____ НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ ___ И НАНОМАТЕРИАЛЫ

УДК 546.261:28+546.832:27

МОДИФИКАЦИЯ UHTC COCTABA HfB₂-30% SiC ГРАФЕНОМ (1 ОБ. %) И ЕЕ ВЛИЯНИЕ НА ПОВЕДЕНИЕ В СВЕРХЗВУКОВОМ ПОТОКЕ ВОЗДУХА

© 2021 г. Е. П. Симоненко^{*a*, *}, Н. П. Симоненко^{*a*}, А. Ф. Колесников^{*b*}, А. В. Чаплыгин^{*b*}, А. С. Лысенков^{*c*}, И. А. Нагорнов^{*a*, *d*}, В. Г. Севастьянов^{*a*}, Н. Т. Кузнецов^{*a*}

^а Институт общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия ^bИнститут проблем механики им. А.Ю. Ишлинского РАН, пр-т Вернадского, 101, корп. 1, Москва, 119526 Россия ^cИнститут металлургии и материаловедения им. А.А. Байкова РАН, Ленинский пр-т, 49, Москва, 119334 Россия ^dРоссийский химико-технологический университет им. Д.И. Менделеева, Миусская пл., 9, Москва, 125047 Россия

> *e-mail: ep_simonenko@mail.ru Поступила в редакцию 25.05.2021 г. После доработки 06.06.2021 г.

Принята к публикации 07.06.2021 г.

Для ультравысокотемпературного керамического материала HfB_2-30 об. % SiC, модифицированного сниженным количеством восстановленного оксида графена (1 об. %), изучены особенности окисления под воздействием сверхзвукового потока диссоциированного воздуха (тепловой поток изменялся в интервале 363-779 BT см⁻², суммарное время воздействия 2000 с). Установлено, что модифицирование керамического материала HfB_2-30 об. % SiC относительно низким количеством восстановленного оксида графена (1 об. %) не позволило избежать эффекта резкого роста средней температуры поверхности до $2300-2400^{\circ}$ С. Однако показано, что значительно увеличивается временной интервал существования на поверхности температуры <1800–1850°С, вероятно, за счет повышения теплопроводности керамики. Определена скорость уноса материала, равная 6.5×10^{-4} г см⁻² мин⁻¹, это значение является промежуточным между таковыми для керамики HfB₂–SiC и керамики, модифицированной 2 об. % графена. Изучены особенности микроструктуры и элементного состава как окисленной поверхности, так и сколов материала, определена структура и толщина окисленной приповерхностной области.

Ключевые слова: UHTC, графен, HfB₂, SiC, окисление, высокоэнтальпийный поток воздуха, индукционный плазмотрон

DOI: 10.31857/S0044457X21090142

введение

Ультравысокотемпературные керамические материалы (UHTC) на основе систем ZrB_2 -SiC и HfB2-SiC приобретают все большую актуальность в связи с растущим объемом знаний об их свойствах и разработкой новых эффективных методик изготовления [1-12]. Так, помимо возможностей их применения в качестве материалов, работоспособных при аэродинамическом нагреве до температур >2000°C [13–17], такие керамики рассматривают в качестве перспективных материалов для альтернативной энергетики [18-20], каркасных компонентов для металлокерамики [21] и др. Однако для данных материалов комплекс положительных свойств (высокие температуры плавления и теплопроводность, неплохие твердость и прочность на изгиб, высокая стойкость к окислению, в том числе в сверхзвуковом потоке воздуха) ухудшается с прикладной точки зрения

типичными для керамических материалов хрупкостью и плохой стойкостью к термическому удару, что значительно ограничивает их применение в условиях циклического нагрева.

В качестве решения вопроса с улучшением механических свойств в настоящее время проводятся исследования по допированию ультравысокотемпературных композитов MB_2 -SiC (M = Zr, Hf) компонентами различной химической природы, например, тугоплавкими карбидами металлов, прежде всего карбидами элементов IV-VIБ группы [22–26], нитридами [27, 28], оксидами, позволяющими стабилизировать продукты окисления (ZrO₂/HfO₂) в тетрагональной или кубической модификации [29–31], металлами [32–34] и др.

Особый интерес в качестве модифицирующих компонентов вызывают углеродные материалы [35]: армирующие углеродные волокна (непрерывные или порезанные) [36–41], введение кото-

рых переводит UHTC в класс керамоматричных композитов, обладающих прекрасными механическими свойствами, углеродные нанотрубки [42–46], графитовые пластинки [47–51], упрочняющее влияние которых тем больше, чем меньше толщина этих пластинок, а также графен [52–58] как крайний случай очень тонких пластин графита.

В литературе имеются свидетельства [56-60] о том, что графен является очень привлекательным упрочняющим компонентом для ультравысокотемпературной керамики, поскольку благодаря таким свойствам, как высокие теплопроводность, прочность в плоскости и удельная площадь поверхности, дает возможность существенно повысить прочность и устойчивость к тепловым ударам (при некотором неизбежном снижении прочности). При этом установлено, что использование для введения углеродного компонента не самого графена, а его так называемого оксида (GO), позволяет значительно повысить равномерность распределения графена в объеме. В результате при введении 5 об. % GO [57] значение K_{IC} материала ZrB_2-20 об. % SiC достигает 7.32 МПа м^{1/2}, причем прочность полученного композита также была очень высока – 1055 МПа. В работе [56] показано, что и при введении меньшего количества графена (от 0.5 мас. %) наблюдается повышение вязкости разрушения при практическом сохранении прочности на уровне 940-1050 МПа.

