____ НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ __ И НАНОМАТЕРИАЛЫ

УДК 539.231

НИЗКОТЕМПЕРАТУРНЫЙ ЛАЗЕРНЫЙ СИНТЕЗ ПЛЕНОК LiC₀O₂ И WO₃ ДЛЯ ЭЛЕКТРОХРОМНОГО ПРИМЕНЕНИЯ

© 2021 г. Л. С. Паршина^{а,} *, О. А. Новодворский^а

^а Институт проблем лазерных и информационных технологий РАН — филиал Федерального государственного учреждения "Федеральный научно-исследовательский центр "Кристаллография и фотоника" РАН, vл. Святоозерская. 1. Шатура. 140700 Россия

> *e-mail: ParshinaLiubov@mail.ru Поступила в редакцию 07.02.2021 г. После доработки 23.03.2021 г. Принята к публикации 27.03.2021 г.

Методом лазерного синтеза получены аморфные диэлектрические пленки WO_3 на кварцевых подложках и *c*-сапфире при комнатной температуре, а также тонкие пленки $LiCoO_2$ толщиной от 10 до 60 нм на подложках *c*-сапфира и кремния как основные компоненты полностью твердотельной электрохромной тонкопленочной ячейки на гибкой полимерной подложке. Исследованы оптические и электрофизические характеристики, а также морфология поверхности пленок, полученных при комнатной температуре на разных типах подложки при изменении давления кислорода в процессе роста. Изменение давления кислорода не сильно влияло на шероховатость поверхности пленок WO_3 , которая составляла 4–5 нм. Тип подложки практически не влиял на шероховатость поверхности пленок WO_3 , которая в среднем составляла 35 нм. При увеличении давления кислорода до 1000 нм. Пропускание пленок WO_3 увеличивалось с 30 до 70% в исследуемом спектральном диапазоне от 300 до 1000 нм. В результате низкотемпературного лазерного синтеза получена твердотельная электрохромная ячейка на основе WO_3 , пропускание которой уменьшалось на 30% в диапазоне спектра от 300 до 900 нм за время окрашивания 2 мин при напряжении 2 В.

Ключевые слова: электрохромизм, импульсное лазерное осаждение, тонкие пленки **DOI:** 10.31857/S0044457X21080201

введение

Электрохромные покрытия обладают способностью обратимо изменять свои оптические характеристики под действием электрического поля [1]. Под влиянием приложенного напряжения происходит изменение цвета электрохромной из-за интеркаляции/деинтеркаляции пленки электролитов на основе Li⁺, Na⁺ или H⁺ [2, 3]. Выбор этих электролитов и, следовательно, производительность устройства в основном зависят от электрохромных материалов [4, 5]. Стандартное электрохромное устройство имеет пять наложенных слоев (слой прозрачного проводящего оксида/катодный электрохромный слой/ионопроводящий слой (электролит)/анодный электрохромный слой/слой прозрачного проводящего оксида) и размещается в слоистой конфигурации между двумя ламинированными подложками [6]. В качестве катодного электрохромного слоя обычно используются тонкие пленки WO₃ благодаря способности изменять свое пропускание при приложении напряжения в широком диапазоне длин волн от УФ до ИК [7]. Функция ионопроводящего слоя в таком устройстве заключается в том, чтобы пропускать ионы и блокировать ток электронов. В традиционном многослойном устройстве ионный проводник обычно представляет собой жидкий полимерный электролит. Жидкие полимерные электролиты обладают хорошими транспортными возможностями для Н⁺ и Li⁺, однако они оказывают разрушающее влияние на прилегающие слои электрохромного устройства, что приводит к расслаиванию и усадке. Полимерные электролиты имеют плохую стойкость, особенно при низких температурах окружающей среды [8]. В настоящее время интенсивно велутся исследования по созданию новых технологий получения полностью твердотельных электрохромных тонкопленочных устройств на гибких полимерных подложках, обладающих хорошо регулируемыми свето- и теплозащитными эксплуатационными характеристиками [9, 10] для применения в качестве материалов с электроуправляемым светопропусканием в панелях отображения информации, фотовольтаических устройствах, умных окнах для энергосбережения в зданиях, а также для оптической коммутации [11-13]. Для полностью твердотельных электрохромных устройств в качестве ионопроводящих слоев используются тонкие пленки оксидов металлов, в частности LiCoO₂ [14]. Неорганические электролиты являются идеальными кандидатами для изготовления устройства без образования пузырьков и проблем герметизации между соседними слоями, используемыми в устройстве. Такие электролиты обладают высокой стабильностью в широком диапазоне температур даже при воздействии ультрафиолетового излучения. По сравнению с ламинированными устройствами полностью твердотельные электрохромные устройства более долговечны и надежны, особенно в устройствах большой площади [15]. В настоящее время ведутся исследования ионопроводящих материалов для улучшения их ионной проводимости и оптической прозрачности [16].

