеризуется определенным соотношением компонентов — хлорида и хромата лития, хлорида калия.

Определение состава четырехкомпонентной эвтектики сводилось к постепенному уменьшению концентрации фторида лития без изменения известных соотношений других компонентов по разрезу, выходящему из вершины фторида лития и проходящему через точку \overline{E}^{\Box} (рис. S2). Состав эвтектики (экв. %): LiF – 1.0, LiCl – 29.8, Li₂CrO₄ – 45.5, KCl – 23.7 с температурой плавления 305°C.

Кристаллизующиеся фазы в четырехкомпонентной взаимной системе Li, K||F, Cl, CrO₄ подтверждены РФА для стабильного элемента древа фаз – треугольника LiF–KCl–K₂CrO₄ (рис. 6). Дифрактограмма показала наличие трех кристаллических фаз в сплаве: фторида лития, хлорида калия и низкотемпературной полиморфной модификации хромата калия.

2022

Рис. 6. Дифрактограмма сплава состава (экв. %) 12% LiF + 44% KCl + 44% K₂CrO₄: *I* – KCl (PDF 01-074-9685), *2* – α-K₂CrO₄ (PDF 00-015-0365), *3* – LiF (PDF 01-071-4663).

ЗАКЛЮЧЕНИЕ

Установлено, что при фазовом переходе из жидкого в кристаллическое состояние число кристаллизующихся фаз в стабильных элементах четырехкомпонентной взаимной системы Li, K \parallel F, Cl, CrO₄ равно мерности симплексов (в треугольниках – три фазы, в тетраэдрах – четыре). Тетраэдр LiF–LiCl–Li₂CrO₄–KCl состоит из четырех объемов кристаллизации: фторида, хлорида, хромата лития (низкотемпературная модификация) и хлорида калия. Фазовая реакция, отвечающая четырехкомпонентной эвтектике:

$$\mathfrak{K} \rightleftharpoons \mathrm{LiF} + \mathrm{LiCl} + \alpha - \mathrm{Li}_2 \mathrm{CrO}_4 + \mathrm{KCl}.$$

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Минобрнауки РФ в рамках проектной части государственного задания № 0778-2020-0005.

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Онлайн-версия содержит дополнительные материалы, доступные по адресу https://doi.org/10.31857/S0044457X22100154

Рис. S1. *T*-*x*-диаграмма разреза $k \to \overline{\overline{E}}^{\square} \to \overline{\overline{E}}^{\square}$ тетраэдра LiF-LiCl-Li₂CrO₄-KCl.

Рис. S2. *T*—*x*-диаграмма разреза LiF $\rightarrow \overline{E}^{\Box} \rightarrow E^{\Box}$ тетраэдра LiF—LiCl—Li₂CrO₄—KCl.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Ахмедова П.А., Гасаналиев А.М., Гаматаева Б.Ю. и др. // Журн. неорган. химии. 2017. Т. 62. № 10. С. 1393. [Akhmedova P.A., Gasanaliev A.M., Gamataeva B.Y. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 10. Р. 1390.] https://doi.org/10.7868/S0044457X17100154
- Ахмедова П.А., Гасаналиев А.М., Гаматаева Б.Ю. и др. // Журн. неорган. химии. 2018. Т. 63. № 6. С. 791. [Akhmedova P.A., Gasanaliev A.M., Gamataeva B.Y. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 6. Р. 837.] https://doi.org/10.7868/S0044457X1806020X
- 3. Алиев А.Р., Ахмедов И.Р., Какагасанов М.Г. и др. // Журн. физ. химии. 2018. Т. 92. № 3. С. 403. [Aliev A.R., Akhmedov I.R., Kakagasanov M.G. et al. // Russ. J. Phys. Chem. 2018. V. 92. № 3. Р. 470.] https://doi.org/10.7868/S0044453718030020
- 4. Гаркушин И.К., Губанова Т.В., Фролов Е.И. и др. // Журн. неорган. химии. 2015. Т. 61. № 1. С. 374. [Garkushin I.K., Gubanova T.V., Frolov E.I. et al. // Russ. J. Inorg. Chem. 2015. V. 60. № 3. Р. 324.] https://doi.org/10.7868/S0044457X15030034
- Пройдакова В.Ю., Александров А.А., Воронов В.В. и др. // Журн. неорган. химии. 2020. Т. 65. № 6. С. 764. [Proydakova V.Y., Alexandrov A.A., Voronov V.V. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 6. Р. 834.] https://doi.org/10.31857/S0044457X20060161
- 6. *Fujiwara S., Inaba M., Tasaka A. //* J. Power Sources. 2010. P. 7691.
 - https://doi.org/10.1016/j.jpowsour.2010.05.032
- Mantha D., Wang T., Reddy R.G. // J. Phase Equilib. Diffus. 2012. V. 33. № 2. P. 110. https://doi.org/10.1007/s11669-012-0005-4
- 8. *Jian L.-X., Wu X.-Y., Tan Y.-Q.* // J. Hum. Un. Nat. Sciences. 2014. V. 41. № 12. P. 75.
- Ghosh S., Ganesan R., Sridharan R. // J. Phase Equilib. Diffus. 2018. V. 39. P. 916. https://doi.org/10.1007/s11669-018-0695-3
- 10. *Masset P., Poinso J.-Y., Schoeffert S. et al.* // J. Electrochem. Soc. 2005. V. 152. № 2. P. A405. https://doi.org/10.1149/1.1850861