Несмотря на столь обнадеживающие данные об улучшении механических свойств керамических материалов на основе систем ZrB₂-SiC и HfB₂-SiC, модифицированных графеном, исследования, посвященные изучению их стойкости к окислению, практически отсутствуют. Ранее [61] нами исследовано воздействие сверхзвукового потока диссоциированного воздуха на ультравысокотемпературный композит состава (HfB₂-30 об. % SiC)-2 об. % С_G, полученный с применением золь-гель технологии и реакционного горячего прессования порошка $HfB_2 - (SiO_2 - C) - rGO$, где rGO – восстановленный оксид графена. Установлено, что введение всего 2 об. % графена позволило предотвратить наступление резкого нагрева поверхности образца до температур 2300-2700°С (так называемого скачка температуры [62]), вероятно, за счет большей теплопроводности. Благодаря сниженной температуре поверхности, которая за все время воздействия (2000 с) не превысила значение 1685°С, наблюдалось значительное (на порядок) уменьшение толщины окисленной приповерхностной области, а также троекратное снижение скорости уноса с единицы поверхности.

Настолько существенное изменение окислительного поведения UHTC при допировании его всего двумя объемными процентами графена привело к мысли о практической значимости исследования возможности дальнейшего снижения содержания модифицирующего компонента.

Целью настоящей работы является получение и исследование окислительного поведения под воздействием сверхзвукового потока диссоциированного воздуха ультравысокотемпературного керамического материала (HfB₂–30 об. % SiC)–1 об. % C_G .

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Использованные реактивы. Тетраэтоксисилан Si(OC₂H₅)₄ (ос. ч., ЭКОС-1), бакелитовый лак ЛБС-1 (карболит), муравьиная кислота CH₂O₂ (>99%, Спектр-Хим), диборид гафния (>98%, размер частиц ~2–3 мкм, размер агрегатов ~20–60 мкм, Тугоплавкие материалы), оксид графена (размер пластинок \leq 3 мкм, число графеновых слоев \leq 2, АккоЛаб).

Методика получения UHTC на основе HfB₂-30 об. % SiC, модифицированных восстановленным оксидом графена, подробно описана в [61]. В частности, для синтеза композиционного порошка $HfB_2 - (SiO_2 - C) - rGO$ в этанольном растворе фенолформальдегидной смолы (полимерного источника углерода) диспергировали порошок оксида графена, растворяли муравьиную кислоту и тетраэтоксисилан. Далее инициировали процесс гидролиза тетраэтоксисилана, а в полученном коллоидном растворе диспергировали порошок HfB₂. После гелеобразования и сушки в роторном испарителе ксерогель полвергали термической обработке в условиях динамического вакуума при температуре 400°С, в результате чего происходил пиролиз его органических компонентов и образование восстановленного оксида графена.

Для изготовления керамического материала HfB_2 –SiC–C_G композиционный порошок консолидировали в графитовых пресс-формах с применением пресса горячего прессования Thermal Technology Inc. (модель HP20-3560-20) при температуре 1800°С (скорость нагрева 10 град/мин, время выдержки 15 мин) и давлении 30 МПа [9–11, 15].

Изучение стойкости к окислению полученного материала (HfB_2 —30 об. % SiC)—1 об. % C_G под воздействием сверхзвукового потока диссоциированного воздуха осуществляли на 100-киловаттном высокочастотном индукционном плазмотроне ВГУ-4 с применением звукового сопла с диаметром выходного сечения 30 мм. Расстояние от сопла до образца составляло 25 мм, расход воздуха — 3.6 г/с, давление в камере — 13—14 гПа. Образец в виде цилиндра диаметром 15 мм и толщиной ~3.6 мм вводили в высокоэнтальпийную воздушную струю при мощности анодного питания плазмотрона (N) 30 кВт, которую далее ступенчато увеличивали до 70 кВт с шагом 10 кВт. Время выдержки на каждой ступени (N = 30-60 кВт) составляло 2 мин, по достижения N = 70 кВт образец выдерживали до завершения эксперимента, суммарное время воздействия составляло 33 мин 20 с (2000 с).

Эксперимент проводили в геометрии, предусматривающей выступ образца относительно лицевой части медной водоохлаждаемой модели на 1 мм [8–10, 15]. С целью улучшения фиксации уплотнителя, в качестве которого использовали полоски бумаги на основе волокнистого SiC, их помещали в каркас из медной фольги, что несколько повысило теплоотвод от образца к модели по сравнению с описанными ранее экспериментами.

Измерение усредненной температуры поверхности нагретого образца выполняли с применением инфракрасного пирометра Mikron M-770S в режиме пирометра спектрального отношения (температурный интервал $1000-3000^{\circ}$ С, диаметр области визирования составлял ~5 мм в центральной части образца). Изучение распределения температур по поверхности образца осуществляли с использованием термовизора Тандем VS-415U: запись термоизображений проводили при установленном значении спектрального коэффициента излучения є на длине волны 0.9 мкм, равном 0.6. Далее в ходе анализа данных термовизора при необходимости значения температур поверхности корректировали на реальные значения ε .

