СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 546.02,546.05

НОВЫЕ ПОГЛОЩАЮЩИЕ СЛОИ НА ОСНОВЕ ЧЕТВЕРНЫХ СОЕДИНЕНИЙ МЕДИ Си–А–В–S–Se (A = Ba, Sr, Fe, Ni, Mn; B = Si, Ge, Sn) ДЛЯ ТОНКОПЛЕНОЧНЫХ СОЛНЕЧНЫХ ЭЛЕМЕНТОВ ТРЕТЬЕГО ПОКОЛЕНИЯ (ОБЗОР)

© 2022 г. М. В. Гапанович^{а,} *, В. В. Ракитин^а, Г. Ф. Новиков^а

^аИнститут проблем химической физики РАН, пр-т Академика Семенова, 1, Черноголовка, Московская обл., 142432 Россия *e-mail: gmw@icp.ac.ru Поступила в редакцию 08.07.2021 г. После доработки 30.08.2021 г. Принята к публикации 31.08.2021 г.

Обзор посвящен новым полупроводникам – четверным соединениям меди $Cu_2A^{II}B^{IV}S(Se)_4$, где A = Mg, Ca, Sr, Ba, Fe,Ni,Co, Cd, Cr; B = Sn, Pb, Si, Ge, Ti, Zr, Hf. Соединения из указанной группы могут прийти на смену более распространенным халькопиритам $Cu_{1-\delta}In_{1-x}Ga_xSe_2$ (CIGS) и кестеритам $Cu_{2-\delta}ZnSnS_{4-y}Se_y$ (CZTSSe), которые используются для создания тонкопленочных солнечных батарей. Обобщены имеющиеся в мировой литературе сведения об оптических и электрофизических свойствах указанных соединений, особенностях их синтеза и солнечных элементах на их основе.

Ключевые слова: солнечные элементы, четверные соединения меди, Cu₂A^{II}B^{IV}S(Se)₄, синтез, свойства

DOI: 10.31857/S0044457X22010044

ВВЕДЕНИЕ. ИСТОРИЯ ВОПРОСА

Исследования последних двух десятилетий однозначно показали, что будущее солнечной энергетики — в использовании тонкопленочных солнечных элементов (**ТСЭ**). Однако к настоящему времени ни один из типов ТСЭ не показал значений КПД, близких к предельным теоретическим (согласно расчетам Шокли–Квиссера предельный КПД ~30% [1]). Причины этого неясны. В определенной степени этот недостаток связан с отсутствием надежной систематики полученных результатов для каждого типа ТСЭ.

При этом среди различных полупроводников, применяемых для создания поглощающего слоя солнечных батарей, особое место занимают различные четверные соединения меди [2, 3].

К ним также относятся соединения со структурой кестерита $Cu_{2-\delta}ZnSnS_{4-\nu}Se_{\nu}$ (CZTS(Se)), частично рассмотренного нами ранее [3].

Данные материалы малотоксичны по сравнению с теллуридом кадмия [4] или перовскитами, содержащими в составе свинец [5], которые широко используются для создания солнечных батарей. Кроме того, они широко распространены в природе и имеют ширину запрещенной зоны от 1.0 (CZTSe) до 1.5 эВ (CZTS), что соответствует требованиям для эффективного фотовольтаического преобразования. Однако к настоящему времени КПД солнечных элементов на их основе не превышает 13% [3]. По мнению ряда авторов, это обусловлено особенностями структуры данного материала, но подробно этот вопрос не обсуждался. Одно из предположений заключается в том, что из-за близости ионных радиусов цинка Zn^{2+} и Cu⁺ в таком материале образуется большое количество антиструктурных дефектов Cu_{Zn} и Zn_{Cu}, которые служат ловушками для фотогенерированных носителей тока [6, 7].

Существенный научный и практический интерес представляет замена ионов в катионной подрешетке данного материала на ионы с большим радиусом. Основу такого материала могут составлять четверные соединения меди с общей формулой Cu–A–B–S, Se (A = Ba, Sr, Fe, Ni, Mg, Mn; B = Si, Ge, Sn) [8]. Данные соединения могут существенно отличаться по своей структуре, оптическим и электрофизическим свойствам от кестеритов CZTS. Поэтому анализ литературы и систематизация сведений по этому вопросу представляются в настоящее время весьма актуальными.

В настоящем обзоре наряду с "химическими" вопросами (способы синтеза данных соедине-

Рис. 1. Структура кестерита (KS), пр. гр. *I*4, станнита (ST), пр. гр. *I*42*m*, и смешанная примитивная типа CuAu, пр. гр. *P*42*m* (PMCA) [9].

Рис. 2. Структуры *P*1*n*1, *P*3₁ и *Pmn*2₁ [10].

ний, особенности структуры и кристаллической решетки) рассмотрены и "физические" вопросы (электрофизические и оптические свойства), а также особенности применения указанных материалов в качестве поглощающих слоев новых неорганических солнечных батарей.

СИСТЕМЫ С ЗАМЕЩЕНИЕМ В ПОДРЕШЕТКЕ ЦИНКА $Cu_2ASnS_4 - _xSe_x$ (A = Ca, Mg, Sr, Ba)

 Cu_2CaSnS_4 и $Cu_2CaSnSe_4$. Сведений о свойствах этих соединений в литературе мало. На момент написания обзора нам удалось найти только две теоретические работы [9, 10], посвященные указанным соединениям.

Согласно [9], Cu_2CaSnS_4 и $Cu_2CaSnSe_4$ термодинамически нестабильны. Для Cu_2CaSnS_4 характерна кестеритная структура (рис. 1, **KS** (кестерит)) с параметрами решетки a = 5.903, c = 10.483 Å, для Cu₂CaSnSe₄ — станнитная структура (рис. 1, ST (станнит)) с параметрами a = 6.173, c = 11.186 Å.

При этом, по расчетам тех же авторов, более стабильной могла бы быть смешанная примитивная структура типа CuAu (рис. 1, PMCA).

По данным [10], соединение Cu_2CaSnS_4 могло бы быть устойчивым в структуре $P3_1$, тогда как $Cu_2CaSnSe_4 - в$ структурах *Pmn2*₁, *P*1*n*1 и *P3*₁ (рис. 2).

Для Cu₂CaSnS₄ в структуре P3₁ расчетное значение ширины запрещенной зоны $E_g = 1.64$ эВ, тогда как для Cu₂CaSnSe₄ $E_g = 1.31$ эВ (*Pmn*2₁ и *P*1*n*1) и 1.06 эВ (*P*3₁) [10].

Таким образом, теоретическое значение ширины запрещенной зоны Cu_2CaSnS_4 и $Cu_2CaSnSe_4$ попадает в максимум, определенный пределом Шокли–Квиссера, что делает эти материалы перспективными для создания тонкопленочных

Рис. 3. Структура сфалерита, *F*43*m* [11].

солнечных батарей. Поэтому поиск путей синтеза стабильных пленок данного материала и исследование их оптических и электрофизических свойств остаются актуальной задачей будущих исследований.

Cu₂MgSnS₄. Тонкие пленки Cu₂MnSnS₄ были получены золь-гель методом в работе [11]. Для этого раствор (CH₃COO)₂ · H₂O, SnCl₂ · 2H₂O, MgCl₂ и тиомочевины в 2-метоксиэтаноле и моноэтаноламине наносили методом центрифугирования на подложки стекло и стекло/Мо, после чего подложки высушивали при 300°С, а затем отжигали при 470, 500, 530 и 560°С в парах серы. Полученные пленки имели сфалеритную структуру (рис. 3), a = 5.40-5.44 Å, пр. гр. $F\overline{4}3m$. Ширина запрещенной зоны полученных образцов варьировалась в диапазоне $E_g = 1.43 - 1.67$ эВ в зависимости от температуры отжига. При этом, по данным элементного анализа, полученные пленки были медь-дефицитными: соотношение Cu/(Mg + Sn) составляло в них от 0.6 до 0.81. Образцы Cu₂MgSnS₄ имели *p*-тип темновой проводимости. Их удельное сопротивление $\rho = 1.94 - 35.42$ Ом см, плотность носителей заряда $d = 8.3 \times 10^{17} - 5.04 \times 10^{18}$ см⁻³, холловские подвижности носителей заряда $\mu_h =$ = 0.12 - 4.0 см² B⁻¹ с⁻¹. С использованием этих пленок авторами [11] были изготовлены солнечные элементы в конструкции Al/ITO/i-ZnO/CdS/ СМТS/Мо/стекло с максимальной эффективностью 0.78% в условиях освещения AM1.5.

В работе [12] тонкие пленки Cu₂MgSnS₄ были получены методом пиролиза спрея, представляющего собой раствор CuCl₂, MgCl₂, SnCl₂ и тиомочевины в метаноле на нагретых подложках. Температура подложек варьировалась в диапазоне 150–250°С. После синтеза пленки отжигали под вакуумом при 225–250°С. В отличие от пленок, полученных в работе [11], образцы имели кестеритную структуру, однако содержали некоторое количество примесных фаз. Ширина их запрещенной зоны при увеличении температуры отжига уменьшалась от 1.32 до 1.63 эВ. При этом коэффициент оптического поглощения в видимой области спектра для полученных пленок был достаточно высоким: $\alpha \sim 10^5$ см⁻¹ (рис. 4).

В работе [13] описаны наночастицы Cu_2MgSnS_4 , полученные методом горячей инжекции. Для их синтеза стехиометрические количества $CuCl_2$ ·

Рис. 4. Спектры оптического поглощения пленок Cu₂MgSnS₄ в зависимости от температуры подложки, полученные в работе [12].

 \cdot 2H₂O, MgCl₂ \cdot 6H₂O и SnCl₂ \cdot 6H₂O помещали в олеиламин, который находился в трехгорлой колбе, соединенной с линией Шленка, под инертным газом, после чего смесь нагревали под вакуумом до 85°C в течение 30 мин. Затем полученный раствор дегазировали при помоши аргона высокой чистоты в течение 30 мин при 150°С. После изменения цвета раствора с синего на желтый температуру повышали до 230°С и быстро проводили инжекцию раствора серы в полученный раствор. Авторами [13] установлено, что структура полученных наночастиц кестеритная. Кроме того, для Cu₂MgSnS₄ впервые был записан рамановский спектр, где наблюдалась одна линия с максимумом при 331 см⁻¹. Линии примесных фаз не зафиксированы. При этом ширина запрещенной зоны полученных образцов равна 1.63 эВ. Поскольку найденное значение ширины запрещенной зоны близко к максимальным, полученным в работах [11, 12], можно предположить, что для микрокристаллических пленок Cu₂MgSnS₄ значение E_{a} должно составлять 1.32—1.43 эВ, и его увеличение для ряда образцов в указанных работах связано с уменьшением размера частиц. Можно также предположить, что значение $E_g = 1.32 \ \Im B$ характерно для сфалеритной модификации, а $E_g = 1.43$ эВ – для кестеритной. Поскольку исследований свойств пленок Cu₂MgSnS₄ в литературе в настоящее время очень мало, эти предположения могут быть подтверждены или опровергнуты в будущих работах.

Cu₂MgSnSe₄. В работе [14] описаны свойства микрокристаллических порошков Cu_{2-x}Mg_{1-x}SnSe₄, а также Cu₂MgSn_{1-x}In_xSe₄ ($0 \le x \le 0.1$), полученных методом твердофазного ампульного синтеза. Для получения указанных образцов стехиометрические количества соответствующих элементов запаивали в вакуумированных карбонизированных кварцевых ампулах, после чего ампулы нагревали со скоростью 2 град/мин до 800°C и выдерживали при указанной температуре в течение 48 ч. Затем содержимое ампул гомогенизировали, вновь запаивали под вакуумом и прокаливали при 800°C в течение 96 ч. На заключительном этапе синтеза порошки прокаливали при температуре 550°C и давлении 50 МПа в течение 5 мин.

Полученные образцы имели кестеритную структуру с параметрами кристаллической решетки $a \sim 5.7$, $c \sim 11.4$ Å. Ширина запрещенной зоны полученных образцов Cu₂MgSnSe₄, определенная из спектров отражения, составляла $E_g = 1.7$ эВ. Концентрация носителей заряда в них $N = 3.2 \times 10^{18}$ см⁻³. Холловская подвижность в полученных образцах была достаточно большой: $\mu_h = 51.7$ см² В⁻¹ с⁻¹, ее значение сопоставимо с величиной μ_h для халькопиритных пленок CIGS [4, 15], используемых для создания высокоэффек-

тивных солнечных батарей. Проводимость также была достаточно высокой: $\sigma = 26.5$ См см⁻¹. При добавлении индия концентрация носителей заряда увеличивалась, а их подвижность снижалась [14].

В работе [15] описан синтез, кристаллическая структура и люминесцентные свойства микрокристаллических порошков $Cu_2MgSnSe_4$ и $Cu_{2-x}MgSnSe_4$ ($0 < x \le 0.15$), полученных методом твердофазного ампульного синтеза.

С достаточно высокой точностью определены параметры тетрагональной элементарной ячейки $Cu_2MgSnSe_4$: a = 5.721(3), c = 11.435(5) Å, V == 374.31(6) Å³, а для твердого раствора $Cu_{2-x}MgSnSe_4$ (x = 0.15) a = 5.709(3), c = 11.415(5) Å, V = 372.21(6) Å³. Для всех полученных образцов характерна кестеритная структура [15].

спектре катодолюминесценции (КЛ) Cu₂MgSnSe₄ при 78 К наблюдалась полоса при 1.39 эВ, отвечающая энергетическому уровню внутри запрещенной зоны, обусловленная, повидимому, образованием близких уровней внутри запрещенной зоны, связанных с дефектами Си_{Мg} и Mg_{Cu}. В спектре КЛ (78 К) твердого раствора Cu_{2 – x}MgSnSe₄ с x = 0.10 помимо полосы при 1.39 эВ наблюдалась полоса с максимумом при 1.34 эВ, обусловленная, по-видимому, медью в степени окисления +2: Cu²⁺ на местах Cu⁺ создает положительно заряженные дефекты, которые связываются с отрицательно заряженной вакансией меди $V_{\rm Cu}$ в ассоциат дефектов Cu⁺² · $V_{\rm Cu}$ [15].

В работе [16] по результатам теоретического моделирования установлено, что для $Cu_2MgSnSe_4$, как и для Cu_2MgSnS_4 , более стабильной должна быть станнитная модификация, однако существование кестеритной также возможно, в образцах должны присутствовать обе эти фазы.

Данных по созданию солнечных элементов на основе $Cu_2MgSnSe_4$ на момент написания данного обзора нам найти не удалось. В работах [14, 16] это соединение рассматривается в качестве нового термоэлектрического материала. Однако, исходя из литературных данных по ширине его запрещенной зоны и электрофизических свойств, приведенных в работе [14], можно предположить, что для создания солнечных батарей он также перспективен.

Cu₂SrSnS₄. Структура Cu₂SrSnS₄ (**CSrTS**) тригональная (пр. гр. $P3_1$), сходная с таковой для Cu₂BaSnS₄ (**CBTS**) (рис. 5) [17], параметры кристаллической решетки: a = 6.29, c = 15.57 Å [18].

Сведения об оптических свойствах данного материала, в частности о ширине его запрещенной зоны, противоречивы.

В работе [19] для получения пленок Cu_2SrSnS_4 на стекло, покрытое Мо, наносили оксиды Cu, Sr,

Рис. 5. Полиэдрический вид кристаллической структуры $BaCu_2SnS_4$, тип $SrCu_2SnS_4$ (a); увеличенный вид полианионного фрагмента $[Cu_2SnS_4]^{2-}$, подчеркивающий общие тетраэдры CuS_4 и SnS_4 (б); координационный полиэдр катиона Ba^{2+} в $BaCu_2SnS_4$, образованный восемью атомами S, в искаженной квадратной антипризматической геометрии (в). Атомы Ba (Sr), Cu, Sn и S и соответствующие им координационные полиэдры показаны оранжевым, синим, зеленым и красным цветом соответственно [17].

Sn при помощи метода реактивного магнетронного напыления в атмосфере аргона (давление 5 × $\times 10^{-3}$ мм рт. ст.) с примесью кислорода (1.5%). Таким образом были получены нанокристаллические пленки Cu₂SrSnO₄ (CSrTO). Для синтеза CSrTS полученные оксидные пленки выдерживали в токе смеси, состоящей из Ar с примесью H₂S (5%), при температуре 520°C в течение 5 мин. Ширина запрещенной зоны полученных пленок была в диапазоне $E_g = 1.95 - 1.98$ эВ, однако они содержали примесные фазы. С использованием полученных пленок были созданы образцы солнечных элементов в конструкции ITO/i-ZnO/CdS/CMTS/Mo/стекло с максимальным КПД = 0.59% в условиях освещения AM1.5.

В работе [20] для синтеза пленок Cu_2SrSnS_4 в растворитель, состоящий из 30 мл этанола и 1 мл диацетонового спирта, добавляли 9.67 г $Cu(OAc)_2 \cdot H_2O$, 6.44 г Sr(OAc)₂, 5.65 г SnCl₂ · 2H₂O и 15.25 г тиомочевины. Смесь представляла собой эмульсию, которую загружали в шаровую мельницу, где она перемалывалась в течение 12 ч, после чего наносили на молибденовую подложку. Образцы сульфуризировали в течение 30 мин при температурах от 200 до 600°С с шагом 100°С. Методом РФА было установлено, что однофазными являются только пленки, полученные при температуре отжига 600°С. Исследование образцов методом фотоэлектрохимических ячеек (РЕС) показало, что они имеют *р*-тип темновой проводимости. При этом вольтамперные характеристики фотоэлектрохимической ячейки не менялись в течение 10000 с, что свидетельствовало о стабильности пленок Cu₂SrSnS₄ при воздействии света. Методом оптической спектроскопии было показано, что они прямозонные и имеют ширину запрещенной зоны $E_g = 1.78$ эВ. Кроме того, методом времяразрешенной люминесценции показано, что времена жизни фотогенерированных носителей тока в них не менее 2.06 нс.