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 67 № 10 2022

- Sveinbjörnsson D., Christiansen A.S., Viskinde R. et al. // J. Electrochem. Soc. 2014. V. 161. № 9. P. A1432. https://doi.org/10.1149/2.1061409jes
- Gong Q., Ding W., Bonk A. et al. // J. Power Sources. 2020. V. 475. P. 228674. https://doi.org/10.1016/j.jpowsour.2020.228674
- 13. Оре О. Теория графов. М.: Наука, 1980. 336 с.
- 14. Диаграммы плавкости солевых систем / Под ред. Посыпайко В.И., Алексеевой Е.А. М.: Металлургия, 1977. Ч. II. 416 с.
- Диаграммы плавкости солевых систем / Под ред. Посыпайко В.И., Алексеевой Е.А. М.: Металлургия, 1977. Ч. III. 204 с.
- Гаркушин И.К., Губанова Т.В., Петров А.С. и др. Фазовые равновесия в системах с участием метаванадатов некоторых щелочных металлов. М.: Машиностроение-1, 2005. 118 с.
- Воскресенская Н.К., Евсеева Н.Н., Беруль С.И. и др. Справочник по плавкости систем из безводных неорганических солей. М.: Изд-во АН СССР, 1961. Т. 1. 845 с.
- Воскресенская Н.К., Евсеева Н.Н., Беруль С.И. и др. Справочник по плавкости систем из безводных неорганических солей. М.: Изд-во АН СССР, 1961. Т. 2. 585 с.

- 19. Диаграммы плавкости солевых систем. Тройные взаимные системы / Под ред. Посыпайко В.И., Алексеевой Е.А. М.: Химия, 1977. 392 с.
- Бухалова Г.А., Топшиноева З.Н. Системы Li, K∥Cl, CrO₄, Li, K∥Br, CrO₄ // Журн. неорган. химии. 1973. Т. 18. № 5. С. 1375.
- 21. *Егунов В.П.* Введение в термический анализ. Самара, 1996. 270 с.
- 22. *Wagner M*. Thermal Analysis in Practice: Fundamental Aspects. Hanser Publications, 2018. P. 158.
- 23. *Мощенский Ю.В.* Приборы и техника эксперимента. М., 2003. Т. 46. № 6. С. 143.
- 24. Федотов С.В., Мощенский Ю.В. Интерфейсное программное обеспечение DSCTool. Самара: Самар. гос. техн. ун-т, 2004. 23 с.
- Термические константы веществ. Справочник / Под ред. В.П. Глушко. М.: ВИНИТИ, 1981. Вып. Х. Ч. 1. 300 с.
- Термические константы веществ. Справочник / Под ред. В.П. Глушко. М.: ВИНИТИ, 1981. Вып. Х. Ч. 2. 300 с.
- 27. Демина М.А., Гаркушин И.К., Бехтерева Е.М. // Сб. тр. XIV Междунар. конф. по термическому анализу и калориметрии в России (RTAC-2013). СПб.: СПб. гос. политехн. ун-т, 2013. С. 133.