Рентгенограммы поверхности образцов записывали на рентгеновском дифрактометре Bruker D8 Advance (излучение CuK_{α} , разрешение 0.02° при накоплении сигнала в точке в течение 0.3 с). Рентгенофазовый анализ проводили с применением программы MATCH! — Phase Identification from Powder Diffraction, Version 3.8.0.137 (Crystal Impact, Germany), в которую интегрирована база данных Crystallography Open Database (COD).

Исследование особенностей микроструктуры окисленной поверхности и скола образца осуществляли методом растровой электронной микроскопии (**РЭМ**) на трехлучевой рабочей станции NVision 40, Carl Zeiss с ускоряющим напряжением 1 и 20 кВ. Элементный состав областей определяли с помощью приставки для энергодисперсионного анализа EDX Oxford Instrumets.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Изменение средней температуры поверхности образца (по данным пирометра) в зависимости от мощности анодного питания и давления в камере плазмотрона представлено в табл. 1. Указанные тепловые потоки к водоохлаждаемому медному калориметру (q) были определены ранее в отдель-

Таблица 1. Изменение средней температуры поверхности образца (HfB_2-30 об. % SiC)-1 об. % C_G в окрестности критической точки (пирометр спектрального отношения, t) в зависимости от времени воздействия и параметров процесса: мощности анодного питания (N) и давления в камере плазмотрона (13.8-14.2 гПа), а также соответствующие значения теплового потока (q)

Время, мин	<i>N</i> , кВт	q , Вт см $^{-2}$	t, °C	
$0 \rightarrow 2$	30	363	$1293 \rightarrow 1260$	
$2 \rightarrow 4$	40	484	$1363 \rightarrow 1358$	
$4 \rightarrow 6$	50	598	$1445 \rightarrow 1446$	
$6 \rightarrow 8$	60	691	$1531 \rightarrow 1536$	
8	70	779	$1625 \rightarrow 1628$	
10	70	779	1626	
15	70	779	1677	
20	70	779	1750	
23	70	779	1798	
25	70	779	1810	
26	70	779	1834	
27	70	779	1916	
28	70	779	1998	
29	70	779	2076	
30	70	779	2157	
31	70	779	2248	
32	70	779	2305	
33.20	70	779	2368	

Примечание. Тепловые потоки к водоохлаждаемому медном калориметру были определены в отдельных экспериментах, описанных в [63].

ных экспериментах, описанных в [63], и изменялись от 363 (N = 30 кBT) до 779 Вт см⁻² (N = 70 кBT).

Кривая изменения температуры поверхности образца в ходе эксперимента в сравнении с данными, полученными в [61] для образцов состава HfB₂-30 об. % SiC и (HfB₂-30 об. % SiC)-2 об. % С_G при одинаковом воздействии сверхзвукового потока высокоэнтальпийного воздуха, приведена на рис. 1. Видно, что тенденции изменения температуры поверхности по мере повышения мощности анодного питания плазмотрона аналогичны для указанных образцов (до 500 с воздействия): по мере ступенчатого увеличения N происходит соответствующий рост температуры. При этом при допировании керамики одним объемным процентом графена температура поверхности при мощности 30-50 кВт лишь немногим меньше, чем для немодифицированного образца HfB₂-30 об. % SiC (рис. 1, красная кривая). По достижении мощности N = 60 кВт поведение материала становится похожим на поведение материала (HfB₂-30 об. % SiC)-2 об. % С_G (рис. 1, зеленая кривая): при фиксированной мощности темпера-

Рис. 1. Изменение усредненной температуры поверхности образца состава (HfB₂-30 об. % SiC)-1 об. % C_G по сравнению с таковым для образцов HfB₂-30 об. % SiC и (HfB₂-30 об. % SiC)-2 об. % C_G [61].

тура поверхности практически не изменяется со временем, в то время как для материала HfB_2 –30 об. % SiC она начинает расти.

Необходимо также отметить, что по достижении максимальной мощности 70 кВт для полученного материала (HfB₂—30 об. % SiC)—1 об. % C_G (рис. 1, фиолетовая кривая) на кривой можно выделить три участка с различным наклоном. Так, во временном интервале 495—770 с температура практически не растет (1632 \rightarrow 1642°C), скорость ее изменения составляет ~2 град/мин. Далее с 770 по 1540 с скорость роста температуры несколько увеличивается до значения 13 град/мин, в результате чего поверхность приобретает температуру ~1800°C. Последующая выдержка при N = 70 кВт приводит к излому на температурной кривой — скорость нагрева резко повышается до 73 град/мин.

Для материалов с различным содержанием графена, которое, очевидно, определяет теплопроводность керамики в целом, различается также и скорость достижения средней температуры поверхности 1800°С, после чего происходит достаточно резкий разогрев поверхности до ~2400– 2500°С: 16 град/мин (0 об. % C_G) \rightarrow 13 град/мин (1 об. % C_G) \rightarrow 5.4 град/мин (2 об. % C_G), т.е. для образца с наибольшим количеством графена (HfB₂–30 об. % SiC)–2 об. % C_G температура поверхности не успела повыситься до критического значения 1800°С из-за достаточно низкой скорости 5.4 град/мин. Для немодифицированного материала "скачок температуры" наблюдался после выдержки при N = 70 кВт в течение ~570 с (9.5 мин). Допирование же керамики всего одним объемным процентом графена позволило растянуть этот временной интервал почти в два раза до ~1030 с (17 мин).