В работе [21] тонкие пленки Cu₂SrSnS₄ были получены золь-гель методом. Для этого смешивали два раствора: 1) моногидрат ацетата меди(II) (1.608 г), хлорид олова(II) (1.038 г) и тиомочевину (1.226 г) растворяли в 2-метоксиэтаноле; 2) ацетат стронция(II) (AR) растворяли в 2-метоксиэтаноле с молочной кислотой для увеличения растворимости. Количество ацетата стронция(II) в растворе точно контролировали для получения пленок CSTS с различным атомным соотношением Sr/Sn: 1.15 (1.088 г), 1.30 (1.230 г), 1.45 (1.372 г). Далее два раствора смешивали и перемешивали при 40°С, затем добавляли несколько капель диэтаноламина и триэтаноламина. Полученный раствор наносили методом центрифугирования на покрытые подложки стекло/Мо или подложку из плавленого кварца, затем отжигали на воздухе при 300°С в течение 5 мин для высушивания. После восьмикратного повторения данных операций полученные пленки отжигали в атмосфере сера + аргон с образованием CSTS.

Полученные образцы содержали небольшое количество примесных фаз, при этом их минимальное количество было в образцах, полученных при температурах отжига 580–600°С. Ширина запрещенной зоны полученных пленок $E_g =$

Рис. 6. Полиэдрический вид орторомбической структуры $Cu_2BaSnSe_4$ (a); полианионный фрагмент $[Cu_2SnSe_4]^{2-}$, подчеркивающий общие углы $SnSe_4$ и тетраэдры $CuSe_4$ с общими углами и ребрами (б); координационный полиэдр катиона Ba^{2+} в $BaCu_2SnSe_4$, образованный восемью атомами Se в искаженной квадратной антипризматической геометрии (в). Атомы Ba, Cu, Sn и Se и соответствующие им координационные полиэдры показаны оранжевым, синим, зеленым и красным цветом соответственно [17].

= 1.93 эВ. Коэффициент оптического поглощения в видимой области был на уровне $(2-6) \times 10^4$ см⁻¹ [21].

С использованием полученных пленок были созданы образцы солнечных элементов в конструкции Ag/ITO/*i*-ZnO/CdS/CSTS/Mo/стекло с максимальным КПД = 0.164% в условиях освещения AM1.5 [21].

Различие в литературных данных по ширине запрещенной зоны CSTS, а также сравнительно низкий КПД солнечных элементов на их основе можно связать с наличием примесных фаз в образцах.

Cu₂SrSnSe₄. Работы по данному соединению в литературе единичны. В статье [22] сообщается, что структура его орторомбическая (пр. гр. *Ama2*) с параметрами кристаллической решетки a = 10.967, b = 10.754, c = 6.695 Å. При этом расчетное значение ширины запрещенной зоны $E_g = 1.46$ эВ.

Таким образом, в настоящее время в мировой литературе имеется всего несколько работ с описанием синтеза и свойств пленок CSTS и CSTSe. При этом большинство статей посвящено жидкофазному синтезу. Остается неисследованным влияние стехиометрии на электрофизические свойства указанных материалов, сведения об их оптических свойствах противоречивы. Однако данные о временах жизни фотогенерированных носителей тока и стабильности характеристик фотоэлектрохимических ячеек на основе CSTS, полученные в работе [20], достаточно многообещающие, и в случае более детального исследования пленки CSTS и CSTSe могут найти применение при создании солнечных батарей.

 $Cu_2BaSnSe_xS_{4-x}$. Кристаллическая структура и оптические свойства образцов $Cu_2BaSnSe_xS_{4-y}$, полученных методом твердофазного синтеза из

соответствующих сульфидов, детально описаны в работе [17].

Структура Cu₂BaSnS₄ (**CBTS**) и твердых растворов Cu₂BaSnSe_xS_{4-x} тригональная, пр. гр. $P3_1$ (рис. 5) [17]. Однако для Cu₂BaSnSe₄ характерна орторомбическая структура, пр. гр. *Ama2* (рис. 6):

Параметры кристаллической решетки образцов $Cu_2BaSnSe_xS_{4-x}$ и ширина их запрещенной зоны в зависимости от *x* приведены в табл. 1.

В этой работе методом высокочастотного магнетронного напыления на подложках стекло/Мо были получены пленки Cu_2BaSnS_4 . С использованием данных пленок были созданы солнечные элементы с КПД = 1.6% в условиях освещения AM1.5.

По данным работы [23], Cu₂BaSnS₄ и Cu₂BaSnSSe₃ являются полупроводниками *p*-типа. Плотность носителей заряда в Cu₂BaSnSSe₃ $N \sim 5 \times 10^{14}$ см⁻³, холловская подвижность Cu₂BaSn(S_xSe_{1-x})₄ при $x = 0.25 \mu_h = 1.5$ см² B⁻¹ c⁻¹, что превышает таковую у аналогичного CZTSSe (<1 см² B⁻¹ c⁻¹).

В работе [24] *in situ* исследована термическая стабильность Cu₂BaSnS₄. Установлено, что данное соединение стабильно при t > 500°C при повышенном давлении паров серы, в противном случае оно распадается на Cu₄S₃, SnS (газ) и ранее неизвестное соединение Cu₂Ba₃Sn₂S₈ желтого цвета (структура кубическая, пр. гр. *I*43*d*) с параметром a = 14.53(1) Å и шириной запрещенной зоны $E_g = 2.19$ эВ.

В работе [25] путем магнетронного напыления из мишеней (Cu, SnS и BaS) с последующей сульфуризацией были получены медь-дефицитные пленки CBTS и солнечные элементы на основе данного

НОВЫЕ ПОГЛОЩАЮЩИЕ СЛОИ

	Пр. гр.	<i>a</i> , Å	b, Å	<i>c</i> , Å	$E_g,$ $\Im \mathbf{B}$	
x в Cu ₂ BaSnSe _x S _{4 – x}					прямые переходы	непрямые переходы
0	<i>P</i> 3 ₁	6.3662(1)	6.3662(1)	15.8287(2)	1.95	1.88
1	<i>P</i> 3 ₁	6.4294(3)	6.4294(3)	16.0021(6)	1.80	1.73
2	<i>P</i> 3 ₁	6.5076(1)	6.5076(1)	16.2018(3)	1.63	1.61
3	<i>P</i> 3 ₁	6.5699(1)	6.5699(1)	16.3681(2)	1.55	1.52
4	Ama2	11.1105(2)	11.2275(2)	6.7436(1)	1.72	1.64

Таблица 1. Кристаллическая структура и ширина запрещенной зоны $Cu_2BaSnSe_xS_{4-x}$ [17]

материала. Полученные пленки имели *р*-тип темновой проводимости, их ширина запрещенной зоны $E_g = 2.048$ эВ, коэффициент оптического поглощения в видимой области $\alpha > 10^4$ см⁻¹, плотность носителей заряда $N \sim 10^{16}$ см⁻³. Было также установлено, что E_g меняется на -4×10^{-4} эВ K⁻¹ при уменьшении температуры. При этом в спектрах люминесценции полученных пленок наблюдались неглубокие энергетические уровни.

Эффективность солнечных элементов (η) в конструкции FTO/CBTS/CdS:O/CdS/ZnO/ZnO:Al составляла 2.03% в условиях освещения AM1.5. При этом напряжение холостого хода солнечных элементов менялось от 0.657 до 1.108 В при увеличении содержания кислорода в буферном слое CdS [25].

Описаны также гибридные солнечные элементы (CBTS-перовскиты) в конструкции FTO/CBTS(100 нм)/ MaPbI₃/PCBM/Ag с КПД = = 10.1% условиях освещения AM1.5. В них CBTS используется как материал для дырочного транспорта [26], их синтез проводили по описанной в работе [25] методике.

В работе [27] на основе пленок состава $Cu_2BaSn(Se_{0.83}S_{0.17})_4$ были изготовлены солнечные элементы с $\eta = 1.57\%$ в условиях освещения AM1.5. При этом структура полученных пленок была орторомбической, параметры кристаллической решетки a = 11.0551, b = 11.1712, c = 6.7181 Å, ширина запрещенной зоны $E_g = 1.85$ эВ. Синтез пленок проводили методом магнетронного напыления.

В работе [28] были получены солнечные элементы, в которых в качестве поглощающего слоя использовали $Cu_{2-\delta}Ba_{2-x}Sn_xSSe_3$ с $\eta = 5.2\%$ в условиях освещения AM1.5. Данные пленки были получены методом магнетронного напыления. Соотношение металлов в использованной пленке Cu/(Ba + Sn) = 0.83 - 0.88, Ba/Sn = 1.05 - 1.15, конструкция солнечного элемента была ITO/*i*-ZnO/CdS/CBTSSe/Mo/стекло.

Таким образом, из всех соединений, описанных в этом разделе, максимальный КПД солнечного элемента в настоящее время был достигнут в устройствах, использующих в качестве поглощающего слоя CBTSSe. Данный материал является и наиболее исследованным в этой группе соединений. Следует отметить, что напряжение холостого хода ряда солнечных элементов на основе CBTS, например описанного в работе [25], является рекордно высоким ($U_{\rm oc} > 1$ В), что сопоставимо с лучшими гибридными солнечными элементами на основе перовскитов. При этом более низкий КПД по сравнению с последними обусловлен более низкими значения тока короткого замыкания и фактора заполнения. Можно предположить, что в будущем эти характеристики получится улучшить путем оптимизации синтеза пленок. Следует также отметить, что указанные характеристики солнечных элементов были достигнуты с использованием пленок, полученных с помощью вакуумного магнетронного напыления, а не жидкофазных методов.

Обобщенные данные по свойствам соединений, описанных в этом разделе, приведены в табл. 2.

Си₂ASnS_{4-x}Se_x, A = Fe, Ni, Co. МЕТОДЫ СИНТЕЗА; КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА; ОПТИЧЕСКИЕ СВОЙСТВА; ЭЛЕКТРОФИЗИЧЕСКИЕ СВОЙСТВА; СОЛНЕЧНЫЕ ЭЛЕМЕНТЫ НА ОСНОВЕ ДАННЫХ МАТЕРИАЛОВ

Cu₂FeSnS₄. Впервые структура Cu₂FeSnS₄ (CFTS) была описана в 1967 г. [29]. Эта структура станнитная (рис. 1, ST) с параметрами решетки $a = (5.466 \pm 0.005)$ и $c = (10.76 \pm 0.01)$ Å. По данным [30], соединение является магнитным полупроводником.

В работе [31] описаны оптические свойства пленок CFTS, полученных методом поэтапного молекулярного наслаивания (SILAR) с последующим отжигом. На первом этапе использовали растворы $SnCl_2 \cdot 2H_2O$, $CuCl_2 \cdot 2H_2O$ (раствор 1) и Na₂S (раствор 2). Осаждение проводили на очищенные и обезжиренные стеклянные подложки.

ГАПАНОВИЧ и др.

Соединение	Кристаллическая структура	Ширина запрещенной зоны, эВ	Тип темновой проводимости	КПД солнечного элемента	
Cu ₂ CaSnS ₄ ¹	Кестерит, $I4$, a = 5.903, c = 10.483 Å [9]	1.64 [10]	?	_	
	Тригональная, <i>Р</i> 3 ₁ [10]				
Cu ₂ CaSnSe ₄ ¹	Станнит, <i>I</i> 42 <i>m</i> <i>a</i> = 6.173, <i>c</i> = 11.186 Å [9]	1.31 [10]	?	_	
	<i>Ртп</i> 2 ₁ , <i>P</i> 1 <i>n</i> 1 или <i>P</i> 3 ₁ [10]				
Cu ₂ MgSnS ₄	Сфалерит, <i>F</i> 43 <i>m</i> , <i>a</i> = 5.40–5.44 Å [11]	1.43—1.67 [11] (золь-гель метод)	р	0.78% Al/ITO/ <i>i</i> - ZnO/CdS/CMTS/Mo/стекло [11] (золь–гель метод)	
Cu ₂ MgSnSe ₄	Кестерит, $I\overline{4}2m$, a = 5.721(3), c = 11.435 Å [15]	 1.7 [14] (твердофазный ампульный синтез) 	р	_	
Cu ₂ SrSnS ₄	Тригональная, <i>Р</i> 3 ₁ , <i>a</i> = 6.29, <i>c</i> = 15.57 Å [18]	 1.78 [20] (сульфуризация эмульсии) 1.93 [21] (золь-гель метод) 1.95–1.98 [19] 	р	0.59% (ITO/ <i>i</i> - ZnO/CdS/CMTS/Mo/стекло) [20] (сульфуризация эмульсии)	
Cu ₂ SrSnSe ₄	Орторомбическая, Ama2, a = 10.967, b = 10.754, c = 6.695 Å [19]	1.46 [19] ²	?	_	
Cu ₂ BaSnS ₄	Тригональная, <i>P</i> 3 ₁ , <i>a</i> = 6.3662(1), <i>c</i> = 15.8287(2) Å [17]	 1.95 [17] (твердофазный ампульный синтез) 2.05 [25] (магнетронное напыление) 2.19 [24] 	p	2.03% FTO/CBTS/CdS:O/CdS/ZnO/ ZnO:Al [25] (магнетронное напыление) 5.2% ITO/ <i>i</i> - ZnO/CdS/CBTSSe/Mo/стекло [28 (магнетронное напыление) 10.1% FTO/CBTS(100 нм)/ MaPbI ₃ /PCBM/Ag [26] ³ (магнетронное напыление)	
Cu ₂ BaSnSe ₄	Орторомбическая, Ama2, a = 11.1105(2), c = 6.7436(1) Å [17]	1.72 [17] (твердофазный ампульный син- тез)	р		

Таблица 2. Обобщенные данные по физическим свойствам $Cu_2ASnS(Se)_4$ (A = Ca, Mg, Sr, Ba). Для экспериментальных работ в скобках показан метод синтеза слоя $Cu_2ASnS(Se)_4$

¹ Представленные данные по свойствам получены в результате теоретических расчетов. ² Здесь CBTS использован в качестве слоя для дырочного транспорта. ³ Для наночастиц CNTSe.

Подложки поочередно погружали в раствор 1, затем в деионизированную воду и в раствор 2. На втором этапе подложку помещали в раствор 3 (FeSO₄ · 7H₂O, Na₂S₂O₃ · 5H₂O и C₁₀H₁₄N₂O₈Na₂ · · 2H₂O (Na₂ЭДТА)), рН раствора доводили до 2 при помощи серной кислоты. На заключительном этапе подложки выдерживали в печи в токе смеси N₂ + 5%H₂S в течение 20 мин при 500°С. Полученные образцы были однофазными, имели станнитную структуру с параметрами кристаллической решетки a = 5.43, c = 10.79 Å. Ширина запрещенной зоны полученных образцов CFTS $E_g = 1.22$ эВ, коэффициент оптического поглощения $\alpha > 10^4$ см⁻¹ [31].

В работе [32] с использованием пленок CFTS, полученных методом SILAR, были созданы солнечные элементы. Пленки, полученные в данной работе, имели *p*-тип темновой проводимости. Для создания солнечных элементов использовали различные буферные слои: CdS, Ag₂S или Bi₂S₃. Их получали методом химического жидкофазного осаждения (CBD). Максимальный КПД $\eta = 2.95\%$ в условиях освещения AM1.5 был достигнут при использовании Bi₂S₃. Структура солнечных элементов – стекло/ITO/Cu:NiO/CFTS/буферный слой/наночастицы ZnO/Al.

В работе [33] пленки CFTS были получены методом пиролиза спрея, представляющего собой раствор $CuCl_2 \cdot 2H_2O(0.1 \text{ M})$, FeCl₃ · 6H₂O (0.05 M), SnCl₄ · 5H₂O (0.05 M) и CS(NH₂)₂ (0.4 M) в 50 мл бидистиллированной воды, на стеклянных подложках, нагретых до 250-370°С. Размер частиц в пленке, рассчитанный по результатам РФА по формуле Шеррера, D = 11.48 - 23.15 нм. По данным элементного анализа, соотношение Cu/(Sn + Fe) в полученных образцах составляло 0.96-0.99, соотношение Fe/Sn плавно менялось от 1.02 до 1.13 при увеличении температуры синтеза, а S/металл составляло 0.93-0.98. При этом полученные пленки имели *р*-тип темновой проводимости, их удельное сопротивление изменялось в диапазоне от $\rho = 7.04 \times 10^{-3}$ до 2.48×10^{-3} Ом см, плотность носителей заряда составляла $N = 9.01 \times 10^{18} - 1.74 \times$ $\times 10^{19}$ см⁻³, холловская подвижность дырок варьировалась в интервале $\mu_h = 98.5 - 144.8 \text{ см}^2 \text{ B}^{-1} \text{ c}^{-1}$ в зависимости от температуры синтеза. Полученные значения плотности и подвижности носителей заряда были выше, чем в кестеритных пленках CZTS [3] и сопоставимы с таковыми для халькопиритов CIGS [4, 15]. Ширина запрещенной зоны полученных образцов $E_g = 1.42 - 1.55$ эВ.

В работе [34] пленки CFTS были получены методом двухстадийного электрохимического осаждения на подложках стекло/Мо. На первом этапе получали сплав Cu–Fe–Sn из электролитов, содержащих CuCl₂ · 2H₂O, FeCl₂ · 4H₂O, SnCl₂ · 2H₂O, порошок аскорбиновой кислоты, трехзамещен-

ный цитрат натрия и винную кислоту, pH 2.5–3.0. На втором этапе проводили сульфуризацию полученных пленок в двухзонной проточной трубчатой печи при 550°С. Ширина запрещенной зоны однофазных образцов $E_g = 1.40$ эВ.

Кроме того, описаны пленки, состоящие из наночастиц CFTS [35], полученные методом центрифугирования. Наночастицы имели средний диаметр от 8 до 30 нм. Ширина запрещенной зоны полученных пленок $E_g = 1.40$ эВ.

С учетом имеющихся данных о размере частиц в пленке и ширине их запрещенной зоны можно предположить, что для микрокристаллических пленок $E_g < 1.4$ эВ. Из приведенных выше значений наиболее достоверным представляется $E_g =$ = 1.22 эВ, полученное в работе [31]. Это значение попадает в интервал оптимальных значений, определяемый пределом Шокли–Квиссера [1]. Кроме того, если учесть достаточно большие подвижности дырок, полученные в работе [33], то можно считать CFTS весьма перспективным материалом для создания солнечных элементов.

Cu₂**FeSnSe**₄. Данное соединение менее изучено, чем Cu₂FeSnS₄. Соединение Cu₂FeSnSe₄ (**CFTSe**) имеет структуру станнита (рис. 1, ST) с параметрами кристаллической решетки a = 5.720, c == 11.292 Å [36]. Кроме того, оно обладает антиферромагнитными свойствами [37]. Температура плавления CFTSe равна 678°C [36].

В работе [38] однофазные пленки CFTSе получены методом осаждения из газовой фазы с использованием аэрозоля (AACVD), состоящего из раствора (трифенилфосфин)(тетрафенилдиселеноимидодифосфинато)меди(I) [Cu(PPh₃)[Ph₂P(Se)N(Se)PPh₂]], *mpuc*(2,4-пентандионато)железа(III) [Fe(acac)₃], ацетата олова(IV) [Sn(OAc)₄] в тетрагидрофуране. Ширина запрещенной зоны полученных пленок $E_g = 1.20$ эВ.

В работе [39] описан синтез пленок CFTSe на подложках стекло/Мо методом магнетронного напыления металлов с последующим отжигом в атмосфере селена при 540°С, а также первые солнечные элементы на основе данного материала. Полученные пленки однофазные, ширина их запрещенной зоны $E_g = 1.19$ эВ. Структура солнечных элементов – стекло/Мо/CFTSe/CdS/*i*-ZnO/AZO. Их вольтамперные характеристики: $V_{\rm oc} = 94$ мB, $J_{\rm sc} = 0.79$ мA/см², ff = 27%, что соответствует $\eta = 0.074\%$ в условиях освещения AM1.5.

Описаны также наночастицы CFTSe и фотокатоды для прямого разложения воды в фотоэлектрохимической ячейке на их основе [40]. Синтез проводили методом горячей инжекции. В типичном синтезе смесь 0.2 ммоль $CuCl_2 \cdot 2H_2O$, 0.1 ммоль $FeCl_2$, 0.1 ммоль $SnCl_4 \cdot 5H_2O$ и 10 мл олеиламина растворяли в трехгорлой колбе в атмосфере аргона. Раствор перемешивали на маг-

нитной мешалке и нагревали до 280°С. Затем 0.4 ммоль порошка селена диспергировали в 5 мл дикетопирролопиррола (ДКПП) с образованием комплекса ДКПП-Se. При температуре реакции 280°С 5 мл ДКПП-Se вводили в трехгорлую колбу и выдерживали в течение 5 мин. После реакции наночастицы CFTSe методом центрифугирования с использованием спирта и толуола наносили на подложки стекло/FTO. Для создания фотокатодов на полученные пленки наносили CdS методом химического жидкофазного осаждения (CBD) и нанодисперсную платину в качестве катализатора. Была продемонстрирована возможность фоторазложения воды в фотоэлектрохимической ячейке на таких электродах (в электролите 0.5 М Na₂SO₄ c pH 0.5).

Полученное значение ширины запрещенной зоны для пленок CFTSe ($E_g = 1.15$ эВ) [40], очевидно, неточное, так как меньше аналогичного значения для микрокристаллических пленок [38, 39], а также минимального значения ($E_g = 1.23$ эВ), необходимого для разложения воды под действием света, определяемого термодинамикой данного процесса [41].

Согласно [42], концентрация носителей заряда в стехиометрических образцах CFTSe, полученных методом прямого синтеза из элементов, $N = 9.5 \times 10^{19} \text{ см}^{-3}$, а их подвижность $\mu_h = 2.3 \text{ см}^2 \text{ B}^{-1} \text{ c}^{-1}$, что значительно меньше, чем в CFTS.

Таким образом, КПД описанных в настоящее время солнечных элементов на основе CFTSe ниже, чем на основе CFTS. Однако работы по свойствам данного материала единичны.

Cu₂NiSnS₄ и **Cu**₂NiSnSe₄ получены методом твердофазного ампульного синтеза в работе [43], авторами которой впервые описана структура этих соединений. Установлено, что для Cu₂NiSnS₄ (**CNTS**) и Cu₂NiSnSe₄ (**CNTS**) и Cu₂NiSnSe₄ (**CNTS**) характерна кубическая сфалеритная структура ($F\overline{4}$ 3*m*, рис. 3) с параметром решетки *a* = 5.425 и *c* = 5.705 Å соответственно.

В работе [44] описаны свойства микрокристаллических пленок CNTS, полученных методом электрохимического осаждения с последующим отжигом в атмосфере 5% N₂ + 95% H₂S при 550°C. Электрохимическая ячейка состояла из насыщенного каломельного электрода (SCE) в качестве электрода сравнения, платинового электрода в качестве инертного контрэлектрода и рабочего электрода стекло/ITO. Электролитом служил водный раствор CuSO₄ (0.002 M), Ni(NO₃)₂ (0.002 M), SnSO₄ (0.002 M), Na₂S₂O₃ (0.002 M), трехзамещенного цитрата натрия (0.02 М) и винной кислоты (0.01 М). Полученные пленки имели ширину запрещенной зоны $E_g = 1.61$ эВ. Исследование магнитных свойств полученных пленок показало, что они парамагнитные.

В работе [45] описаны электрофизические и оптические свойства пленок Cu₂NiSnS₄, полученных методом пиролиза спрея, представляющего собой раствор CuCl \cdot 2H₂O (0.1 M), NiCl₂ \cdot 6H₂O (0.05 M), SnCl₂ · 2H₂O (0.05 M) и тиомочевины (0.4 М) в дистиллированной воде на стеклянных подложках, нагретых до 250-450°С. Установлено, что полученные пленки имеют р-тип темновой проводимости, их удельное сопротивление $\rho =$ = 1.4-6.1 Ом см, плотность носителей заряда $N = 4.14 \times 10^{16} - 9.93 \times 10^{16}$ см⁻³, холловские подвижности дырок $\mu_h = 24.6 - 44.8$ см² В⁻¹ с⁻¹ в зависимости от температуры синтеза. Ширина запрещенной зоны полученных образцов $E_g = 1.57 - 1.57$ 1.82 эВ, коэффициент оптического поглощения в видимой области $\alpha > 10^4$ см⁻¹. Однако размер частиц в пленке маленький (d = 1.6-5.8 нм), что, по-видимому, обусловливает сравнительно большие значения E_{g} .

В работе [46] выполнен синтез пленок CNTS золь-гель методом без стадии дополнительной сульфуризации. На первом этапе синтеза был приготовлен раствор CuCl (1.98 г), NiCl₂ · $2H_2O$ (3.33 г), SnCl₂ · 2H₂O (2.93 г) и тиомочевины (6.09 г) последовательно в 3 мл деионизированной воды и 7 мл 2-метоксиэтанола. Несколько капель полученного раствора наносили методом центрифугирования на очищенную стеклянную подложку, после чего высушивали на воздухе при 200°С в течение 20 мин и отжигали при 300-400°С в атмосфере азота. Полученные пленки имели р-тип темновой проводимости, удельное сопротивление $\rho = 0.4$ Ом см, плотность носителей заряда $N = 4.5 \times 10^{17}$ см⁻³, холловские подвижности дырок $\mu_h \sim 3$ см² В⁻¹ с⁻¹. Ширина запрещенной зоны полученных образцов $E_g = 1.35$ эВ, коэффициент оптического поглощения в видимой области $\alpha > 10^4$ см⁻¹.

В работе [47] описаны первые солнечные элементы на основе наночастиц CNTS, полученных методом горячей инжекции. Пленки Cu₂NiSnS₄, полученные в данной работе имели *p*-тип темновой проводимости. Структура солнечных элементов – стекло/Mo/CNTS/CdS/ZnO/AZO/Al. Их вольтамперные характеристики: $V_{oc} = 423.8$ мB, $J_{sc} = 0.52$ мA/см² и *ff* = 43%, что соответствует $\eta =$ = 0.09% в условиях освещения AM1.5. Солнечные элементы на основе микрокристаллических пленок CNTS в настоящее время не описаны.

Данных по свойствам $Cu_2NiSnSe_4$ в литературе существенно меньше. В работе [48] описан синтез наночастиц CNTSe и свойства пленок на их основе. Для синтеза 4 ммоль порошка селена смешивали с 10 мл олеиламина, смесь перемешивали при 100°C до полного растворения селена. Затем 2 ммоль CuCl₂ · 2H₂O и 1 ммоль Ni(NO₃)₂ · 6H₂O

12

смешивали с 1 ммоль SnCl₂ · 2H₂O и 10 мл олеиламина, после чего смесь перемешивал при 100°С. После растворения веществ добавляли селенсодержащий раствор олеиламина, приготовленный на первой стадии, затем раствор выдерживали при 200°С в течение 10 ч. После охлаждения естественным путем к нему добавляли ацетон и центрифугировали для осаждения и высушивали. Тонкие пленки были приготовлены путем заливки по капле чернил нанокристаллов, полученных растворением порошка наночастиц в этаноле в ходе ультразвукового диспергирования с последующим отжигом в вакууме.

В отличие от кубической структуры объемного материала [43], по данным [49], полученные пленки CNTSe имели вюрцитную структуру (тип ZnSe, пр. гр. *P63mc*) с параметрами кристаллической решетки a = 3.889, b = 6.281 Å (рис. 7). Ширина запрещенной зоны полученных пленок $E_g = 1.39$ эВ. При этом в спектрах фотолюминесценции полученных пленок присутствовал пик с максимумом около 1.29 эВ.

В работе [50] методом твердофазного синтеза из элементных Cu, Ni, Sn и S были получены образцы Cu_{2 – δ}NiSnS₄ (0 $\leq \delta \leq$ 0.2). Синтез проводили в вакуумированных ($p = 10^{-2}$ мм рт. ст.) карбонизированных кварцевых ампулах в несколько этапов. Уточненные параметры кристаллической решетки полученных образцов: a = 5.41 Å, V == 161.4 Å³ для Cu₂NiSnS₄, a = 5.45 Å, V = 161.8 Å³ для Cu_{1.9}NiSnS₄ и a = 5.45 Å, V = 161.9 Å³ для Cu_{1.8}NiSnS₄.

Также в указанной работе впервые бесконтактным методом времяразрешенной микроволновой фотопроводимости были оценены времена жизни фотогенерированных носителей тока в $Cu_{2-\delta}NiSnS_4$, которые оказались равны $\tau \sim 7$ нс, что сопоставимо с литературными данными для кестеритов CZTS [51]. При этом в кинетике гибели фотогенерированных носителей тока наблюдается преобладание процессов бимолекулярной рекомбинации над процессами захвата.

Таким образом, данных по электрофизическим и оптическим свойствам CNTSe в литературе мало, однако сравнительно большие времена жизни фотогенерированных носителей тока, полученные в работе [50], кажутся многообещающими. Но для четкой оценки перспективности данного материала для создания солнечных элементов требуются дальнейшие исследования.

Cu₂CoSnS₄ и Cu₂CoSnSe₄. По данным [43], соединение Cu₂CoSnS₄ (**CCTS**) имеет станнитную структуру, пр. гр. *I*42*m* (рис. 1, St), с параметрами кристаллической решетки a = 5.402, c = 10.805 Å. Структура Cu₂CoSnSe₄ (**CCTSe**), по данным [43], сфалеритная, пр. гр. *F* $\overline{4}$ 3*m* (рис. 3), с параметром решетки a = 5.697 Å.

Рис. 7. Структура вюртцита [49].

Однако по данным [52], структура ССТЅе станнитная ($I\overline{4}2m$) с параметрами кристаллической решетки a = 5.6676(2), c = 11.3146(9) Å. Сходные данные приведены также и в [53].

В работе [54] описаны свойства пленок ССТЅ, синтезированных методом термического вакуумного испарения порошка, полученного методом прямого твердофазного ампульного синтеза из элементов. Напыление осуществляли на подложки, нагретые до 25-200°С, затем проводили дополнительный отжиг полученных пленок в парах серы. Полученные таким образом образцы были однофазными и, по данным элементного анализа, имели состав: Cu_{2.2}Co_{0.88}Sn_{1.06}S_{3.83}, Cu_{1.77}Co_{0.96}Sn_{0.8}S_{4.45}, $Cu_{2.1}Co_{0.95}Sn_{0.99}S_{3.95},$ $Cu_{1.62}Co_{0.75}Sn_{1.1}S_{4.5}$, $Cu_{1.97}Co_{0.72}Sn_{0.99}S_{4.31}$ и $Cu_{1.96}Co_{0.71}Sn_{0.99}S_{4.31}$. Вне зависимости от состава полученные пленки имели ртип темновой проводимости. Их коэффициент оптического поглощения света в видимой области $\alpha \sim 10^5$ см⁻¹, а ширина запрещенной зоны $E_{g} =$ = 1.40-1.43 эВ. Была также продемонстрирована фотокаталитическая активность полученных пленок при фотодеградации метиленового синего в водном растворе.

Такое же значение $E_g = 1.40$ эВ было получено в работе [55] для крупнокристаллических пленок ССТЅ стехиометрического состава, полученных золь-гель методом с последующим отжигом.

В работе [56] описаны свойства пленок Cu_2CoSnS_4 , полученных методом электрохимического осаждения с последующим отжигом в парах серы. Их синтез проводили из водного раствора $0.025 \text{ M CoCl}_2 \cdot 2H_2O$, $0.02 \text{ M CuSO}_4 \cdot 5H_2O$, 0.015 M $SnCl_2 \cdot 2H_2O$, 0.01 M винной кислоты, 0.01 M $Na_2S_2O_3 \cdot 5H_2O$ и 0.2 M трехзамещенного цитрата натрия при рН 4–5 с последующим отжигом в парах серы. Полученные таким образом образцы содержали небольшое количество примесных фаз. Ширина запрещенной зоны полученных пленок $E_g = 1.4-1.5$ эВ.

Содержание	Содержание ионов меди в исходном растворе, ммоль				
элемента, ат. %, в конечной пленке	2.5	2.25	2.00	1.90	
Cu	27.15	26.5	24.89	23.6	
Со	14.5	13.43	13.2	13.3	
Sn	9.92	10.52	11.4	12.5	
S	48.43	49.55	50.51	50.6	

Таблица 3. Элементный состав пленок, полученных в работе [57]

В работе [57] описано влияние элементного состава пленок CCTS, состоящих из наночастиц, полученных методом гидротермального синтеза. Состав полученных образцов приведен в табл. 3.

Ширина запрещенной зоны полученных пленок варьировалась в диапазоне $E_g = 1.48 - 2.00$ эВ.

Авторами установлено, что при приближении состава пленки ССТЅ к стехиометрическому (от образца 2.5 ммоль к образцу 1.9 ммоль, табл. 3) ее сопротивление увеличивается примерно на порядок: от $R \sim 110$ Ом до $R \sim 1110$ Ом.

В работе [58] описаны фотодетекторы на основе ССТЅ, полученные путем нанесения указанных пленок методом центрифугирования с последующим отжигом на подложки Si/SiO₂. Полученные пленки имели достаточно низкое удельное сопротивление ($\rho = 7.15 - 7.8$ Ом см).

В работе [59] описаны солнечные элементы грецелевского типа, в которых в качестве фотокатодов используются пленки, состоящие из наночастиц CFTS или CCTS. Фотоанодом при этом служили пленки стекло/FTO/TiO₂ + краситель (N719). Указанные пленки имели *p*-тип темновой проводимости. Плотность носителей тока в пленках CCTS $N = 5.2 \times 10^{16}$ см⁻³, холловские подвижности дырок $\mu_h = 11.5 - \text{см}^2 \text{ B}^{-1} \text{ с}^{-1}$, удельное сопротивление $\rho = 2.6 \times 10^{-3}$ Ом см. Эффективность фотоэлектрического преобразования таких устройств $\eta = 7.4\%$.

Известны также фотоэлектрохимические ячейки на основе нанокристаллических пленок ССТЅ, полученных методом пиролиза спрея, с $\eta = 2.3\%$ при интенсивности света p = 60 мВт/см² [60]. В них в качестве катода использовали пластины стекло/FTO/CCTЅ, в качестве анода – Pt/FTO, электролитом служил 0.5 М раствор Na₂SO₄, рН которого был доведен до 10 добавлением NaOH.

Данных по свойствам Cu₂CoSnSe₄, кроме приведенных выше, в литературе исключительно мало. В теоретической работе [61] приведено расчетное значение для ширины запрещенной зоны данного соединения $E_g = 1.3$ эВ.

Обобщенные сведения по физическим свойствам данных систем приведены в табл. 4. Таким образом, соединения ССТЅ и особенно СТЅЅе остаются малоизученными, однако значения ширины их запрещенной зоны попадают в максимум, определяемый пределом Шокли– Квиссера [1], что делает их потенциально пригодными для создания солнечных элементов. Однако необходимы дальнейшие исследования влияния условий синтеза на оптические и электрофизические свойства данных материалов.

ДРУГИЕ СИСТЕМЫ С ЗАМЕЩЕНИЕМ В ПОДРЕШЕТКЕ ЦИНКА: $Cu_2ASnS_{4-x}Se_x$, A = Cd, Mn, Cr

Cu₂CdSnS₄ и Cu₂CdSnSe₄. По данным [43], соединения Cu₂CdSnS₄ (**CCdTS**) и Cu₂CdSnSe₄ (**CCdTSe**) имеют станнитную структуру, пр. гр. *I*42*m* (рис. 1, St), с параметрами кристаллической решетки a = 5.586, c = 10.835 Å и a = 5.814, c = 11.47 Å соответственно.

В работе [62] описаны свойства пленок CCdTS, полученных методом магнетронного напыления. В качестве подложек использовали натрий-кальциевое стекло. Мишени готовили спеканием тонко перемешанных порошков Cu₂S, CdS и SnS_2 с чистотой 4N под давлением 28 МПа при 700°С в течение 30 мин. Было изготовлено две мишени: 1) состава, близкого к стехиометрическому (Cu : Cd : Sn : S = 2 : 1 : 1 : 4), и 2) с высоким содержанием кадмия (Cu: Cd: Sn: S == 2 : 2 : 1 : 4). Ширина запрещенной зоны образца 1 E_g = 1.38 эВ, образца 2 – E_g = 1.44 эВ. Оба образца имели р-тип темновой проводимости. Их удельное сопротивление $\rho = 6.5$ и 290 Ом см, плотность носителей заряда $N = 1.1 \times 10^{18}$ и $3.5 \times$ $\times 10^{16}$ см⁻³, холловские подвижности дырок $\mu_h =$ = 0.78 и 1.7 см² В⁻¹ с⁻¹ соответственно.