Исследование распределения температуры по поверхности в различные моменты воздействия подтверждает данные измерений пирометром (рис. 2–4). Из рис. 2 и 3 видно, что на начальных этапах воздействия сверхзвуковой воздушной струи наблюдается систематическое повышение температуры, которая распределена по поверхности образца очень равномерно. Далее (рис. 3) в результате постепенного испарения с поверхности защитного слоя силикатного стекла после 25 мин (>1500 с) на поверхности начинают проявляться локальные участки с температурой, существенно превышающей среднюю (рис. 3, 1545 с эксперимента). Появление таких перегретых очагов еще более ускоряет испарение с поверхности защитного стекловидного слоя, что приводит к перелому на кривой изменения средней температуры (рис. 1). Последующая выдержка приводит к увеличению площади и температуры перегретых участков поверхности, в том числе за счет образования выпуклостей - пузырьков, которые формируются на основе дисперсных несвязанных частиц HfO₂, спонтанно структурированных в результате резкого испарения компонентов

Рис. 2. Тепловые изображения и соответствующие им распределения температуры по диаметру образца (HfB_2 –30 об. % SiC)–1 об. % C_G при ступенчатом повышении мощности анодного питания плазмотрона с 30 до 70 кВт (1–540 с экс-перимента).

силикатного стекла из приповерхностной окисленной области композита.

Отдельный интерес вызывает и процесс охлаждения поверхности образца при отключении нагрева. Как видно из рис. 4, благодаря активному отводу тепла по кондуктивному механизму уже на второй секунде после отключения нагрева исчезают перегретые области, а распределение температуры выравнивается по всей поверхности.

Потеря массы образца в результате воздействия на него сверхзвукового потока диссоциированного воздуха составила 0.4%, соответствующая скорость уноса (рис. 5) – 6.5×10^{-4} г см⁻² мин⁻¹. Несмотря на то, что полученное значение является промежуточным между таковыми для материалов HfB₂–30 об. % SiC и (HfB₂–30 об. % SiC)–2 об. % C_G после аналогичного воздействия [61], необходимо отметить, что оно все же ближе к данным для керамики, модифицированной 2 об. % графена. Вероятно, это связано с меньшей деструкцией благодаря меньшей длительности выдержки при температурах >1800–2000°С.

Рентгенофазовый анализ окисленной поверхности образца (HfB_2 -30 об. % SiC)-1 об. % C_G

(рис. 6) свидетельствует о том, что ее фазовый состав соответствует таковому для немодифицированного HfB₂-30 об. % SiC [61]: единственным кристаллическим продуктом окисления в данном случае является моноклинный оксид гафния [64] с несколько увеличенными параметрами решетки. Очевидно, это связано с тем, что в обоих случаях образцы подвергались длительному воздействию температур выше 1800-2000°С, что привело к интенсивному испарению компонентов силикатного стекла с поверхности. Вероятно, именно в связи с высокими температурами поверхности образца (HfB₂-30 об. % SiC)-1 об. % С_G отсутствует фаза кристаллической борной кислоты [65], зафиксированная на поверхности образца (HfB₂-30 об. % SiC)-2 об. % С_G после испытания (температура не превышала 1685°С).

Микроструктура окисленной поверхности образца также значительно напоминает таковую для немодифицированного образца HfB_2-30 об. % SiC (рис. 7, 8). Поскольку на финальных этапах нагрева наблюдался значительный перепад температур центральной и периферическими областями, эти участки проанализированы отдельно. По

Рис. 3. Тепловые изображения и соответствующие им распределения температуры по диаметру образца (HfB_2-30 об. % SiC)-1 об. % С_G при выдержке при мощности анодного питания плазмотрона 70 кВт (768–1999 с эксперимента).

данным EDX-анализа, на поверхности превалирует оксид гафния (табл. 2).

В целом поверхность представляет собой пористую керамическую корку, на поверхности ко-

торой присутствуют крупные выпуклости и кратеры от разорвавшихся пузырьков диаметром до 400–700 мкм. Эти образования, очевидно, сформировались в результате накопления газообраз-

Таблица 2. Соотношения n(Hf) : n(Si) (по данным EDX-анализа) в центральной и периферийных областях поверхности материала (HfB₂-30 об. % SiC)-1 об. % С_G после воздействия сверхзвукового потока диссоциированного воздуха, а также толщина окисленного слоя в центральной области в сравнении с данными, полученными в [61] для немодифицированного материала и допированного 2 об. % графена

		<i>n</i> (Hf) : <i>n</i> (Si)		Толщина окисленного слоя (центральная область), мкм		
Образец	Температура на поверхности в конце термохимического воздействия, °С*	центральная область	периферийная область	силикатное стекло с распределенными частицами HfO ₂	SiC-обедненная область	суммарная
НfB ₂ —30 об. % SiC [61]	2360	14.9	16.7	45-130	230-245	280-400
(HfB ₂ -30 об. % SiC)-1 об. % C_G	2370	6.9	38.0	40-60	100-110	200-250
(HfB2–30 об. % SiC)–2 об. % C_G [61]	1680	1.3	2.1	20-30	0-15	20-45

*В центральной области по данным пирометра спектрального отношения.

Рис. 4. Тепловые изображения и соответствующие им распределения температуры по диаметру образца (HfB₂-30 об. % SiC)-1 об. % С_G при охлаждении образца после отключения нагрева (1999-2008 с эксперимента).