Авторами [62] на основании расчетов было показано, что преобладающими собственными дефектами в стехиометричных образцах являются $V_{\rm Cu}$ и комплекс $2{\rm Cu}_{\rm Cd} + {\rm Sn}_{\rm Cd}$. При этом $V_{\rm Cu}$ обеспечивают *p*-тип темновой проводимости в обоих образцах, тогда как указанный выше комплекс приводит к меньшему значению E_g и большей

НОВЫЕ ПОГЛОЩАЮЩИЕ СЛОИ

Соединение	Кристаллическая структура	Ширина запрещенной зоны, эВ	Тип темновой проводимости	КПД солнечного элемента
Cu ₂ FeSnS ₄	Станнит, $I\overline{4}2m$, $a = 5.466 \pm 0.005$, $c = 10.76 \pm 0.01$ Å [29]	 1.22 [31] (SILAR) 1.40 [34] (электрохимическое осаждение) 1.61 [44] электрохимическое осаждение) 	р	2.95% (стекло/ITO/Cu:NiO/CFTS/ Bi ₂ S ₃ /наночастицы ZnO/Al) [31] (SILAR)
Cu ₂ FeSnSe ₄	Станнит, <i>I</i> 42 <i>m</i> , <i>a</i> = 5.720, <i>c</i> = 11.292 Å [36]	1.19 [39] (магнетронное напыление) 1.20 [38] (AACVD)	р	0.074% стекло/Mo/CFTSe/CdS/ <i>i</i> -ZnO/AZO [39] (магнетронное напыление)
Cu ₂ NiSnS ₄	Сфалерит, <i>F</i> 43 <i>m</i> , <i>a</i> = 5.425 Å [43]	 1.35 [46] (золь-гель метод) 1.61 [44] (электрохимическое осаждение) 	р	0.09% стекло/Mo/CNTS/CdS/ZnO/ AZO/Al [47] (метод горячей инжекции + + центрифугирование)
Cu ₂ NiSnSe ₄	Сфалерит, $F\overline{4}3m$, a = 5.507 Å [43] Вюртцит, $P63mc$, a = 3.889,	1.39 [48] ⁴ (горячая инжекция)	р	-
Cu ₂ CoSnS ₄	b = 6.281 Å [48] Станнит, <i>I</i> 42 <i>m</i> , a = 5.402, c = 10.805 Å [43]	1.40—1.43 [54, 55] (термическое вакуумное испарение [54], золь-гель метод [55]) 1.4—1.5 [56] (электрохимическое осаждение)	p	7.4% пленки стекло/FTO/TiO ₂ + краситель (N719)электролит/ CCTS/ FTO/стекло [59] ⁵ (сольвотермический метод)
Cu ₂ CoSnSe ₄	Сфалерит, $F\overline{3}3m$, a = 5.697 Å [43] Станнит, $I\overline{2}m$, a = 5.6676(2), c = 11.3146(9) Å [52]	1.3 [61] ⁶	?	-

Таблица 4. Обобщенные данные по физическим свойствам $Cu_2ASnS(Se)_4$ (A = Fe, Ni, Co). Для экспериментальных работ в скобках показан метод синтеза слоя $Cu_2ASnS(Se)_4$

⁴ Для наночастиц CNTSe.

⁵ Элемент грецелевского типа.

⁶ Получено в результате теоретического расчета.

концентрации дырок в образцах, состав которых близок к стехиометрическому.

В работе [63] исследованы свойства пленок CCdTS, полученных методом магнетронного напыления предшественников с последующей сульфуризацией, а также солнечные элементы на их основе. Напыление пленок-предшественников проводили из трех различных мишеней: Cu, Sn и CdS. Напыление из первых двух осуществляли на постоянном токе, из третьей — методом высокочастотного магнетронного напыления. Отжиг проводили в парах серы при давлении 5 × 10⁻³ мм рт. ст., t == 550°C в течение 60 мин. Мольные соотношения элементов в полученных пленках: Cu/(Cd + Sn) = = 0.92, Cd/Sn = 1.20 и S/(Cu + Cd + Sn) = 0.91. Удельное сопротивление $\rho = 2.08$ Ом см, плотность носителей заряда $N_h = 2.98 \times 10^{17}$ см⁻³, холловские подвижности дырок $\mu_h = 21.35$ см² B⁻¹ с⁻¹. Таким об-

Рис. 8. Температурные зависимости сопротивления твердых растворов $Cu_2CdSn_{1-x}In_xSe_4$ [70].

разом, значение удельного сопротивления меньше, а подвижность — больше, чем в работе [62], что, по-видимому, обусловлено различием в стехиометрии образцов в этих работах. Максимальный КПД солнечных элементов, полученных в данной работе, $\eta = 1.14\%$.

Известны также солнечные элементы с $\eta = 1.14\%$ на основе слоев CCdTS, полученных методом пиролиза спрея с последующим отжигом [64]. Для получения указанных пленок спрей, представляющий собой водный раствор CuCl₂, SnCl₂, Cd(CH₃COO)₂ и CS(NH₂)₂ в мольном соотношении 2 : 1 : 1 : 8, распыляли на подложки, нагретые до 280–400°С, при помощи специального ультразвукового распылителя в бескислородной среде. Полученные пленки затем подвергали дополнительному отжигу при 500°С в атмосфере 90% Ar + 10% H₂S. Ширина запрещенной зоны итоговых пленок $E_g = 1.38-1.40$ эВ.

В работе [65] описаны солнечные элементы с $\eta = 7.7\%$ в условиях освещения AM1.5 на основе пленок CCdTS, полученных методом центрифугирования. Кроме того, авторами [65] исследовано влияние стехиометрии на времена жизни фотогенерированных носителей тока (т). Установлено, что при уменьшении соотношения a = = Cu/(Cd + Sn) от 0.92 до 0.8 время жизни (т) увеличивается от 2.3 до 44.7 нс. При этом указанные времена жизни значительно больше, чем для кестеритов Cu_{2-δ}ZnSnS₄ аналогичной стехиометрии: 2.4 и 20.2 нс для a = 0.86 соответственно.

Описаны также солнечные элементы на основе кестеритов CZTS, в которых цинк лишь частично замещен на кадмий с $\eta = 12.6\%$ в условиях освещения AM1.5 [66]. Используемые пленки имели состав Cu₂(Zn_{0.6}Cd_{0.4})SnS₄. Авторами исследова-

но влияние дополнительного отжига устройств с различными контактами AZO или ITO. Установлено, что применение ITO предпочтительнее и приводит к увеличению КПД в случае дополнительного отжига конечного устройства. Наблюдаемое явление обусловлено диффузией индия, что приводит к улучшению электрофизических свойств пленок, образующих солнечный элемент.

В работе [67] описаны солнечные элементы на основе пленок $Cu_2CdSnS_{4-v}Se_v$, полученных методом центрифугирования. Для синтеза указанных пленок 1.65 ммоль Cu₂O, 2.4 ммоль Cd(OH)₂ и 2.0 ммоль SnO отдельно растворяли в трех стеклянных флаконах, добавляя 2.5 мл этанола, 0.9 мл 15 мМ сероуглерода и 1.5 мл 15 мМ 1-бутиламина соответственно. Для повышения стабильности добавляли 0.5 мл тиогликолевой кислоты. Растворение проводили в ультразвуковой ванне. После этого три раствора смешивали, центрифугировали и надосадочный раствор использовали для получения пленок $Cu_2CdSnS_{4-v}Se_v$. Полученный раствор методом центрифугирования наносили на подложки стекло/Мо, нагретые до 320°С, затем отжигали в трубчатой вакуумной печи в парах селена. Ширина запрещенной зоны полученных пленок $E_g = 1.0$ эВ. На основе полученных пленок были созданы солнечные элементы с $\eta =$ = 3.1% в условиях освещения AM1.5.

Данных по свойствам CCdTSe в литературе существенно меньше. В работе [68] описаны свойства образцов CCdTSe, полученных методом твердофазного ампульного синтеза. Установлено, что данное соединение имеет $t_{\pi\pi} \sim 800^{\circ}$ C и *p*-тип темновой проводимости. Его удельное сопротивление равно 10^{-1} Ом см, а ширина запрещенной зоны $E_{g} = 0.96$ эВ.

В работе [69] получено близкое значение для ширины запрещенной зоны CCdTSe ($E_g = 0.98 \Rightarrow B$).

В работе [70] описаны температурные зависимости сопротивления твердых растворов $Cu_2CdSn_{1-x}In_xSe_4$, полученных методом твердофазного ампульного синтеза. Полученные данные приведены на рис. 8, из которого видно, что с увеличением содержания индия удельное сопротивление образцов падает.

Описаны также пленки, состоящие из нанокристаллов CCdTSe [71]. Для их синтеза смесь CuCl (1 ммоль), Cd(NO₃)₂ · 4H₂O (0.5 ммоль) и SnCl₄ · 5H₂O (0.5 ммоль) растворяли в 24 (раствор 1) или 32 мл (раствор 2) этилендиамина, а затем добавляли к Se-содержащему раствору, который получали растворением порошка Se (2 ммоль) в 8 мл гидразингидрата. Указанные растворы загружали в автоклав из нержавеющей стали с тефлоновым покрытием объемом 40 мл и затем нагревали при 190–200°С в течение 24–72 ч с последующим медленным охлаждением до комнатной

t _{ot} , °C	Cu/(Mn + Sn)	Mn/Sn	S/металлы	<i>E_g</i> , эВ	η, %
500	0.83	1.02	0.91	1.50	0.22
530	0.87	1.05	0.95	1.49	0.67
560	0.88	1.08	0.99	1.47	0.91
590	1.04	1.49	0.94	1.44	0.59

Таблица 5. Зависимость состава пленок CMnTS, ширины запрещенной зоны и КПД солнечных элементов на их основе от температуры отжига [77]

температуры. Продукт центрифугировали при 3500 об/мин в течение 3 мин, затем несколько раз промывали дистиллированной водой и этанолом для удаления растворимых примесей и, наконец, сушили при 45°С. Тонкие пленки толщиной 1–2 мкм получали методом центрифугирования. Полученные нанокристаллические пленки имели ширину запрещенной зоны $E_g = 1.0$ эВ.

Известен также метод коллоидного синтеза нанокристаллических пленок CCdTSe [72].

Таким образом, соединение CCdTS в настоящее время достаточно хорошо изучено. При этом из всех соединений Cu₂ASnS(Se)₄ КПД солнечных элементов на основе данного материала наибольший, однако он все же ниже, чем у устройств на основе халькопиритов CIGS [4, 15]. Соединение CCdTS является слишком узкозонным для создания эффективных солнечных элементов. Существенным недостатком описанных соединений является наличие высокотоксичного кадмия в их составе.

Cu₂**MnSnS**₄ и **Cu**₂**MnSnSe**₄. По данным [43], соединения Cu₂MnSnS₄ (**CMnTS**) и Cu₂MnSnSe₄ (**CMnTSe**) имеют станнитную структуру с пр. гр. *I*42*m* (рис. 1, St) и параметрами кристаллической решетки a = 5.49, c = 10.72 Å и a = 5.744, c = 11.423 Å соответственно.

По данным [73], эти соединения имеют *p*-тип темновой проводимости и, кроме того, являются магнитными полупроводниками. Согласно [74], CMnTS является антиферромагнетиком, тогда как CMnTSe имеет свойства спинового стекла [75].

В работе [76] определены кристаллографические характеристики твердых растворов $Cu_{2-x}MnSnS_4$ (0 < $x \le 0.10$), полученных методом твердофазного ампульного синтеза. Установлено, что в кристаллических решетках Cu_2MnSnS_4 и $Cu_{2-x}MnSnS_4$ происходит разупорядочение: часть атомов меди входит в подрешетку марганца, а часть атомов марганца — в подрешетку меди.

При этом в спектре катодолюминесценции Cu_2MnSnS_4 при 78 К наблюдается полоса с максимумом 1.26 эВ, обусловленная, по всей вероятности, антиструктурными дефектами Cu_{Mn} и Mn_{Cu} , образующимися при замещении атомов между медной и марганцевой подрешетками в стан-

нитной структуре, а в спектре твердых растворов $Cu_{2-x}MnSnS_4$ помимо полосы 1.26 эВ имеется полоса с максимумом 1.21 эВ, обусловленная преобладающими дефектами – ассоциатами $Cu^{2+}V_{Cu}$.

В работе [77] описаны свойства пленок CMnTS, полученных методом электрохимического осаждения пленок-предшественников Cu–Sn–MnO₂ с последующей сульфуризацией. Осаждение проводили на подложки стекло/FTO в потенциостатическом режиме из водных растворов 0.015 M CuSO₄ \cdot 5H₂O, 0.025 M SnSO₄ \cdot 2H₂O, 0.1 M C₄H₄O₆K₂ \cdot 1/2H₂O и 0.02 M Na₃C₆H₅O₇ (синтез Cu–Sn) и 0.02 M Mn(CH₃OO)₂ (синтез MnO₂) соответственно.

Отжиг проводили в парах серы в азотной атмосфере в диапазоне температур 500—590°С. Состав и свойства полученных пленок, ширина их запрещенной зоны, а также КПД солнечных элементов на их основе зависели от температуры отжига (табл. 5).

Структура солнечных элементов – Ag/AZO/*i*-ZnO/CdS/CMnTS/FTO/Стекло. Из табл. 5 видно, что при увеличении температуры отжига происходит плавное увеличение соотношений Cu/(Mn + + Sn) и Mn/Sn. При этом максимальный КПД солнечного элемента наблюдается для Cu/(Mn + + Sn) = 0.88, Mn/Sn = 1.08 и S/металлы = 0.99. Ширина запрещенной зоны при этом уменьшается от 1.50 до 1.44 эВ.

В работе [78] описаны свойства пленок CMnTS и CMnTSSe, полученных методом пиролиза спрея, а также солнечные элементы на их основе. Использованный спрей представлял собой водный раствор 0.2 M CuCl₂ · 2H₂O, 0.1 M MnCl₂ · 2H₂O, $0.1 \text{ M SnCl}_2 \cdot 2\text{H}_2\text{O}$ и 1 М тиомочевины. Осаждение проводили на подложки, нагретые до 300-400°С. Полученные пленки имели недостаток меди и избыток марганца. Чтобы обеспечить легирование натрием, в исходные растворы дополнительно добавляли NaCl. Отжиг полученных пленок проводили в парах серы или селены при 500-550°С для получения CMnTS и CMnTSSe соответственно. Полученные пленки имели состав $Cu_{1.57}Mn_{0.90}Sn_{0.73}S_{4.78}$ и $Cu_{1.69}Mn_{0.97}Sn_{1.01}S_{1.4}Se_{2.9}$. Ширина их запрещенной зоны $E_g = 1.6$ и 1.47 эВ соответственно. Установлено, что легирование натрием значительно увеличивает КПД солнечного элемента. Для устройств на основе нелегированных пленок CMnTS $\eta = 0.19\%$, а при легировании их натрием КПД повышался до $\eta = 0.73\%$ в условиях освещения AM1.5. Устройства на основе CMTSSe оказались менее эффективными – их КПД был равен 0.07%.

В работе [79] для солнечных элементов на основе пленок CMnTSSe, полученных золь-гель методом, была продемонстрирована эффективность $\eta = 1.79\%$ в условиях освещения AM1.5. Для их синтеза 0.5 M SnCl₂ · 2H₂O и 2.9 M CS(NH₂)₂ pacтворяли в 2-метоксиэтаноле, затем добавляли $0.52 \text{ M} (CH_3COO)_2 Cu \cdot H_2 O и (CH_3COO)_2 Mn \cdot 4H_2 O.$ После обесцвечивания раствора к нему добавляли этаноламин, триэтаноламин и ацетилацетон для предотвращения растрескивания пленки. Полученный раствор наносили на подложки стекло/Мо методом центрифугирования с последующим отжигом на воздухе при 270°С. Затем полученные пленки селенизировали при 480-600°С. Плотность носителей заряда в полученных пленках $N = 2.02 \times 10^{16}$ см⁻³, ширина запрещенной зоны $E_g = 1.07$ эВ.

Работ по изучению свойств CMnTSe существенно меньше. В работе [80] описаны электрофизические свойства соединений общей формулы Cu_{2 + δ}Mn_{1 - δ}SnSe₄ (δ = 0, 0.025, 0.05, 0.075 и 0.1), полученных методом твердофазного вакуумного синтеза с последующим прессованием при *P* = 60 МПа. Полученные образцы имели *p*-тип темновой проводимости. На рис. 9 приведены полученные авторами зависимости электрофизических свойств от стехиометрии.

Из рисунка видно, что при увеличении δ электропроводность образцов и концентрация носителей заряда в них растут, а подвижность падает.

В работе [42] описаны свойства твердых растворов Cu₂Mn_{1-x}Fe_xSnSe₂ ($0 \le x \le 1$), полученных методом твердофазного синтеза из элементов. Установлено, что они имеют *p*-тип темновой проводимости, при этом концентрация носителей заряда в данной системе плавно растет от $N = 2.1 \times 10^{19}$ до 1.22×10^{20} см⁻³ при изменении *x* от 0 до 0.9, а подвижность падает от $\mu_h = 15.2$ до 2.8 см² В⁻¹ с⁻¹.

Таким образом, КПД солнечных элементов на основе CMnTS невысокий, однако влияние стехиометрии на свойства данного материала исследовано пока недостаточно. Сведений о свойствах CMnTSe еще меньше, и получение таких сведений — задача будущих работ.

Cu₂CrSnS₄. Работы по данным системам в мировой литературе единичны. В работе [81] описаны нанокристаллические пленки состава Cu₂Cr_xZn_{1 – x}S₄ ($0 \le x \le 1$). Для их синтеза 2 ммоль CuCl₂ · 2H₂O, (1 - x) ммоль ZnCl₂, *х* ммоль CrCl₃ · 6H₂O, где *x* = = 0, 0.25, 0.5, 0.75, и 1.1 ммоль SnCl₂ · 2H₂O, 4 ммоль тиомочевины и 0.64 г поливинилпирролидона в качестве укупорочного агента растворяли в 40 мл этиленгликоля в качестве растворителя и затем равномерно перемешивали в течение 1 ч при 80°С. Полученный раствор переносили в автоклав с тефлоновым покрытием и выдерживали при 220°С в течение 15 ч, а затем охлаждали воздухом при комнатной температуре. Осадки отфильтровывали и несколько раз промывали дистиллированной водой и абсолютным этанолом. Конечный продукт сушили в вакууме при 100°С в течение 3 ч. Тонкие пленки Cu₂Zn_{1 – x}Cr_xSnS₄ получали методом центрифугирования с последующим отжигом в атмосфере Ar + S.

Полученные пленки Cu₂CrSnS₄ (x = 1), по данным [81], имели кестеритную структуру (рис. 1, KS) с параметрами кристаллической решетки a == 3.1264, c = 10.8231 Å. Ширина их запрещенной зоны $E_g = 1.35$ эВ, а коэффициент оптического поглощения в видимой области $\alpha > 10^4$ см⁻¹.

В работе [82] авторами были изучены свойства порошков Cu₂CrSnS₄, полученных методом твердофазного ампульного синтеза, а также пленок, полученных методом вакуумного напыления с последующим отжигом в атмосфере SnS₂. Анализ структуры порошков показал, что она орторомбическая, пр. гр. *Pmn*21, параметры решетки a == 6.28(9), b = 8.32(8), c = 6.17(16) Å, V = 322.7(71) Å³. При этом пленки, содержащие минимальное количество примесных фаз, имели аналогичную структуру. Кроме того, они были фоточувствительны с *p*-типом темновой проводимости, ширина их запрещенной зоны, определенная из спектров отражения, $E_g = 1.64$ эВ.

 $Cu_2CrSnSe_4$ в литературе пока не описан. Обобщенные данные по свойствам описанных соединений приведены в табл. 6.

СИСТЕМЫ С ЗАМЕЩЕНИЕМ В ПОДРЕШЕТКЕ ОЛОВА:

 $Cu_2Zn-B-S_4$ (B = Sn, Pb, Si, Ge и Ti, Zr, Hf)

Данные о стабильности. В работе [83] рассмотрены некоторые из соединений с общей формулой $Cu_2Zn-B-S_4$, где B = Si, Ge, Sn, Pb (чаще) и Ti, Zr, Hf (реже), и их термодинамическая стабильность.

В табл. 7 приведены расчетные значения изменения энергии для возможных реакций фазового разделения этих соединений.

Следует отметить, что системы Cu₂ZnSiS₄, Cu₂ZnGeS₄ и Cu₂ZnSnS₄ являются более устойчивыми, в то время как при B = Pb, Ti, Zr и Hf все соединения подвергаются фазовому разложению на бинарные или тройные системы, так как по крайней мере одна из реакций фазового разделения имеет отрицательное значение ΔE . Это указывает

Рис. 9. Зависимость электропроводности (а), плотности носителей заряда (б) и подвижности (в) $Cu_{2+\delta}Mn_{1-\delta}SnSe_4$ в зависимости от δ [80].

на то, что химические связи в бинарных и тройных системах намного сильнее (следовательно, энергия образования ниже), чем в четверных. В процессе изменения энергии можно отметить три тенденции:

1) для реакции фазового разделения по типу $Cu_2Zn-B-S_4 \rightarrow 2CuS + ZnS + B-S$ значение ΔE уменьшается в ряду B = Si-Ge-Sn и становится отрицательным для B = Pb. Это связано с тем, что из-за релятивистских эффектов тяжелому элементу Pb предпочтительнее находиться в ионном состоянии +2 (как, например, в PbS, имеющем структуру NaCl), чем в состоянии +4 (как в структуре кестерита CZTS).

2) для реакции фазового разделения по типу $Cu_2Zn-B-S_4 \rightarrow Cu_2S + ZnS + B-S_2$ значение ΔE уменьшается от положительного к отрицательному по мере изменения элемента IV группы в ряду Ti-Zr-Hf. Это указывает на то, что элемент Hf c более делокализованной 5*d*-валентной орбиталью предпочтительнее образовывает бинарное соединение HfS_2 с ионной структурой, чем тетрагональную координацию Hf-S в четверном соединении Cu_2ZnHfS_4 .

3) для реакции фазового разделения по типу $Cu_2Zn-B-S_4 \rightarrow Cu_2-B-S_3 + ZnS$ стабильность четверных соединений при замене элементов IV группы в ряду Ti-Zr-Hf незначительно увеличивается. Это связано с большим ростом релаксационной деформации при увеличении размера элемента IV группы в четвертичных системах по сравнению с тройными Cu_2-B-S_3 . Учитывая данные расчеты, можно предсказать, что получить четверные соединения типа I_2 -II-IV-VI₄ с тяжелыми элементами IV группы будет сложнее из-за конкурирующих реакций фазового разделения на бинарные и тройные соединения.

ГАПАНОВИЧ и др.

*		2 (/ 1			
Соединение	Кристаллическая структура	Ширина запрещенной зоны, эВ	Тип темновой проводимости	КПД солнечного элемента	
Cu ₂ CdSnS ₄	Станнит, <i>I</i> 42 <i>m</i> <i>a</i> = 5.586, <i>c</i> = 10.835 Å [43]	1.38 [62] 1.38—1.40 [64] (магнетронное напыление)	p	7.7% Стекло/Mo/CCdTS/CdS/i- ZnO/AZO [65] 12.6% (магнетронное напыление) Стекло/Mo/Cu ₂ Zn _{0.6} Cd _{0.4} CdSnS ₄ /CdS/ZnO/AZO [66] (магнетронное напыление)	
Cu ₂ CdSnSe ₄ ¹	Станнит, <i>I</i> 42 <i>m</i> <i>a</i> = 5.814, <i>c</i> = 11.47 Å [43]	0.96 [69] (твердофазный ампульный синтез) 1.0 [71] (центрифугирование наночастиц)	р	_	
Cu ₂ MnSnS ₄	Станнит, <i>I</i> 42 <i>m</i> , <i>a</i> = 5.49, <i>c</i> = 10.72 Å [43]	1.44—1.50 [77] (электрохимическое осаждение) 1.47—1.60 [78] (пиролиз спрея)	р	0.91% Ag/AZO/ <i>i</i> -ZnO/CdS/ CMnTS/FTO/ стекло [78] (пиролиз спрея) 1.79%	
Cu ₂ MnSnSe ₄	Станнит, <i>I</i> 42 <i>m</i> , <i>a</i> = 5.744, <i>c</i> = 11.423 Å [43]	?	р	Стекло/Mo/CMnTSSe/CdS/ -ZnO/AZO [79] (золь-гель метод)	
Cu ₂ CrSnS ₄	Кестерит, $I4$, a = 3.1264, c = 10.8231 Å [61] Орторомбическая a = 6.28(9), b = 8.32(8), c = 6.17(16) Å [82]	 1.35 [81] (центрифугирование наночастиц) 1.64 [82] (вакуумное напыление с последующим отжигом) 	р	_	

Таблица 6. Обобщенные данные по физическим свойствам Cu₂ASnS(Se)₄ (A = Cd, Mn, Cr). Для экспериментальных работ в скобках показан метод синтеза слоя Cu₂ASnS(Se)₄

Рассмотренная выше нестабильность четверных соединений может быть связана с отсутствием оптимальных значений химического потенциала для образования $Cu_2Zn-B-S_4$ (B = Pb, Ti, Zr, Hf).

На рис. 10 для Cu_2ZnTiS_4 показаны границы, в которых существует зона относительно стабильной фазы Cu_2TiS_3 .

Экспериментально тройная система Cu_2TiS_3 еще не получена, но, по-видимому, она будет нестабильной, так как согласно реакции разделения фаз Cu_2ZnTiS_4 разлагается на Cu_4TiS_4 и TiS_2 [84].

Однако четверные соединения Cu_2ZnTiS_4 и $Cu_2ZnTiSe_4$ успешно получены и предложены в качестве потенциальных поглощающих слоев в TCЭ, так как они обладают сопоставимыми с соответствующими кестеритами Cu_2ZnSnS_4 и

 $Cu_2ZnSnSe_4$ значениями ширины запрещенной зоны и более высоким коэффициентом поглощения света [85]. Но расчет их термодинамической стабильности показывает, что четвертичные соединения с заменой олова на титан являются только метастабильными, что вносит свои сложности в реальное применение в ТСЭ.

Cu₂ZnPb(S,Se)₄. Согласно [86], соединение Cu₂ZnPbS₄ кристаллизуется в структуре типа кестерита с параметрами кристаллической решетки a = 5.54, c = 11.28 Å и c/a = 2.037. В этом случае параметры решетки увеличиваются, в отличие от соответствующего Cu₂ZnSnS₄, что связано с бо́льшим ионным радиусом свинца по сравнению с оловом. Однако в настоящее время нет теоретических или экспериментальных данных для этого типа соединений. Из расчетов энергии основного состояния установлено, что для

НОВЫЕ ПОГЛОЩАЮЩИЕ СЛОИ

Соединение	Фазовое разделение	ΔE
	$Cu_2S + ZnS + SiS_2$	0.48
Cu ₂ ZnSiS ₄	2CuS + ZnS + SiS	1.89
	$Cu_2SiS_3 + ZnS$	0.16
	$Cu_2S + ZnS + GeS_2$	0.73
Cu_2ZnGeS_4	2CuS + ZnS + GeS	0.79
	$Cu_2GeS_3 + ZnS$	0.08
	$Cu_2S + ZnS + SnS_2$	0.56
Cu_2ZnSnS_4	2CuS + ZnS + SnS	0.40
	$Cu_2SnS_3 + ZnS$	0.08
	$Cu_2S + ZnS + PbS_2$	1.00
Cu ₂ ZnPbS ₄	2CuS + ZnS + PbS	-0.60
	$Cu_2PbS_3 + ZnS$	-0.11
	$Cu_2Se + ZnSe + SnSe_2$	0.76
Cu ₂ ZnSnSe ₄	2CuSe + ZnSe + SnSe	0.38
	$Cu_2SnSe_3 + ZnSe$	0.05
	$Cu_2S + ZnS + TiS_2$	0.15
Cu ₂ ZnTiS ₄	2CuS + ZnS + TiS	1.14
	$Cu_2TiS_3 + ZnS$	-0.05
	$Cu_2S + ZnS + ZrS_2$	-0.27
Cu_2ZnZrS_4	2CuS + ZnS + ZrS	1.20
	$Cu_2ZrS_3 + ZnS$	-0.03
	$Cu_2S + ZnS + HfS_2$	-0.40
Cu ₂ ZnHfS ₄	2CuS + ZnS + HfS	1.73
	$Cu_2HfS_3 + ZnS$	0.04

Таблица 7. Расчетные значения ΔE (эВ) для соединений Cu₂Zn–B–S₄ (B = Si, Ge, Sn, Pb, Ti, Zr, Hf) [83]. Для экспериментальных работ в скобках показан метод синтеза слоя Cu₂ZnBS(Se)₄

 Cu_2ZnPbS_4 тетрагональная фаза кестерита более стабильна, чем тетрагональная фаза станнита. Кроме того, обнаружено, что длина связи Pb–S увеличивается по сравнению со связью Sn–S. Это можно объяснить тем, что электроотрицательность у олова выше, чем у свинца. В общем случае при сравнении Cu_2ZnPbS_4 и Cu_2ZnSnS_4 можно отметить, что увеличение параметров решетки вызвано двумя эффектами: разницей в атомных радиусах и в значениях электроотрицательности.

Что касается электронных свойств, то при замене атомов Sn на Pb вследствие перекрывания зоны проводимости с валентной зоной, где полоса пропускания смещена в область более низких энергий, материалы начинают вести себя как металлы. В этом случае важными локализованными состояниями в зонной структуре являются состояния на уровне Ферми, поскольку носители заряда в этих состояниях почти полностью участвуют в механизме переноса. Так, в Cu₂ZnPbS₄ зона, пересекающая уровень Ферми, образуется за счет гибридизации орбиталей 3*d*-Cu, 2*p*-Sn и 6*s*-Pb [86].

Природа материалов, а также разный уровень максимума валентной зоны играют важную роль в определении термоэлектрических характеристик. В случае замены атомов олова на свинец в Cu₂ZnPbS₄ из-за перекрывания уровня Ферми валентной зоной и зоной проводимости перенос вызван одновременно дырками и электронами. Кроме того, перенос электронов компенсирует перенос дырок, что приводит к уменьшению коэффициента Зеебека для дырок. Как известно, подходящий материал для термоэлектрического применения наряду с высокой электропроводностью должен иметь более высокое значение коэффициента Зеебека. Самая высокая электропроводность для Cu₂ZnPbS₄ составляет 4×10^5 CM см⁻¹ при 300 К [86], что еще больше подтверждает металлические свойства этого соединения. Кроме того, повышение температуры приводит к увеличению теплопроводности, что также наблюдается в Cu₂ZnPbS₄.

 $Cu_2ZnSi(S,Se)_4$. Соединение $Cu_2ZnSiSe_4$ (CZSiSe) относится к семейству четверных халькогенид-

Рис. 10. Предел областей химического потенциала для стабильного существования фазы типа I_2 –II–IV– VI_4 [84].

ных полупроводниковых материалов типа $I_2-II-IV-VI_4$. Еще в самых первых работах [43, 87] указывалось, что они кристаллизуются в структуре типа вюрцита-станнита (рис. 11) в системе орторомбических кристаллов. Такая кристаллическая структура характеризуется определенным набором тетраэдрических связей: каждый анион селена тетраэдрически окружен четырьмя катионами (два Cu, один Zn и один Si), в то время как каждый катион металла тетраэдрически координирован четырьмя анионами селена. Структура типа вюрцита-станнита может быть получена из структуры типа $MnSiN_2$ (пр. гр. $Pna2_1$) путем замены атомов Mn на Cu, половины Si на Zn и N на Se соответственно.

Известно, что монокристаллы CZSiSe можно выращивать методом химического переноса в га-

зовой фазе (chemical vapor transport, CVT-метод) [88–90], а также с применением горизонтального градиентного замораживания и спекания [91, 92]. Теоретически рассчитанные значения Е_g для Cu₂ZnSiSe₄ отличаются в зависимости от типа кристаллической решетки: 1.48 эВ [93] (1.92 эВ [94]) для кестеритной, 1.07 эВ [93] (1.53 эВ [94]) для станнитной и 1.17 эВ [93] для вюрцит-станнитной. Эти значения оказались ниже величин, определенных по оптическим измерениям: 2.33 эВ [87] и 2.08-2.14 эВ [88] соответственно. Однако даже такие значения Eg позволяют соединениям Cu₂ZnSiSe₄ выступать в качестве возможного поглошаюшего слоя в танлемном солнечном элементе. Кроме того, серия твердых растворов $Cu_2ZnSn_{1-x}Si_xSe_4$ с шириной запрещенной зоны в диапазоне от 2.3 до 1.0 эВ также может быть эффективна для преобразования солнечной энергии.

На настоящий момент в определении структуры четверных соединений с заменой олова на кремний существует ряд различий. Несмотря на то, что многие теоретические расчеты предсказывают кестеритную структуру для Cu_2ZnSiS_4 и $Cu_2ZnSiSe_4$ [83, 95, 96], подавляющее большинство экспериментальных исследований указывает на орторомбическую вюрцит-станнитную структуру (рис. 11), пр. гр. *Pmn2*₁ [97, 98].

В работах [87, 99–101] авторы подтверждают, что для селенида Cu₂ZnSiSe₄ характерна структура типа вюрцита-станнита, хотя авторы [102] указывают на моноклинную вюрцит-кестеритную фазу (пр. гр. *Pc*) в кристаллах, полученных методом твердофазного синтеза при высокой температуре (1000°С). Такие расхождения между рассчитанными и экспериментальными данными для четверных типов пленок с заменой на Ge и Si заключаются в очень схожих значениях полной энергии (с разницей всего в несколько мэВ на

Рис. 11. Кристаллическая структура соединений $Cu_2ZnSiVI_4$ (VI = S, Se): а – вюрцит-кестерит, б – вюрцит-станнит [105].

атом [92]) и энтальпии образования для ряда полиморфных форм данного материала.

В работе [103] сообщается об исследовании монокристаллов Cu_2ZnSiS_4 , полученных методом химического транспорта. Авторы также подтверждают орторомбическую структуру образцов методом РФА. Полученные экспериментальные данные хорошо согласуются с теоретическими на примере аналогичной системы Cu_2CdSiS_4 орторомбического строения [104], что может служить независимым доказательством обоснованности выбранной структуры вюрцит-станнит для изученных кристаллов.

Данные о ширине запрещенной зоны этого соединения противоречивы. Первоначальные теоретические расчеты указывали на то, что оно является прямозонным полупроводником с шириной запрещенной зоны 3.09 и 2.71 эВ для структур вюрцит-кестерит (WKS) и вюрцит-станнит (WST) соответственно [105]. В более раннем исследовании сообщалось, что Cu₂ZnSiS₄ является непрямозонным полупроводником [106], что может быть обусловлено наличием примесей в монокристалле или неточностью используемого метода измерения [105]. Однако природа прямых переходов в Cu₂ZnSiS₄ подтверждается также недавними исследованиями, проведенными на порошковых образцах (фазы α -Cu₂ZnSiS₄ и β -Cu₂ZnSiS₄), значения E_{g} которых равны 3.0 и 3.2 эВ соответственно [102]. Таким образом, соединение CZSiS, как и CZTS, является прямозонным полупроводником, но имеет бо́льшее значение E_{g} [107].

На сегодняшний день существует множество теоретических работ по изучению монокристаллических образцов CZSiS. В работе [108] на основании результатов исследований удельного сопротивления $\rho(T)$ предложена модель энергетического спектра дырок вблизи края валентной зоны в кристалле Cu₂ZnSiSe₄. Механизм прыжковой проводимости Мотта был установлен в интервале температур 100-200 К, тогда как в диапазоне температур 200-300 К проводимость определяется тепловыми возбуждениями дырок. Кроме того, в работе определены параметры локализованных дырок и особенности плотности состояний вблизи края валентной зоны, включая относительную концентрацию акцепторов N/N_c ~ 0.41-0.49 ($N_c = 7 \times 10^{18}$ см⁻³ – критическая концентрация для перехода металл-изолятор), относительный радиус локализации $a/a_{\rm B} \sim 1.7 - 2.1$ ($a_{\rm B} =$ = 13.1 Å – радиус Бора), полуширину акцепторной зоны $W \sim 95-106$ мэВ, с $E_0 = 59$ мэВ выше потолка валентной зоны, среднюю плотность локализованных состояний $g_{av} \sim (1.4-1.8)$ $\times 10^{16}$ мэB⁻¹ см⁻³ и на уровне Ферми $g(\mu) \sim (4.1 -$ 5.4) $\times 10^{15} \text{ мэB}^{-1} \text{ см}^{-3}$.

В другой теоретической работе этих авторов [109] исследованы спектры отражения монокристаллов Cu₂ZnSiS₄, выращенных в вакуумированных кварцевых ампулах. Синтез проволили методом химического переноса в газовой фазе, исходными вешествами служили металлы и сера. взятые в стехиометрическом соотношении. Оптические спектры для монокристаллов измеряли при 300 и 10 К в условиях перпендикулярного $E \perp c$ и параллельного *Е*|*c* расположения поляризованного света к оптической оси. В работе также определены энергетические положения n = 1 и 2 уровней трех рядов А-, В- и С-серий экситонов. Определена энергия связи экситона и эффективные массы электрона и дырок. Полученные значения хорошо согласуются с теоретически рассчитанными в работе [94].