ных продуктов окисления в слое силикатного стекла, расположенного в приповерхностной области и имеюшего из-за повышенных температур относительно невысокую вязкость. Как видно на рис. 7б, 7д, 7е, дно таких кратеров состоит преимушественно из расплава стекловилной фазы. а на стенках заметно постепенное увеличение доли частиц HfO₂, смоченных силикатным стеклом. По мере удаления от центра образца и, соответственно, снижения температуры поверхности (которая, тем не менее, не была ниже 1830-1870°С даже на самом краю образца) количество крупных выпуклостей и их диаметр снижаются (<250 мкм), а кратеры от разорвавшихся пузырьков полностью исчезают. На поверхности присутствуют лишь относительно небольшие образования диаметром ~30 мкм.

Вероятно, именно потому, что к краю образца (HfB₂-30 об. % SiC)-1 об. % C_G на поверхности сокращается количество разорвавшихся пузырьков, внутренняя сторона которых имеет высокое содержание SiO₂, наблюдается и увеличение со-

отношения *n*(Hf) : *n*(Si) при переходе от центральной к периферической области.

Анализ суммарных данных элементного анализа окисленных поверхностей образцов (HfB_2 –30 об. % SiC)–x об. % C_G (x = 0, 1, 2) с учетом сведений из [61] подтверждает логичный и очевидный вывод о том, что соотношение n(Hf) : n(Si) на окисленной поверхности в центральной области тем больше, чем выше формировалась температура поверхности и чем более длительное время она превышала 1800°C, так как данные условия стимулируют испарение компонентов силикатного стекла.

Изучение скола поверхности (рис. 9) свидетельствует о том, что в центральной области суммарная толщина окисленного слоя существенно меньше таковой для образца HfB_2 —30 об. % SiC [61] и составляет 200—250 мкм. В данном случае можно четко выделить не только верхний окисленный слой, представляющий собой расплав силикатного стекла, в котором распределены слабо связанные и относительно дисперсные частицы HfO_2

Рис. 5. Скорости уноса ультравысокотемпературных керамических материалов после длительного (2000 с) воздействия сверхзвукового потока диссоциированного воздуха; для образцов, содержащих 0 и 2 об. % графена, использованы данные [61].

(рис. 9б, 9д), но и пористый, обедненный карбидом кремния слой. Использование более высокого ускоряющего напряжения 20 кВ (рис. 10) позволило установить, что неровный рельеф окисленной поверхности образца и присутствующие выпуклости формируются исключительно из-за образования газовых пузырьков в тонкой прослойке между SiC-обедненным слоем и верхним слоем, в котором преобладают частицы HfO_2 , связанные между собой силикатным расплавом. Для частиц HfO_2 в расплаве не свойственно узкое распределение по размерам; их дисперсность изменяется от ~0.5–0.9 мкм для частиц, близких к сферическим, до вертикально ориентированных сростков длиной до 5–6 мкм и диаметром до 2.5–3 мкм. Их доля относительно силикатной фазы по мере приближения к поверхности растет (рис. 9г). Толщина такого верхнего подвижного слоя составляет ~40–60 мкм.

Толщина расположенного ниже SiC-обедненного слоя составляет порядка 100—110 мкм. Однако, как видно на рис. 9е, 9ж, в ней также можно условно выделить наиболее пористый слой толщиной ~60—90 мкм (рис. 9к, 9л), ниже которого плотность материала постепенно увеличивается, переходя в неокисленную керамику (рис. 93, 9и).

Сравнительный анализ показывает (табл. 2), что несмотря на близкие средние температуры поверхности, сформировавшиеся к окончанию длительного (2000 с) воздействия сверхзвукового потока диссоциированного воздуха, для образцов HfB₂–30 об. % SiC и (HfB₂–30 об. % SiC)–1 об. % C_G в центральной области толщина верхнего окисленного слоя на основе силикатного стекла с распределенными в нем частицами HfO₂ различается не столь значительно, в то время как толщина пористого SiC-обедненного слоя при допировании всего 1 об. % графена снижается более чем в 2 раза. Тем не менее стоит отметить, что повышение

Рис. 6. Рентгенограммы окисленной поверхности образца состава (HfB_2 –30 об. % SiC)–1 об. % C_G в сравнении с таковыми для образцов HfB_2 –30 об. % SiC и (HfB_2 –30 об. % SiC)–1 об. % C_G [61], неотмеченные рефлексы относятся к фазе моноклинного оксида гафния.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 9 2021

Рис. 7. Микроструктура окисленной поверхности образца состава (HfB_2-30 об. % SiC)-1 об. % C_G в центральной области (по данным РЭМ): а, б, в, д – по данным детектора вторичных электронов, г, е – в режиме контраста по среднему атомному номеру, ускоряющее напряжение 1 кВ.

Рис. 8. Микроструктура окисленной поверхности образца состава (HfB₂-30 об. % SiC)-1 об. % C_G в периферийной области (по данным РЭМ): а, б, в, д – по данным детектора вторичных электронов, г, е – в режиме контраста по среднему атомному номеру, ускоряющее напряжение 1 кВ.

содержания графена до 2 об. % позволяет уменьшить суммарную толщину окисленного слоя на порядок. Данный эффект наглядно демонстрирует деструктивное влияние на стойкость материала к окислению в результате "скачка температур" до значений >1800—2000°С, который приводит к резкому повышению интенсивности испарения компонентов защитного силикатного стекла. Вероятно, в данном случае именно большая длительность воздействия способствовала более глубокому окислению материала (HfB₂-30 об. % SiC)-1 об. % C_G.