В работе [110] изучены спектры интерференции типа Фабри–Перо монокристаллов CZSiSe в условиях двойного лучепреломления, а также спектральные зависимости показателя преломления в условиях облучения светом с длиной волны $\lambda_0 = 622$ нм (при 300 K) и 605 нм (при 10 K). Авторы утверждают, что при $\lambda > \lambda_0$ спектральная разница имеет отрицательные значения, а при $\lambda < \lambda_0$ – положительные. По мере уменьшения температуры длина волны смещается в коротковолновую область. Кроме того, при длине волны 538 нм (при 10 K) эта разница имеет максимальное значение. Коэффициент поглощения при этом меняется до $10^2 - 10^3$ раз.

В теоретической работе других авторов [105] сообщается об исследовании электронных и оптических свойств соединений CZSiS и CZSiSe с различными кристаллическими решетками (рис. 11). Установлено, что структура типа вюрцита-кестерита обладает наименьшей энергией по сравнению с вюрцит-станнитной структурой, что указывает на бо́льшую устойчивость первой кристаллической структуры.

Авторы отмечают, что разница в энергии между двумя структурами невелика (например, для Cu₂ZnSiS₄ она составляет ~1.54 мэВ/атом), что говорит о высокой вероятности смешивания структур в этом материале. Более того, разница в энергии между двумя структурами в селениде больше, чем в сульфиде, что может указывать на большое несоответствие параметров решетки и, следовательно, на большую энергию деформации. Кроме того, устойчивость к высоким температурам у соединений разная: CZSiS начинает разлагаться при 620°С, в то время как CZSiSe при 470°С [100]. Авторы также сообщают, что два типа полупроводников являются прямозонными, хотя в ряде работ Левченко [106] указывается, что сульфид является непрямозонным полупроводником. Такая разница может быть вызвана наличием примесей в образцах или вероятной неточностью в определении значений Eg. Кроме того, расчетные значения ширины запрещенной зоны имеют некоторые закономерности для различных соединений и структур. Например, в случае структуры вюрцита-кестерита для сульфида значения E_g больше, чем для селенида (1.68 и 0.84 эВ соответственно). С другой стороны, для одного и того же типа соединений (сульфид или селенид) значения ширины запрещенной зоны также меняются в зависимости от типа кристаллической решетки. Так, например, для структуры вюрцитакестерита значения Eg больше, чем для структуры вюрцита-станнита (например, для CZSiS $E_g = 1.68$ и 1.37 эВ соответственно). Как указывают авторы, это связано с тем, что в структуре вюрцита-кестерита присутствуют более длинные связи Cu-анион и, следовательно, больше анионное смещение. Теоретические значения Eg нашли свое подтверждение в экспериментальных работах [87, 100, 111].

Помимо потенциального применения в TCЭ, соединения с кремнием $Cu_2ZnSiSe_4$ нашли свое применение в качестве перспективных материалов с нелинейно-оптическими свойствами в ин-фракрасной области [112].

Еще одним интересным и потенциальным применением таких соединений может быть использование их в качестве фотокатодов в реакции разложения воды. Известно, что CZTS является потенциальным поглощающим слоем в ТСЭ, но его низкие значения ширины запрещенной зоны (~1.4–1.5 эВ), близкие к потенциалу восстановления воды (~1.23 эВ), делают его непригодным для вышеуказанной области применения [107, 113]. Первым требованием для полупроводника в реакции разложения воды под действием солнечного излучения является его оптимальная ширина запрещенной зоны. Это значение определяется количеством энергии, необходимым для разложения молекулы воды (1.23 эВ), с учетом термодинамических потерь (~0.4 эВ) и перенапряжения, необходимого для обеспечения достаточной скорости реакции (~0.3–0.4 эВ). Таким образом, подходящая ширина запрещенной зоны для фотоэлектродов составляет ≥1.9 эВ [114, 115]. Для этих целей могут подходить монокристаллы Cu_2ZnSiS_4 , полученные методом химического переноса в газовой фазе [106], а также пленки, полученные методом совместного распыления с последующей сульфурацией [116]. В последней работе сообщается, что пленки обладают р-типом проводимости и $E_g \sim 2.71$ эВ, а также значением работы выхода ~ 4.92 эВ и краем валентной зоны 1.29 эВ по отношению к уровню Ферми (при комнатной температуре). Температурная зависимость электропроводности указывает на дефекты, которые могут быть механизмом проводимости. Помимо применения в качестве поглощающих слоев благодаря значениям E_g пленки Cu_2ZnSiS_4 можно

использовать и в качестве потенциального фотокатода в реакции расщепления воды. В частности, его значение $E_g \ge 1.9$ эВ позволяет применять эти пленки в качестве верхнего слоя в тандемных устройствах.

Cu₂ZnGe(S,Se)₄. Эти соединения являются прямозонными полупроводниками с шириной запрещенной зоны $\check{E}_g = 1.5 - 1.6$ эВ [117-119], высоким оптическим коэффициентом поглощения [119] и дырочным типом проводимости [118, 119]. Твердые растворы $Cu_2ZnSn_{1-x}Ge_xSe_4$ (**CZTGSe**) с E_{σ} между 1.0 и 1.5 эВ также могут выступать в качестве потенциальных слоев для ТСЭ [120]. Кроме того, соединения смешанного типа CZGeSSe также можно рассматривать как потенциальную альтернативу широкозонным поглошаюшим слоям в ТСЭ, поскольку теоретическое значение ширины запрещенной зоны для этого материала может варьироваться от 1.3 до 2.2 эВ [121]. В некоторых исследованиях [111, 118] экспериментально подтверждено теоретическое значение ширины запрещенной зоны для пленок CZGeSe.

На сегодняшний день КПД таких устройств не превышает 9.4% [122]. Это значение достигнуто на солнечных элементах с гетеропереходом *p*-Cu₂Zn(Sn, Ge)(S,Se)₄/*n*-CdS. Для получения поглощающего слоя смешанного типа нанокристаллические сульфидные пленки $Cu_2Zn(Sn_vGe_1 - v)S_4$ (CZTGeS), полученные методом горячей инжекции, затем селенизировали в активной атмосфере селена. Пленки обладали Си-обедненным и Znобогащенным составом с соотношением элементов [Cu]/([II] + [IV]) ≈ 0.80, [Zn]/[IV] ≈ 1.04 и [Ge]/([Sn] + [Ge]) от 0% (для CZTS) до 70% (для CZTGeS). Кроме того, как указывают авторы, улучшенное качество такого материала было достигнуто за счет уменьшения ловушек глубокого уровня, связанного с заменой атомов олова на германий в исходной кристаллической решетке типа кестерита [122].

По данным [122-125], включение атомов Ge в состав кестерита наряду с Sn приводит к повышению эффективности, улучшению морфологии зерен в пленке, увеличению времени жизни носителей заряда и улучшению значений напряжения холостого хода ($V_{x,x}$). Однако ширина запрещенной зоны такого полупроводникового материала составляет ~1.2 эВ, что не совсем применимо для использования в тандемном типе солнечных элементов. Достигнуть более высоких значений E_{g} можно путем полной замены смеси Sn и Ge на чистый германий. За исключением работы, проделанной Шнабелем и др. [126], ни одна другая группа не сообщала о значительном повышении эффективности солнечных батарей на основе четверных соединений меди с полной заменой олова на германий. В своей работе Шнабель и др. сообщают о КПД = 5.1% для солнечного элемента

на основе $Cu_2ZnGeS_xSe_{4-x}$ с шириной запрещенной зоны 1.5 эВ.

В работе [127] представлен аналогичный подход полной замены атомов Sn на Ge в исходном кестерите, в результате чего получается поглощающий слой с запрешенной зоной 1.4 эВ. КПД устройства, собранного на основе данного поглощающего слоя, составляет 5.5%. Однако детальное исследование электрических и оптических свойств образцов показывает, что дырочный тип проводимости действительно приводит к меньшим электрическим потерям в пределах красной границы и особенно большим значениям $V_{x,x}$ = = 744 мВ. Основными факторами, влияющими на эффективность, являются низкий фактор заполнения (46%) и плотность тока короткого замыкания ($J_{\kappa,3} = 16 \text{ мA/cm}^2$), которые могут быть связаны с высокими значениями последовательного сопротивления ($R_s = 14$ Ом см) и относительно низкими временами жизни носителей заряда (~1 нс).

Понять причины таких низких значений КПЛ позволяет исследование кристаллической и дефектной структуры соединений CZGSe. Исследование фазовых диаграмм систем CuSe-ZnSe-GeSe и Cu₂GeSe₃–ZnSe указывает на конгрузнтобразование четверного соединения ное Cu₂ZnGeSe₄ [128, 129]. Соединения CZGSe, как и кестериты CZTS, имеют тетрагональный тип кристаллической структуры, в которой каждый атом селена окружен двумя атомами меди, одним атомом цинка и одним атомом германия, тогда как каждый из катионов окружен четырьмя атомами селена [43, 87]. Однако, как известно, такие соединения наряду с кестеритами могут иметь нестехиометрический (Си-обедненный и Zn-обогащенный) состав [130]. Такая нестехиометрия может быть объяснена наличием различных дефектов (например, вакансии, дефекты внедрения, антиструктурные дефекты и т.д.) и сосуществованием различных вторичных фаз [131, 132]. Эти дефекты и вторичные фазы влияют на генерацию, разделение и рекомбинацию электронно-дырочных пар и в целом на эффективность фотоэлектрического устройства [131, 133]. Учитывая возможные точечные дефекты и принимая во внимание баланс заряда, можно вывести различные типы нестехиометрии. Для Си-обедненного и Zn-обогащенного состава кестерита есть тип А (дефекты типа V_{Cu} и Zn_{Cu}) и тип B (Zn_{Cu} и Zn_{Sn}), тогда как для Си-обогащенного и Zn-обедненного состава существует тип C (Cu_{Zn} и Sn_{Zn}) и тип D (дефекты типа Си_{Zn} и Си_i) [134, 135].

Помимо кристаллической модификации, образующейся при комнатной температуре, было предложено, что соединения типа $Cu_2ZnGeSe_4$ также имеют высокотемпературную модификацию [136]. Так, например, модификация, суще-

ствующая при комнатной температуре, представляет собой структуру типа тетрагонального станнита (пр. гр. *I*42*m*), тогда как кристаллическая структура высокотемпературной фазы до сих пор неизвестна. Основные теоретические расчеты предсказывают, что структура типа кестерита (пр. гр. 14) является основной для этого типа полупроводниковых материалов [95]. Однако долгое время исследование структуры образцов Cu₂ZnGeSe₄ велось исключительно методом рентгенофазового анализа. Возможной причиной расхождения между теоретическим прогнозом и экспериментальными результатами может быть то, что экспериментальные исследования основаны только на рентгеновской дифракции, в то время как невозможно различить изоэлектронные катионы Cu⁺, Zn²⁺ и Ge⁴⁺ из-за сходных коэффициентов рассеяния рентгеновских лучей этих катионов. Задача может быть решена с применением нейтронной дифракции, поскольку длины когерентного рассеяния нейтронов Cu, Zn и Ge различаются: $b_{Cu} =$ = 7.718(4), *b*_{Zn} = 5.680(5), *b*_{Ge} = 8.185(20) фм [137]. Распределение катионов можно оценить по данным дифракции нейтронов с помощью анализа средней длины рассеяния нейтронов [138].

В работе [139] впервые представлено исследование кристаллической структуры Cu₂ZnGeSe₄ на основе нейтронной дифракции. В результате исследования была определена кристаллическая структура модификации при комнатной температуре, а также установлены возможные катионные точечные дефекты. Результаты исследования нейтронной дифракции образца состава Cu_{2.06}Zn_{0.99}Ge_{0.99}Se₄, полученного методом твердофазного синтеза, показали, что полупроводник кристаллизуется в структуре типа кестерита с Сиобогащенным составом и нестехиометрией типов D (преобладание антиструктурных дефектов Cu_{Zn}) и F (небольшое количество антиструктурных дефектов Zn_{Ge}). На основании анализа средней длины рассеяния нейтронов авторы утверждают, что обогащенные медью образцы CZGSe обладают точечными дефектами типа Cu_i и Cu_{Zn} дополнительно к уже имеющимся антиструктурным дефектам Си_{Zn}-Zn_{Cu} (беспорядок Cu-Zn) в плоскости решетки, перпендикулярной кристаллографической оси *с* при *z* = 1/4 и 3/4.

В качестве основных методов синтеза таких соединений в основном используют метод послойного осаждения или напыление металлов с последующей стадией отжига в активной атмосфере селена. Например, в работе [140] тонкие пленки состава CZGeSe были получены методом последовательного магнетронного напыления слоев Cu, Zn и Ge с последующим отжигом при высокой температуре в среде H₂Se. По результатам сканирующей электронной микроскопии поверхности и поперечного сечения пленки было уста-

Рис. 12. Микрофотография поверхности и среза образцов CZTGeSe, полученных путем последовательного напыления металлических слоев Mo/Cu/Zn/Ge и отожженных при температуре 460 (*I*), 480 (*2*) и 500°C (*3*) [140].

новлено, что полученные плотные слои CZGeSe состоят из зерен размером ~1 мкм без значительного количества вторичных фаз при последовательности осаждения Mo/Cu/Zn/Ge (рис. 12).

Авторы также указывают на отсутствие вторичных фаз, таких как ZnSe, образование которых можно предотвратить путем варьирования исходного состава слоев, очередности напыления металлов, а также условий отжига в активной атмосфере селеноводорода. Полученные таким способом пленки CZGeSe обладают *p*-типом проводимости, шириной запрещенной зоной 1.5 эВ и большим откликом фотолюминесценции.

В работе [141] помимо металлических слоев авторы используют еще и бинарный селенид цинка. Слоистая структура Cu/Se/ZnSe/Se/Ge/Se была получена путем испарения каждого металла с последующей селенизацией в высоком вакууме при температурах подложки в диапазоне от 350 до 500°C в течение 30 мин. Отмечено, что температура селенизации исходных слоев влияет на структурные, морфологические, композиционные, оптические и электрические свойства конечных пленок Cu₂ZnGeSe₄. Так, кристаллическая структура тонких пленок, селенизированных при 450°C, представляет собой тетрагональный станнит с параметрами решетки a = 5.592(1), c =

= 11.057(5) Å. Финальный состав пленок немного отличается от стехиометрического, он обеднен медью и обогащен цинком, но с равномерным распределением составляющих элементов по толщине и с плотноупакованными зернами цилиндрической формы по всему объему пленки. Анализ спектров КР указывает на незначительное присутствие вторичной фазы ZnSe наряду с основной. Установлено, что ширина запрещенной зоны пленок имеет оптимальное значение 1.6 эВ, эти пленки характеризуются *p*-типом проводимости с электрическим сопротивлением 2.13×10^{-3} Ом см, концентрацией носителей заряда 3.5×10^{18} см⁻³ и подвижностью 8.37×10^2 см²/(B с).

Как показано в работах [140-142], процесс селенизации металлических слоев обеспечивает лучшую однородность конечного слоя и большую площадь покрытия подложки. Отжиг в активной атмосфере селена способствует взаимной диффузии элементов между слоями перед началом процесса нуклеации. Зародышеобразование на границах раздела слоев способствует предпочтительной ориентации кристаллитов. Очередность осаждаемых слоев играет важную роль в механизме роста, фазовом образовании, составе и морфологии пленок [143, 144], что в дальнейшем определяет эффективность конечного устройства [145]. Так, авторами ранее обсуждалась оптимизация температуры [141] и времени [142] селенизации для роста тонких пленок CZGSe.

В работе [146] температура селенизации была повышена с 450 [141] до 475°С, это привело к лучшей взаимной диффузии элементов в слоях и к большему росту диаметра зерна. Кроме того, в работе [146] авторами предложено шесть разных вариантов пленок-предшественников Cu–ZnSe–Ge с включением селена. Схема очередности нанесения слоев показана на рис. 13.

Исследование пленок методом РФА подтверждает существование различных бинарных и тройных фаз (ZnSe, Cu₂Se, GeSe₂ и Cu₂GeSe₃) для каждого случая. Эти фазы полностью исчезают после этапа селенизации при 475°С, за исключением незначительного образования фазы ZnSe (111) вместе с доминирующей фазой Cu₂ZnGeSe₄ (112) для случая А. Изучение спектров КР образцов данного типа подтверждает наличие фазы CZGSe: присутствуют два основных пика при 206 и 176 см⁻¹ и незначительный пик при 270 см⁻¹. Кроме того, авторы указывают на то, что морфология поверхности и распределение элементов по толщине значительно изменяются в зависимости от очередности осаждения пленок-предшественников. Вариант А является наиболее предпочтительным, так как получаемые пленки состоят из плотноупакованных зерен капсулообразной формы. Помимо этого отожженные в активной атмосфере селена пленки имеют $E_g = 1.60 \ \Im B$, а также дырочный тип проводимости с подвижностью Холла $\mu = 22 \text{ см}^2/(\text{B c})$, концентрацией носителей заряда $C = 8.70 \times 10^{19} \text{ см}^{-3}$ и сопротивлением $R = 3.25 \times 10^{-3}$ Ом см.

В работе [147] подробно исследован механизм образования поликристаллических образцов Cu₂ZnGeSe₄ методом последовательного нанесения металлических слоев с последующей селенизацией в атмосфере H₂Se. Установлено, что на начальном этапе синтеза при температурах ниже 350°С очень быстро образуются фазы Си₃Ge и ZnSe. В зависимости от порялка нанесения металлического слоя реакция образования протекает при разной скорости. При нанесении слоя германия первым, а слоя меди последним происходит очень быстрое образование промежуточных фаз типа Cu₉Se₅ и ZnSe, которые затем кристаллизуются в Cu₂ZnGeSe₄. Это приводит к появлению мелких зерен, которые обретают свой окончательный размер уже после 3 мин селенизации при 460°С. Обратный порядок нанесения металлических слоев (германий – последним слоем, медь – первым) замедляет реакцию образования промежуточной фазы Cu₉Se₅ и последующую реакцию образования кристаллов, которые становятся более крупными и формируют свой окончательный размер зерна только после 15 мин селенизации при 460°С.

В работе [148] проведено полное сравнительное исследование влияния условий отжига и обработки поверхности на качество поглощающего слоя CZGSe. Экспериментальные результаты показывают, что условия отжига (т.е. тепловой профиль и температура) оказывают непосредственное влияние на структурные, морфологические и оптоэлектронные свойства поглощающего слоя, и небольшие изменения температуры могут значительно влиять на кристалличность слоя, тем самым влияя на производительность уже получаемых солнечных элементов на их основе.

С другой стороны, обработка поверхности, например КСN, способствует резкому повышению эффективности солнечных элементов на основе CZGeSe. Интересно, что общее соотношение компонентов в пленках остается почти неизменным во всех случаях травления. Такое возможное пассивирование поверхности также может сказываться на повышении эффективности. Кроме того, по мнению авторов, травление КСN способствует улучшению p—n-перехода за счет уменьшения безызлучательной рекомбинации, а не удаления вторичных фаз.

Таким образом, можно сделать следующие выводы.

1. Оптимальная кристалличность и свойства материалов CZGSe достижимы при низких температурах отжига, что приводит к такому же раз-

Рис. 13. Схематическая диаграмма очередности осаждения пленок-предшественников в работе [146].

меру зерен, как и в кестеритах CZTSe, но при более высоких температурах. Более низкие температуры синтеза дают явное преимущество по сравнению с другими системами на основе кестеритов, особенно с точки зрения интеграции их в тандемные солнечные элементы.

2. Профиль двухступенчатого отжига с использованием более низких температур по сравнению с одноступенчатыми процессами считается наиболее подходящим режимом, который позволил значительно улучшить производительность солнечных элементов — с 3.8 до 5.7%.

3. Использование более высоких температур при переходе на двухступенчатый режим отжига создает неоднородности на поверхности поглощающего слоя, вызванные огромным количеством вторичной фазы ZnSe на поверхности. Кроме того, высокие температуры приводят к ухудшению морфологии зерен.

4. После обработки поверхности слоя КСN $V_{x.x.}$ повышается с 370 до 580 мВ при той же ширине запрещенной зоны (~1.4 эВ), что приводит к со-кращению дефицита $V_{x.x.}$ с 1.1 до 0.8 В. Аналогичные результаты были получены при травлении поверхности КМпO₄ + (NH₄)₂S, который можно использовать в качестве замены высокотоксичного цианистого калия.

5. По сравнению с солнечными батареями на основе CZT(S,Se) последующая обработка отжигом для повышения общей производительности готовых солнечных элементов на основе Mo/CZGeSe/CdS/*i*-ZnO/ITO оказалась неэф-

ГАПАНОВИЧ и др.

Соединение	Кристаллическая структура	Ширина запрещенной зоны, эВ	Тип темновой проводимости	КПД солнечного элемента
Cu ₂ ZnPbS ₄	Кестерит, <i>I</i> 4, <i>a</i> = 5.54, <i>c</i> = 11.28 Å, <i>c/a</i> = 2.037 [86]	Проявляет металлические свойства [86]	п	?
Cu ₂ ZnSiSe ₄	Вюрцит-станнит, <i>Pmn</i> 2 ₁ , <i>a</i> = 7.763, <i>b</i> = 6.773, <i>c</i> = 6.4662 Å [97, 105]	2.71 [105], 0.56 (teop) [106]	p	?
Cu ₂ ZnSiSe ₄	Вюрцит-кестерит, <i>Pc</i> , <i>a</i> = 7.760, <i>b</i> = 6.794, <i>c</i> = 6.455 Å [99, 105]	3.09 [105], 0.84 (теор.) [106]	р	?
Cu ₂ ZnSiS ₄	Вюрцит-станнит, <i>Pmn</i> 2 ₁ , <i>a</i> = 7.376, <i>b</i> = 6.458, <i>c</i> = 6.161 Å [97, 105]	1.37 (теор) [106]	р	?
Cu ₂ ZnSiS ₄	Вюрцит-кестерит, <i>Pc</i> , <i>a</i> = 7.430, <i>b</i> = 6.421, <i>c</i> = 6.157 Å [99, 105]	1.68 (теор) [106]	р	?
Cu ₂ ZnGeSe ₄	Кестерит, <i>I</i> 4, <i>a</i> = 5.612, <i>c</i> = 11.040 Å, <i>c</i> /2 <i>a</i> = 0.983 [139]	$E_g = 1.5 - 1.6$ [117, 118]	p	9.4% (с частичной заменой на основе гетероперехода p -Cu ₂ Zn(Sn, Ge)(S,Se) ₄ / n -CdS [122] 5.5% с полной заменой на основе гете- роперехода (центрифугирование нано- частиц) p -Cu ₂ ZnGeSe ₄ / n -CdS [127] (центрифугирование наночастиц)

Таблица 8. Обобщенные данные по физическим свойствам $Cu_2ZnBS(Se)_4$ (B = Si, Ge, Pb)

фективной, особенно при отжиге при температуре >300°C.

Таким образом, четверные соединения меди типа Cu₂ZnGeSe₄ (CZGSe) обладают оптимальными оптическими и электрическими свойствами для применения их в качестве поглошающих слоев в ТСЭ. Ширина запрещенной зоны таких полупроводниковых материалов находится в диапазоне от 1.3 до 1.65 эВ, они обладают достаточно высоким коэффициентом поглощения света (10⁴ см⁻¹), дырочным типом проводимости с электрическим сопротивлением в диапазоне от 10²-10⁴ Ом см. В дополнение к этому элементы Zn и Ge в CZGSe распространены в природе и имеют низкую стоимость по сравнению с Ga и In в CIGS [149, 150]. Несмотря на превосходные фотоэлектрические характеристики, работ по изучению таких материалов до сих пор мало.

Сводные данные о соединениях, описанных в данном разделе, приведены в табл. 8.

Как видно из приведенного обзора, КПД солнечных элементов на основе четверных соединений меди $Cu_2ABS(Se)_4$ (A = Ca, Mg, Sr, Ba, Fe, Ni,Co, Cd, Mn,Cr; B = Si, Ge, Sn), за исключени-

ем твердых растворов $Cu_2Zn_{0.6}Cd_{0.4}CdSnS_4$, все еще ниже, чем устройств на основе кестеритов CZTSSe. Однако большинство этих соединений остаются малоисследованными. В частности, известно, что свойства халькопиритов CIGS [150] и кестеритов CZTSSe [3], а также солнечных элементов на их основе в существенной степени зависят от стехиометрии и легирования. Работы по влиянию указанных факторов на свойства $Cu_2ABS(Se)_4$ единичны. Сведений об их дефектной структуре также исключительно мало. Кроме того, имеющиеся работы описывают в основном Cu_2ABS_4 , данных по свойствам их селенистых аналогов и образцов смешанного состава существенно меньше.

Не решен и ряд вопросов, связанных с синтезом. Например, практически не изучено действие примесных фаз, образующихся в процессе синтеза, на свойства пленок данных соединений. При этом большинство описанных в настоящее время методов синтеза слоев $Cu_2ABS_{4-x}Se_x$ имеют как минимум две стадии: получение пленки-предшественника, состоящей из металлов, сплавов, бинарных халькогенидов или наночастиц, с последующим ее отжигом в активной или инертной атмосфере при t > 500°C. Насколько известно из более широко описанного синтеза кестеритов CZTSSe [3, 7], при таких условиях стехиометрия конечной пленки может меняться из-за образования летучих халькогенидов, например SnS или SnSe. Применительно к большинству описанных в данном обзоре соединений этот вопрос также практически не освещен.

При этом для многих соединений $Cu_2ABS_{4-x}Se_x$ ширина запрещенной зоны лежит в диапазоне $E_g = 1.2-1.6$ эВ, т.е. оптимума, определяемого пределом Шокли–Квиссера [1]. Поэтому можно предположить, что исследования влияния стехиометрии и легирования на свойства $Cu_2ABS(Se)_4$ (A = Ca, Mg, Sr, Ba, Fe, Ni, Co, Cd, Mn, Cr; B = Si, Ge, Sn) и солнечных элементов на их основе, а также усовершенствование методик их синтеза являются актуальной задачей для новых научных исследований. И можно надеяться, что проведение таких работ в ближайшем будущем позволить создать дешевые, эффективные и стабильные солнечные элементы нового поколения.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-13-50199. The reported study was funded by the Russian Foundation for Basic Research, project no. 20-13-50199.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Shockley W., Queisser H.J.* // J. Appl. Phys. 1961. V. 32. № 3. P. 510. https://doi.org/10.1063/1.1736034
- 2. Зыкин М.А., Аминов Т.Г., Минин В.В. и др. // Журн. неорган. химии. 2021. Т. 66. № 1. С. 103. [*Zy-kin M.A., Aminov T.G., Minin V.V. et al.* // Russ. J. Inorg. Chem. 2021. V. 66. P. 113. https://doi.org/10.1134/S0036023621010137]
- 3. *Ракитин В.В., Новиков Г.Ф.* // Успехи химии. 2017. T. 86. C. 99. [*Rakitin V.V., Novikov G.F.* // Russ. Chem. Rev. 2017. V. 82. № 2. P. 99.] https://doi.org/10.1070/RCR4633
- 4. *Luque A., Hegedus S.* Handbook of Photovoltaic Science and Engineering. West Sussex: John Wiley & Sons, Ltd. 2011.
- 5. Иванов С.А., Сташ А.И. // Журн. неорган. химии. 2020. Т. 65. № 12. С. 1581. [Ivanov S.A., Stash A.I. // Russ. J. Inorg. Chem. 2020. V. 65. Р. 1789. https://doi.org/10.1134/S0036023620120049]
- Kumar M.S., Madhusudanana S.P., Batabyal S.K. // Sol. Energy Mater. Sol. Cells. 2018. V. 185. P. 287. https://doi.org/10.1016/j.solmat.2018.05.003

- 7. *Ito K.* Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells. West Sussex. U.K.: A John Wiley and Sons Ltd., 2015.
- 8. Anima Ghosh, Thangavel R., Rajagopalan M. // Energy Environ. Focus. 2014. V. 3. № 2. P. 142. https://doi.org/10.1166/eef.2014.1080
- Guohua Zhong, Kinfai Tse, Yiou Zhang et al. // Thin Solid Films. 2016. V. 603. P. 224. https://doi.org/10.1016/j.tsf.2016.02.005
- Mohnish Pandey, Karsten W. Jacobsen // Phys. Rev. Mater. 2018. V. 2. P. 105402. https://doi.org/10.1103/PhysRevMaterials.2.105402
- Gang Yang, Xiaoli Zhai, Yongfeng Li et al. // Mater. Lett. 2019. V. 242. P. 58. https://doi.org/10.1016/j.matlet.2019.01.102
- Mehdi Souli, Raya Engazou, Lassaad Ajili et al. // Superlattices Microstruct. 2020. V. 147. P. 106711. https://doi.org/10.1016/j.spmi.2020.106711
- Ming Wei, Qingyang Du, Rong Wang et al. // Chem. Lett. 2014. V. 43. P. 1149. https://doi.org/10.1246/cl.140208
- 14. Kumar V.P., Guilmeau E., Raveau B. et al. // J. Appl. Phys. 2015. V. 118. P. 155101-1. https://doi.org/10.1063/1.4933277
- 15. Один И.Н., Гапанович М.В., Урханов О.Ю. и др. // Неорган. материалы. 2021. Т. 57. № 1. С. 3. [Odin I.N., Gapanovich M.V., Urkhanov O.Yu. et al. // Inorg. Mater. 2021. V. 57. P. 1.] https://doi.org/10.1134/S0020168521010118
- 16. Sharm S., Kumar P. // J. Phys. Commun. 2017. V. 1. P. 045014. https://doi.org/10.1088/2399-6528/aa9286
- 17. Shin D., Saparov B., Zhu T. et al. // Chem. Mater. 2016. V. 28. P. 4771. https://doi.org/10.1021/acs.chemmater.6b01832
- Teske C.L. // Z. Anorg. Allg. Chem. 1976. V. 419. P. 67. https://doi.org/10.1002/zaac.19764190112
- 19. Crovetto A., Nielsen R., Stamate E. et al. // ACS Appl. Energy Mater. 2019. V. 2. № 10. P. 7340. https://doi.org/10.1021/acsaem.9b01322
- 20. Zhengfu Tong, Jiangyuan Yuan, Jiarui Chen et al. // Mater. Lett. 2019. V. 237. P. 130. https://doi.org/10.1016/j.matlet.2018.11.083
- 21. *Hanrui Xiao, Zhu Chen, Kaiwen Sun et al.* // Thin Solid Films. 2020. V. 697. № 1. P. 137828. https://doi.org/10.1016/j.tsf.2020.137828
- 22. Tong Zhu, William P. Huhn, Garrett C. Wessler et al. // Chem. Mater. 2017. V. 29. № 18. P. 7868. https://doi.org/10.1021/acs.chemmater.7b02638
- 23. *Haitian Luo, Yi Zhang, Wenjing Wang et al.* // PPS Appl. Mater. Sci. 2020. V. 217. № 18. P. 200060. https://doi.org/10.1002/pssa.202000060
- 24. Márquez J.A., Sun J.-P., Stange H. et al. // J. Mater. Chem. A. 2020. V. 8. P. 11346. https://doi.org/10.1039/D0TA02348E
- Ge J., Koirala P., Grice C.R. et al. // Adv. Energy Mater. 2017. V. 7. № 6. P. 1601803. https://doi.org/10.1002/aenm.201601803

- 26. Ge J., Corey R. Grice, Yanfa Yan // J. Mater. Chem. A. 2017. V. 5. P. 2920. https://doi.org/10.1039/C6TA08426E
- 27. *Ge J., Yu Y., Yan Y.* // ACS Energy Lett. 2016. V. 1. № 3. P. 583. https://doi.org/10.1021/acsenergylett.6b00324
- Shin D., Zhu T., Huang X. et al. // Adv. Mater. 2017. V. 29. № 24. P. 1606945. https://doi.org/10.1002/adma.201606945
- 29. Eibschütz M., Hermon E., Shtrikman S. // J. Phys. Chem Solids. 1967. V. 28. P. 1633. https://doi.org/10.1016/0022-3697(67)90134-5
- Rincón C., Quintero M., Power Ch. et al. // J. Appl. Phys. 2015. V. 117. P. 205701. https://doi.org/10.1063/1.4921438
- Hao Guan, Honglie Shen, Baoxiang Jiao et al. // Mater. Sci. Semicond. Process. 2014. V. 25. P. 159. https://doi.org/10.1016/j.mssp.2013.10.021
- Soumyo Chatterjee S., Amlan J.P. // Sol. Energy Mater. Sol. Cells. 2017. V. 160. P. 233. https://doi.org/10.1016/j.solmat.2016.10.037
- 33. Adelifard M. // J. Analyt. Appl. Pyrolysis. 2016. V. 122. P. 209. https://doi.org/10.1016/j.jaap.2016.09.022
- 34. *Jicheng Zhou, Shiqi Yu, Xiaowei Guo et al.* // Current Appl. Phys. 2019. V. 19. № 2. P. 67. https://doi.org/10.1016/j.cap.2018.10.014
- 35. Deepika R., Meena P. // Mater. Res. Express. 2020. V. 7. P. 035012. https://doi.org/10.1088/2053-1591/ab7c21
- 36. *Quintero M., Barreto A., Grima P. et al.* // Mater. Res. Bull. 1999. V. 34. № 14/15. P. 2263. https://doi.org/10.1016/S0025-5408(00)00166-5
- 37. *Quintero E., Quintero M., Moreno E. et al.* // J. Phys. Chem. Solids. 2010. V. 71. № 7. P. 993. https://doi.org/10.1016/j.jpcs.2010.04.010
- Kevin P., Malik S.N., Malik M.A. et al. // Mater. Lett. 2015. V. 152. P. 60. https://doi.org/10.1016/j.matlet.2015.03.087
- 39. Xiankuan Meng, Huiyi Cao, Hongmei Deng et al. // Mater. Sci. Semicond. Process. 2015. V. 39. P. 243. https://doi.org/10.1016/j.mssp.2015.05.007
- 40. *Wang X.R., Guan Y.S., Ali O.A. et al.* // Optoelectr. Adv. Mater. Rapid Commun. 2020. V. 14. № 3–4. P. 196.
- 41. Yubin Chen, Xiaoyang Feng, Maochang Liu et al. // Nanophotonics. 2016. V. 5. № 4. P. 524. https://doi.org/10.1515/nanoph-2016-0027
- 42. Qingfeng Song, Pengfei Qiu, Kunpeng Zhao et al. // ACS Appl. Energy Mater. 2020. V. 3. № 3. P. 2137. https://doi.org/10.1021/acsaem.9b02150
- 43. Schäfer W., Nitsche R. // Mater. Res. Bull. 1974. V. 9. P. 645. https://doi.org/10.1016/0025-5408(74)90135-4
- 44. Yang C.L., Chen Y.H., Lin M. et al. // Mater. Lett. 2016. V. 166. P. 101. https://doi.org/10.1016/j.matlet.2015.12.054
- 45. Abed M.A., Bakr N.A., Al-Zanganawee J. // Chalcogenide Letters. 2020. V. 17. № 4. P. 179.