ЗАКЛЮЧЕНИЕ

С использованием золь-гель технологии и реакционного горячего прессования изготовлен

Рис. 9. Микроструктура скола образца состава (HfB₂– 30 об. % SiC)–1 об. % C_G после термохимического воздействия (по данным PЭМ): а, в, д, е, з, к – по данным детектора вторичных электронов, б, г, ж, и, π – в режиме контраста по среднему атомному номеру, ускоряющее напряжение 1 кВ.

Рис. 10. Микроструктура скола образца состава (HfB₂-30 об. % SiC)-1 об. % C_G после термохимического воздействия (по данным РЭМ), ускоряющее напряжение 20 кВ.

ультравысокотемпературный керамический материал HfB_2 -30 об. % SiC, модифицированный 1 об. % восстановленного оксида графена.

Изучено окисление полученного материала под воздействием сверхзвукового потока диссоциированного воздуха (тепловой поток изменялся в интервале 363–779 Вт см⁻²) в течение длительного времени (2000 с).

Установлено, что модифицирование керамического материала HfB₂-30 об. % SiC относительно низким количеством восстановленного оксида графена (1 об. %) не позволило избежать эффекта резкого роста средней температуры поверхности до 2300-2400°С. Однако оно дает возможность растянуть интервал существования температуры поверхности <1800-1850°С (начало "скачка температур" с интенсивным испарение силикатного стекла) с ~18 до 25 мин, вероятно, за счет повышения теплопроводности керамики. Таким образом, время окисления керамики, при котором температура поверхности превышает 1800°С (что приводит к наиболее значительной деструкции материала) сократилось практически в 2 раза – с 15 (керамика HfB₂-30 об. % SiC [61]) до 8 мин (керамика (HfB₂-30 об. % SiC)-1 об. % С_G).

Данный режим нагрева привел к существенному снижению скорости уноса материала с 1.6 × × 10⁻³ [61] до 6.5 × 10⁻⁴ г см⁻² мин⁻¹, что скорее приближается к значениям, полученным в [61] для керамики (HfB₂–30 об. % SiC)–2 об. % C_G (5.4 × 10⁻⁴ г см⁻² мин⁻¹).

Показано, что для полученного материала (HfB_2-30 об. % SiC)-1 об. % C_G примерно в два раза снизилась суммарная толщина окисленного слоя. Тем не менее, полученные значения все же существенно выше таковых для керамики, модифицированной 2 об. % графена, вероятно, из-за высокотемпературного воздействия при температурах >1800-2000°C.

Можно предположить, что в случае сокращения длительности воздействия сверхзвукового потока диссоциированного воздуха до 20–25 мин деструкция керамики должна быть существенно ниже.

В целом, можно сделать вывод об эффективности модифицирования ультравысокотемпературных керамических материалов HfB_2-30 об. % SiC даже очень низким количеством графена (1 об. %), однако в данном случае следует обратить внимание на уменьшение времени его существования с минимальной деструкцией.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование термохимического поведения образца, допированного графеном, выполнено при финансовой поддержке Российского фонда фундаментальных исследований (грант № 20-01-00056). Эксперимент на ВЧ-плазмотроне ВГУ-4 частично поддержан государственным заданием Института проблем механики им. А.Ю. Ишлинского РАН (грант № АААА-А20– 120011690135-5, модифицирование измерительных систем). Изучение эволюции микроструктуры и фазового состава образцов в результате интенсивного окисления выполнено с применением оборудования ЦКП ФМИ ИОНХ РАН, функционирующего при поддержке государственного задания ИОНХ РАН в области фундаментальных научных исследований.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Симоненко Е.П., Симоненко Н.П., Севастьянов В.Г. и др. // Ультравысокотемпературные керамические материалы: современные проблемы и тенденции. М.: ИП Коняхин А.В. (Book Jet), 2020.
- 2. Simonenko E.P., Sevast'yanov D. V., Simonenko N.P. et al. // Russ. J. Inorg. Chem. 2013. V. 58. № 14. P. 1669.
 - https://doi.org/10.1134/S0036023613140039
- Ma X., Wei C., Liu R. et al. // Corros. Sci. 2021. V. 182. P. 109283.
 - https://doi.org/10.1016/j.corsci.2021.109283
- 4. *Mohammadzadeh B., Jung S., Lee T.H. et al.* // Ceram. Int. 2020. T. 47. № 8. P. 11438. https://doi.org/10.1016/j.ceramint.2020.12.271
- Hassan R., Balani K. // Corros. Sci. 2020. V. 177. P. 109024. https://doi.org/10.1016/j.corsci.2020.109024
- Jafari S., Bavand-Vandchali M., Mashhadi M. et al. // Int. J. Refract. Met. Hard Mater. 2021. V. 94. P. 105371. https://doi.org/10.1016/j.ijrmhm.2020.105371