- 46. Aitelhaj D., Elkissani A., Elyaagoubi M. et al. // Mater. Sci. Semicond. Process. 2020. V. 107. P. 104811. https://doi.org/10.1016/j.mssp.2019.104811
- 47. *Rondiya S., Wadnerkar N., Jadhav Y. et al.* // Chem. Mater. 2017. V. 29. P. 3133. https://doi.org/10.1021/acs.chemmater.7b00149
- 48. Dehghani Z., Shadrokh Z. // Optik. 2018. V. 169. P. 242. https://doi.org/10.1016/j.ijleo.2018.05.052
- 49. Zhang Q., Li H., Ma Y. et al. // Prog. Mater Sci. 2016. V. 83. P. 472. https://doi.org/10.1016/j.pmatsci.2016.07.005
- 50. Гапанович М.В., Рабенок Е.В., Голованов Б.И. и др. // ФТП. 2021. №. 12. Р. 1176. http://dx.doi.org/10.21883/FTP.2021.12.51702.9677
- *Repins I., Beall C., Vora N. et al.* // Sol. Energy Mater. Sol. Cells. 2012. V. 101. P. 154. https://doi.org/10.1016/j.solmat.2012.01.008
- 52. *Gulay L.D., Nazarchuk O.P., Olekseyuk I.D.* // J. Alloys Compd. 2004. V. 377. № 1-2. P. 306. https://doi.org/10.1016/j.jallcom.2004.02.004
- 53. *Quinteroa M., Marquina J., Quintero E. et al.* // Revista Mexicana de Física. 2014. V. 60. P. 168.
- 54. Hammami H., Marzougui M., Oueslati H. et al. // Optik. 2021. V. 227. P. 166054. https://doi.org/10.1016/j.ijleo.2020.166054
- 55. *Murali B., Madhuri M., Krupanidhi S.B.* // Cryst. Growth Des. 2014. V. 14. № 8. P. 3685. https://doi.org/10.1021/cg500622f
- 56. Beraich M., Taibi M., Guenbour A. et al. // Optik. 2019. V. 193. P. 162996. https://doi.org/10.1016/j.ijleo.2019.162996
- 57. Mokurala Krishnaiah, Ajit Kumar, Sung Hun Jin et al. // Data in Brief. 2020. V. 32. P. 106103. https://doi.org/10.1016/j.dib.2020.106103
- 58. Mokurala K., Yun Jae Jeong, Rajneesh K.M. et al. // Mater. Sci. Semicond. Process. 2021. V. 121. P. 105443. https://doi.org/10.1016/j.mssp.2020.105443
- 59. Mokurala K., Mallick S., Bhargava P. // J. Power Sources. 2016. V. 305. P. 134. https://doi.org/10.1016/j.jpowsour.2015.11.081
- Maldar P.S., Mane A.A., Nikam S.S. et al. // Thin Solid Films. 2020. V. 709. P. 138236. https://doi.org/10.1016/j.tsf.2020.138236
- 61. *Ghosh A., Thangavel R., Rajagopalan M.* // Energy and Environment Focus. 2014. V. 3. P. 142. https://doi.org/10.1166/eef.2014.1080
- Lei Meng, Yongfeng Li, Bin Yao et al. // J. Phys. D: Appl. Phys. 2015. V. 48. P. 445105. https://doi.org/10.1088/0022-3727/48/44/445105
- Huafei Guo, Yan Li, Xiang Fang et al. // Mater. Lett. 2016. V. 162. P. 97. https://doi.org/10.1016/j.matlet.2015.09.112
- 64. Tombak A., Kilicoglu T., Ocak Y.S. // Renewable Energy. 2020. V. 146. P. 1465. https://doi.org/10.1016/j.renene.2019.07.057
- Hadke S., Levcenko S., Gautam G.S. et al. // Adv. Energ. Mater. 2019. V. 9. P. 1902509. https://doi.org/10.1002/aenm.201902509

- 66. Su Z., Liang G., Fan P. et al. // Adv. Mater. 2020. V. 32. P. 2000121. https://doi.org/10.1002/adma.202000121
- 67. Wangen Zhao, Gang Wang, Qingwen Tian et al. // Sol. Energy Mater. Sol. Cells. 2015. V. 133. P. 15. https://doi.org/10.1016/j.solmat.2014.10.040
- Matsushita H., Maeda T., Katsui A. et al. // J. Cryst. Growth. 2000. V. 208. P. 416. https://doi.org/10.1016/S0022-0248(99)00468-6
- 69. Min-Ling Liu, I-Wei Chen, Fu-Qiang Huang et al. // Adv. Mater. 2009. V. 21. № 37. P. 3808. https://doi.org/10.1063/1.3130718
- 70. Chetty R., Bali A., Mallik R.C. // Intermetallic. 2016. V. 72. P. 17. https://doi.org/10.1016/j.intermet.2016.01.004
- Ming-Hung Chiang, Yaw-Shyan Fu, Cheng-Hung Shih et al. // Thin Solid Films. 2013. V. 544. P. 291. https://doi.org/10.1016/j.tsf.2013.03.096
- Feng-Jia Fan, Bo Yu, Yi-Xiu Wang et al. // JACS. 2011.
 V. 133. № 40. P. 15910. https://doi.org/10.1021/ja207159j
- 73. *Guen L., Glaunsinger W.S.* // J. Solid State Chem. 1980. V. 35. P. 10.
- https://doi.org/10.1016/0022-4596(80)90457-0
 74. Fries T., Shapira Y., Palacio F. et al. // Phys. Rev. B. 1997. V. 56. № 9. P. 5424.
- https://doi.org/10.1103/PhysRevB.56.5424
- 75. *Quintero M., Moreno E., Lara L. et al.* // J. Phys. Chem. Solids. 2010. V. 71. № 7. P. 993. https://doi.org/10.1016/j.jpcs.2010.04.010
- 76. Гапанович М.В., Один И.Н., Чукичев М.В. и др. // Неорган. материалы. 2021. Т. 57. № 10. С. 1045. [Gapanovich M.V., Odin I.N., Chukichev M.V. et al. // Inorg. Mater. 2021. V. 57. № 10. Р. 987.]. https://doi.org/10.1134/S0020168521100034
- 77. Jiejin Yu, Hongmei Deng, Qiao Zhang et al. // Mater. Lett. 2018. V. 233. P. 111. https://doi.org/10.1016/j.matlet.2018.08.147
- Prabhakar R.R., Su Zhenghua, Zeng Xin et al. // Sol. Energy Mater. Sol. Cells. 2016. V. 157. P. 867. https://doi.org/10.1016/j.solmat.2016.07.006
- 79. Yali Sun, Xiuling Li, Weiliang Qiao et al. // Sol. Energy Mater. Sol. Cells. 2021. V. 219. P. 110788. https://doi.org/10.1016/j.solmat.2020.110788
- 80. *Qingfeng Song, Pengfei Qiu, Hongyi Chen et al.* // ACS Appl. Mater. Interfaces. 2018. V. 10. № 12. P. 10123. https://doi.org/10.1021/acsami.7b19791
- Hussein H., Yazdani A. // Mater. Sci. Semicond. Process. 2019. V. 91. P. 58. https://doi.org/10.1016/j.mssp.2018.11.005
- Гапанович М.В., Левин И.М. // Тез. конф. ФАГРАН-2021. г. Воронеж, 4–7 октября 2021. С. 58.
- 83. Congcong Wang, Shiyou Chen, Ji-Hui Yang et al. // Chem. Mater. 2014. V. 26. P. 3411. https://doi.org/10.1021/cm500598x
- 84. *Fenske D., Eichhöfer A.* (http://www.cfn.kit.edu/down-loads/research_f_nano_energy/F301–Report.pdf)
- Wang X., Li J., Zhao Z. et al. // J. Appl. Phys. 2012.
 V. 112. P. 023701. https://doi.org/10.1063/1.4736554
- 86. *Ahmoum H., Su'ait M.S., Li G. et al.* // Indian J. Phys. https://doi.org/10.1007/s12648-020-01698-3

- 87. Schleich D.M., Wold A. // Mater. Res. Bull. 1977. V. 12. P. 111. https://doi.org/10.1016/0025-5408(77)90150-7
- Levcenco S., Dumcenco D., Huang Y.S. et al. // J. Alloys Compd. 2011. V. 509. P. 4924. https://doi.org/10.1016/j.jallcom.2011.01.169
- Levcenco S., Dumcenco D., Huang Y.S. et al. // J. Alloys Compd. 2011. V. 509. P. 7105. https://doi.org/10.1016/j.jallcom.2011.04.013
- 90. Levcenco S., Dumcenco D.O., Wang Y.P. et al. // Opt. Mater. 2012. V. 34. P. 1072. https://doi.org/10.1016/j.optmat.2012.01.004
- 91. Matsusita H., Ichikawa T., Katsui A. // J. Mater. Sci. 2005. V. 40. P. 2003. https://doi.org/10.1007/s10853-005-1223-5
- 92. Matsushita H., Katsui A. // J. Phys. Chem. Solids. 2005. V. 66. P. 1933. https://doi.org/10.1016/j.jpcs.2005.09.028
- 93. Nakamura S., Maeda T., Wada T. // Jpn. J. Appl. Phys. 2010. V. 49. P. 121203. https://doi.org/10.1143/JJAP.49.121203
- 94. Liu H.-R., Chen S., Zhai Y.-T. et al. // J. Appl. Phys. 2012. V. 112. P. 093717. https://doi.org/10.1063/1.4759322
- 95. Chen S., Walsh A., Luo Y. et al. // Phys. Rev. B. 2010. V. 82. P. 195203. https://doi.org/10.1103/PhysRevB.82.195203
- 96. Zhang X., Rao D., Lu R. et al. // AIP Adv. 2015. V. 5. P. 057111. https://doi.org/10.1063/1.4920936
- 97. Gurieva G., Levcenko S., Kravtsov V.Ch. et al. // Z. Kristallogr. 2015. V. 30. P. 507. https://doi.org/10.1515/zkri-2014-1825
- 98. Litvinchuk A.P., Dzhagan V.M., Yukhymchuk V.O. et al. // Phys. Status Solidi B. 2016. V. 253. P. 1808. https://doi.org/10.1002/pssb.201600175
- 99. Nitsche R., Sargent D.F., Wild P. // J. Cryst. Growth. 1967. V. 1. P. 52. https://doi.org/10.1016/0022-0248(67)90009-7
- 100. Yao G.Q., Shen H.S., Honig E.D. et al. // Solid State Ionics. 1987. V. 24. P. 249. https://doi.org/10.1016/0167-2738(87)90166-4
- 101. Rosmus K.A., Aitken J.A. // Acta Crystallogr. 2011. V. 67. P. 28. https://doi.org/10.1107/S1600536811008889
- 102. Rosmus K.A., Brunetta C.D., Srnec M.N. et al. // Z. Anorg. Allg. Chem. 2012. V. 638. P. 2578. https://doi.org/10.1002/zaac.201200259
- 103. Valakh M. Ya., Yukhymchuk V.O., Babichuk I.S. et al. // Vib. Spectrosc. 2017. V. 89. P. 81. https://doi.org/10.1016/j.vibspec.2017.01.005
- 104. Litvinchuk A.P., Dzhagan V.M., Yukhymchuk V.O. et al. // Phys. Rev. 2014. V. 90. P. 165201. https://doi.org/10.1103/PhysRevB.90.165201
- 105. Zhang X., Chen D., Deng K. et al. // J. Alloys Compd. 2016. V. 656. P. 196. https://doi.org/10.1016/j.jallcom.2015.09.240
- 106. Levcenco S., Dumcenco D., Huang Y.S. et al. // J. Appl. Phys. 2010. V. 108. P. 073508. https://doi.org/10.1063/1.3490219
- 107. Shi C., Shi G., Chen Z. et al. // Mater. Lett. 2012. V. 73. P. 89. https://doi.org/10.1016/j.matlet.2012.01.018

- 108. Lisunov K.G., Guc M., Levcenko S. et al. // J. Alloys Compd. 2013. V. 580. P. 481. https://doi.org/10.1016/j.jallcom.2013.06.156
- 109. *Guc M., Levcenko S., Dermenji L. et al.* // Solid State Commun. 2014. V. 190. P. 44. https://doi.org/10.1016/j.ssc.2014.03.024
- 110. *Syrbu N.N., Zalamai V., Guc M. et al.* // J. Alloys Compd. 2015. V. 635. P. 188. https://doi.org/10.1016/j.jallcom.2015.02.100
- 111. *Leon E., Levcenko S., Sema R. et al.* // Mater. Chem. Phys. 2013. V. 141. P. 58. https://doi.org/10.1016/j.matchemphys.2013.04.024
- 112. Rosmus K.A., Brant J.A., Winsneski S.D et al. // Inorg. Chem. 2014. V. 53. P. 7809. https://doi.org/10.1021/ic501310d
- 113. Wang J., Yu N., Zhang Y. et al. // J. Alloys Compd. 2016. V. 688. P. 923. https://doi.org/10.1016/j.jallcom.2016.07.012
- 114. Weber M.F., Dignam M.J. // Int. J. Hydrog. Energy. 1986. V. 11. № 4. P. 225. https://doi.org/10.1016/0360-3199(86)90183-7
- 115. Bolton J.R., Strickler S.J., Connolly J.S. // Nature. 1985. V. 316. № 6028. P. 495. https://doi.org/10.1038/316495a0
- 116. Vishwakarma M., Varandani D., Shivaprasad S.M. et al. // Sol. Energy Mater. Sol. Cells. 2018. V. 174. P. 577. https://doi.org/10.1016/j.solmat.2017.08.018
- 117. Lee C.-I., Kim C.-D. // J. Korean Phys. Soc. 2000. V. 37. P. 364.
- 118. Matsushita H., Ochiai T., Katsui A. // J. Cryst. Growth. 2005. V. 275. P. e995. https://doi.org/10.1016/j.jcrysgro.2004.11.154
- 119. Bhaskar P.U., Babu G.S., Kumar Y.B.K. et al. // Thin Solid Films. 2013. V. 534. P. 249. https://doi.org/10.1016/j.tsf.2013.03.001
- 120. Shu Q., Yang J.H., Chen S. et al. // Phys. Rev. B. 2013. V. 87. P. 115208-6. https://doi.org/10.1103/PhysRevB.87.115208
- 121. Zhang Y., Sun X., Zhang P. et al. // J. Appl. Phys. 2012.
 V. 111. P. 063709. https://doi.org/10.1063/1.3696964
- 122. Hages C.J., Levcenco S., Miskin C.K. et al. // Prog. Photovolt.: Res. Appl. 2015. V. 23. P. 376. https://doi.org/10.1002/pip.2442
- 123. *Kim S., Kim K.M., Tampo H. et al.* // Sol. Energy Mater. Sol. Cells. 2016. V. 144. P. 488. https://doi.org/10.1016/j.solmat.2015.09.039
- 124. *Kim S., Kim K.M., Tampo H. et al.* // Appl. Phys. Express. 2016. V. 9. P. 102301. https://doi.org/10.7567/APEX.9.102301
- 125. Collord A.D., Hill House H.W. // Chem. Mater. 2016. V. 7. P. 2067. https://doi.org/10.1021/acs.chemmater.5b04806
- 126. Schnabel T., Seboui M., Ahlswede E. // RSC Adv. 2017. V. 7. P. 26. https://doi.org/10.1039/C6RA23068G
- 127. Sahayaraj S., Brammertz G., Vermang B. et al. // Sol. Energy Mater. Sol. Cells. 2017. V. 171. P. 136. https://doi.org/10.1016/j.solmat.2017.06.050
- 128. Parasyuk O.V., Gulay L.D., Romanyuk Ya.E. et al. // J. Alloys Compd. 2001. V. 329. P. 202. https://doi.org/10.1016/S0925-8388(01)01606-1

- Caldera D., Quintero M., Morocoima M. et al. // J. Alloys Compd. 2008. V. 457. P. 221. https://doi.org/10.1016/j.jallcom.2007.03.033
- Delbos S. // EPJ Photovolt. 2012. V. 3. P. 35004. https://doi.org/10.1051/epjpv/2012008
- 131. Walsh A., Chen S., Wei S.-H. et al. // Adv. Energy Mater. 2012. V. 2. P. 400. https://doi.org/10.1002/aenm.201100630
- 132. Chen S., Walsh A., Gong X.-G. et al. // Adv. Mater. 2013. V. 25. P. 1522. https://doi.org/10.1002/adma.201203146
- 133. Mendis B.G., Goodman M.C.J., Major J.D. et al. // J. Appl. Phys. 2012. V. 112. P. 124508. https://doi.org/10.1063/1.4769738
- 134. Lafond A., Choubrac L., Guillot-Deudon C. et al. // Z. Anorg. Allg. Chem. 2012. V. 638. P. 2571. https://doi.org/10.1002/zaac.201200279
- Valle-Rios L.E., Neldner K., Gurieva G. et al. // J. Alloys Compd. 2016. V. 657. P. 408. https://doi.org/10.1016/j.jallcom.2015.09.198
- 136. *Romanyuk Ya.E., Parasyk O.V.* // J. Alloys Compd. 2003. V. 348. P. 195.
- https://doi.org/10.1016/S0925-8388(02)00852-6 137. Sears V.F. // Neutron News. 1992. V. 3. P. 26. https://doi.org/10.1080/10448639208218770
- 138. *Stephan C., Schorr S.* // Chalcopyrite thin film solar cell devices, in: Neutron Applications in Materials for Energy. 2014. Springer International Publishing.
- 139. Gurieva G., Többens D.M., Valakh M.Ya. et al. / J. Phys. Chem. Solids. 2016. V. 99. P. 100. https://doi.org/10.1016/j.jpcs.2016.08.017
- 140. Buffière M., ElAnzeery H., Oueslati S. et al. // Thin Solid Films. 2015. V. 582. P. 171. https://doi.org/10.1016/j.tsf.2014.09.024
- 141. Swapna Mary G., Dipak Ramdas Nagapure, Rhishikesh Mahadev Patil et al. // Vacuum. 2016. V. 133. P. 114. https://doi.org/10.1016/j.vacuum.2016.08.002
- 142. Swapna Mary G., Hema Chandra G., Anantha Sunil M. et al. // J. Electron. Mater. 2018. V. 47. № 1. P. 800. https://doi.org/10.1007/s11664-017-5860-7
- 143. *Yoo H., Kim J.H.* // Thin Solid Films. 2010. V. 518. № 22. P. 6567. https://doi.org/10.1016/j.tsf.2010.03.058
- 144. *Min Yang, Zhi Jiang, Zhishan Li et al.* // Mater. Sci. Semicond. Process. V. 56. 2016. P. 238. https://doi.org/10.1016/j.mssp.2016.08.012
- 145. Fairbrother A., Fourdrinier L., Fontane X. et al. // J. Phys. Chem. C. 2014. V. 118. № 31. P. 17291. https://doi.org/10.1021/jp503699r
- 146. Swapna Mary G., Hema Chandra G., Anantha Sunil M. et al. // Superlattices Microstruct. 2018. V. 117. P. 437. https://doi.org/10.1016/j.spmi.2018.03.065
- 147. Brammertz G., Kohl T., Wild J.D. et al. // Thin Solid Films. 2019. V. 670. P. 76. https://doi.org/10.1016/j.tsf.2018.12.015
- 148. *Benhaddou N., Aazou S., Sanchez Y. et al.* // Sol. Energy Mater. Sol. Cells. 2020. V. 216. P. 110701. https://doi.org/10.1016/j.solmat.2020.110701
- 149. *Li J., Ma Y., Chen G. et al.* // RRL Solar. 2019. V. 3. № 21. P. 800254.
- 150. Новиков Г.Ф., Гапанович М.В. // УФН. 2017. Т. 187. № 2. С. 173. [Novikov G.F, Gapanovich M.V. // Phys.-Usp. 2017. V. 60. Р. 161. https://doi.org/10.3367/UFNe.2016.06.037827]