- 7. Xia C., Delbari S.A., Ahmadi Z. et al. // Ceram. Int. 2020. V. 46. № 18. P. 29334. https://doi.org/10.1016/j.ceramint.2020.08.054
- Simonenko E.P., Simonenko N.P., Gordeev A.N. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 4. P. 606. https://doi.org/10.1134/S0036023620040191
- 9. Simonenko E.P., Simonenko N.P., Mokrushin A.S. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 14. P. 1849. https://doi.org/10.1134/S0036023619140109
- 10. Simonenko E.P., Simonenko N.P., Gordeev A.N. et al. // J. Sol-Gel Sci. Technol. 2019. V. 92. № 2. P. 386. https://doi.org/10.1007/s10971-019-05029-9
- 11. Simonenko E.P., Simonenko N.P., Papynov E.K. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 1. P. 1. https://doi.org/10.1134/S0036023618010187
- 12. *Piriou C., Rapaud O., Foucaud S. et al.* // Ceram. Int. 2019. V. 45. № 2. P. 1846. https://doi.org/10.1016/j.ceramint.2018.10.075
- Mungiguerra S., Di Martino G.D., Savino R. et al. // Int. J. Heat Mass Transf. 2020. V. 163. P. 120492. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120492
- Vaferi K., Vajdi M., Nekahi S. et al. // Ceram. Int. 2021. T. 47. № 1. P. 567. https://doi.org/10.1016/j.ceramint.2020.08.164
- Simonenko E.P., Simonenko N.P., Gordeev A.N. et al. // J. Eur. Ceram. Soc. 2020. V. 40. № 4. P. 1093. https://doi.org/10.1016/j.jeurceramsoc.2019.11.023
- 16. *Mohammadzadeh B., Jung S., Lee T.H. et al.* // Materials (Basel). 2020. V. 13. № 10. P. 2213. https://doi.org/10.3390/ma13102213
- Mukherjee R., Basu B. // Adv. Appl. Ceram. 2018.
 V. 117. P. S2. https://doi.org/10.1080/17436753.2018.1509169
- Silvestroni L., Sciti D., Zoli L. et al. // Renew. Energy. 2019. V. 133. P. 1257. https://doi.org/10.1016/j.renene.2018.08.036
- Lonné Q., Glandut N., Lefort P. // J. Eur. Ceram. Soc. 2012. V. 32. № 4. P. 955. https://doi.org/10.1016/j.jeurceramsoc.2011.10.027
- Musa C., Licheri R., Orrù R. et al. // Sol. Energy. 2018.
 V. 169. P. 111. https://doi.org/10.1016/j.solener.2018.04.036
- Qi Y., Jiang K., Zhou C. et al. // J. Eur. Ceram. Soc. 2021. V. 41. № 4. P. 2239. https://doi.org/10.1016/j.jeurceramsoc.2020.11.009
- 22. Sengupta P., Sahoo S.S., Bhattacharjee A. et al. // J. Alloys Compd. 2021. V. 850. P. 156668. https://doi.org/10.1016/j.jallcom.2020.156668
- Simonenko E.P., Simonenko N.P., Gordeev A.N. et al. // J. Eur. Ceram. Soc. 2021. V. 41. № 2. P. 1088. https://doi.org/10.1016/j.jeurceramsoc.2020.10.001
- 24. Simonenko E.P., Simonenko N.P., Lysenkov A.S. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 3. P. 446. https://doi.org/10.1134/S0036023620030146
- 25. Simonenko E.P., Simonenko N.P., Sevastyanov V.G. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 14. P. 1697. https://doi.org/10.1134/S0036023619140079
- Shahriari M., Zakeri M., Razavi M. et al. // Int. J. Refract. Met. Hard Mater. 2020. V. 93. P. 105350. https://doi.org/10.1016/j.ijrmhm.2020.105350

Nº 9

том 66

2021

- Nguyen V.-H., Shahedi Asl M., Delbari S.A. et al. // Ceram. Int. 2020. https://doi.org/10.1016/j.ceramint.2020.12.129
- 28. Pourmohammadie Vafa N., Ghassemi Kakroudi M., Shahedi Asl M. // Ceram. Int. 2020. V. 46. № 13. P. 21533. https://doi.org/10.1016/j.ceramint.2020.05.255
- 29. Simonenko E.P., Simonenko N.P., Gordeev A.N. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 10. P. 1596. https://doi.org/10.1134/S0036023620100198
- Vinci A., Zoli L., Galizia P. et al. // J. Eur. Ceram. Soc. 2020. V. 40. № 15. P. 5067. https://doi.org/10.1016/j.jeurceramsoc.2020.06.043
- 31. *Guo S.* // Adv. Appl. Ceram. 2020. V. 119. № 4. P. 218. https://doi.org/10.1080/17436753.2020.1755510
- 32. Bannykh D., Utkin A., Baklanova N. // Ceram. Int. 2018. V. 44. № 11. P. 12451. https://doi.org/10.1016/j.ceramint.2018.04.035
- 33. Ghasali E., Shahedi Asl M. // Ceram. Int. 2018. V. 44.
 № 15. P. 18078. https://doi.org/10.1016/j.ceramint.2018.07.011
- 34. Purwar A., Thiruvenkatam V., Basu B. // J. Am. Ceram. Soc. 2017. V. 100. № 10. P. 4860. https://doi.org/10.1111/jace.15001
- 35. Simonenko E.P., Simonenko N.P., Sevastyanov V.G. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 14. P. 1772. https://doi.org/10.1134/S003602361814005X
- Fang C., Hu P., Dong S. et al. // J. Eur. Ceram. Soc. 2019. V. 39. № 9. P. 2805. https://doi.org/10.1016/j.jeurceramsoc.2019.03.038
- 37. *Sciti D., Zoli L., Vinci A. et al.* // J. Eur. Ceram. Soc. 2020.
- https://doi.org/10.1016/j.jeurceramsoc.2020.05.032
- Zhang D., Hu P., Dong S. et al. // Corros. Sci. 2019. V. 161. P. 108181. https://doi.org/10.1016/j.corsci.2019.108181
- *Zhang D., Hu P., Feng J. et al.* // Ceram. Int. 2019. V. 45. № 5. P. 5467.
- https://doi.org/10.1016/j.ceramint.2018.12.001
- 40. *Shahedi Asl M.* // Ceram. Int. 2017. V. 43. № 17. P. 15047. https://doi.org/10.1016/j.ceramint.2017.08.030
- Vinci A., Zoli L., Landi E. et al. // Corros. Sci. 2017. V. 123. P. 129.
- https://doi.org/10.1016/j.corsci.2017.04.012
 42. *Popov O., Vleugels J., Zeynalov E. et al.* // J. Eur. Ceram. Soc. 2020. V. 40. № 15. P. 5012.
- https://doi.org/10.1016/j.jeurceramsoc.2020.07.039
 43. *Dubey S., Awasthi S., Nisar A. et al.* // JOM. 2020. V. 72. Nº 6. P. 2207.
- https://doi.org/10.1007/s11837-020-04164-x
- 44. Nisar A., Ariharan S., Venkateswaran T. et al. // Carbon N. Y. 2017. V. 111. P. 269. https://doi.org/10.1016/j.carbon.2016.10.002
- 45. Shahedi Asl M., Farahbakhsh I., Nayebi B. // Ceram. Int. 2016. V. 42. № 1. P. 1950. https://doi.org/10.1016/j.ceramint.2015.09.165
- 46. Lin J., Huang Y., Zhang H. et al. // Ceram. Int. 2015. V. 41. № 10. P. 15261. https://doi.org/10.1016/j.ceramint.2015.07.207

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ

- 47. Yue X., Peng X., Wei Z. et al. // Materials (Basel). 2020.
 V. 13. № 2. P. 370. https://doi.org/10.3390/ma13020370
- 48. Wang A., Liao H., Zhang T. et al. // Int. J. Ceram. Eng. Sci. 2020. V. 2. № 2. P. 101. https://doi.org/10.1002/ces2.10041
- 49. Pourmohammadie Vafa N., Ghassemi Kakroudi M., Shahedi Asl M. // Ceram. Int. 2020. V. 46. № 7. P. 8561. https://doi.org/10.1016/j.ceramint.2019.12.086
- 50. Shahedi Asl M., Nayebi B., Motallebzadeh A. et al. // Compos. Part B Eng. 2019. V. 175. P. 107153. https://doi.org/10.1016/j.compositesb.2019.107153
- 51. *Li H., Wang Y., Wang Z. et al.* // J. Micromechanics Microengineering. 2018. V. 28. № 10. P. 105022. https://doi.org/10.1088/1361-6439/aad79b
- 52. Cheng Y., Liu Y., An Y. et al. // J. Eur. Ceram. Soc. 2020. V. 40. № 8. P. 2760. https://doi.org/10.1016/j.jeurceramsoc.2020.03.029
- Cheng Y., Lyu Y., Zhou S. et al. // Ceram. Int. 2019.
 V. 45. № 3. P. 4113. https://doi.org/10.1016/i.ceramint.2018.10.250
- 54. Cheng Y., Lyu Y., Han W. et al. // J. Am. Ceram. Soc. 2018. P. Jace. 16068. https://doi.org/10.1111/jace.16068
- 55. Wei C., Yu C., Liu X. et al. // Ceram. Int. 2017. V. 43. № 16. P. 14493. https://doi.org/10.1016/j.ceramint.2017.07.063
- 56. *Zhang B., Zhang X., Hong C. et al.* // ACS Appl. Mater. Interfaces. 2016. V. 8. № 18. P. 11675. https://doi.org/10.1021/acsami.6b00822
- 57. Zhang X., An Y., Han J. et al. // RSC Adv. 2015. V. 5. № 58. P. 47060. https://doi.org/10.1039/C5RA05922D
- Shahedi Asl M., Ghassemi Kakroudi M. // Mater. Sci. Eng. A. 2015. V. 625. P. 385. https://doi.org/10.1016/j.msea.2014.12.028
- 59. Asl M.S., Nayebi B., Ahmadi Z. et al. // Ceram. Int. 2018. V. 44. № 7. P. 7334. https://doi.org/10.1016/j.ceramint.2018.01.214
- 60. *An Y., Xu X., Gui K.* // Ceram. Int. 2016. V. 42. № 12. P. 14066. https://doi.org/10.1016/j.ceramint.2016.06.014
- 61. Simonenko E.P., Simonenko N.P., Kolesnikov A.F. et al. // J. Eur. Ceram. Soc. 2021.
- 62. Marschall J., Pejakovic D., Fahrenholtz W.G. et al. // J. Thermophys. Heat Transf. 2012. V. 26. № 4. P. 559. https://doi.org/10.2514/1.T3798
- 63. Simonenko E.P., Gordeev A.N., Simonenko N.P. et al. // Russ. J. Inorg. Chem. 2016. V. 61. № 10. P. 1203. https://doi.org/10.1134/S003602361610017X
- 64. *Whittle K.R., Lumpkin G.R., Ashbrook S.E.* // J. Solid State Chem. 2006. V. 179. № 2. P. 512. https://doi.org/10.1016/j.jssc.2005.11.011
- 65. Zachariasen W.H. // Z. Kristallogr. Cryst. Mater. 1934. V. 88. № 1–6. P. 150. https://doi.org/10.1524/zkri.1934.88.1.150