В связи с этим актуальным является синтез тонкопленочных компонент, вхоляших в состав таких электрохромных покрытий. при комнатной температуре [17]. Применяемый метод импульсного лазерного осаждения (ИЛО) позволяет синтезировать тонкопленочные компоненты электрохромной ячейки на гибких органических подблагодаря снижению ложках температуры кристаллизации пленок за счет высокой энергии частиц в лазерной плазме [18]. Модифицированный нами метод ИЛО путем обеспечения бескапельного режима роста пленок за счет применения сепаратора частиц, летящих от мишени к подложке в процессе лазерного синтеза, позволяет получать пленки с минимально возможной шероховатостью [19]. Высокие плотность частиц и степень ионизации лазерного факела в методе ИЛО позволяют равномерно осаждать пленки толщиной в единицы нанометров. Электрохромные ячейки с нанометровой толщиной компонент обладают большей скоростью переключения при изменении пропускания.

Цель настоящей работы — низкотемпературный лазерный синтез пленок LiCoO₂ и WO₃ на разных типах подложки при изменении давления кислорода в процессе роста, а также исследование оптических, электрофизических характеристик и морфологии поверхности полученных пленок.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Низкотемпературным лазерным синтезом в бескапельном режиме из металлических мишеней вольфрама на монокристаллических подложках *с*-сапфира и плавленого кварца получены тонкие пленки WO₃. Давление кислорода в процессе роста пленок изменялось в диапазоне от 20 до 60 мТорр. Толщина полученных пленок со-

ставляла от 42 до 275 нм. На подложках монокристаллического с-сапфира и кремния п- и р-типа синтезированы тонкие пленки LiCoO₂ при комнатной температуре и давлении кислорода 100 мТорр. Толщина полученных пленок LiCoO₂ варьировалась от 10 до 100 нм. Напыление пленок осуществляли в вакуумной камере, предварительно откачанной до давления 10^{-7} Торр, из составных мишеней LiCoO₂ : Li₂O излучением эксимерного KrF-лазера ($\lambda = 248$ нм, длительность импульса 20 нс) с частотой следования импульсов 10 Гц. Мишени получали из порошков LiCoO₂ и Li₂O путем прессования и термического отжига на воздухе при температуре 1000°С в течение 2 ч. Концентрация Li₂O в мишени составляла 5 и 10%. Мишень и подложка располагались на расстоянии 50 мм. Бескапельный режим роста пленок осуществлялся за счет применения механического сепаратора частиц, летящих от мишени к подложке в процессе лазерного синтеза, это позволяло получать пленки с минимально возможной шероховатостью [19].

Морфологию поверхности полученных пленок исследовали методами атомно-силовой микроскопии (ACM) на микроскопе NT-MDT Solver Next и сканирующей электронной микроскопии (СЭМ) на микроскопе Carl Zeiss NVision 40. Толщину пленок измеряли модифицированным микроинтерферометром МИИ-4 (ЛОМО). Электрохромные и оптические характеристики пленок исследовали с помощью спектрофотометров Cary 50 и Cary 5000. Структурные свойства пленок изучали методом рентгеновской дифракции на рентгеновском дифрактометре D8 Discover фирмы Bruker-AXS. Электрические характеристики пленок исследовали по четырехточечной схеме Ван дер Пау на автоматизированной установке HSM 3000.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Степень окисления оксидных пленок существенно влияет на их характеристики [20]. Поэтому давление кислорода в процессе лазерного синтеза тонких оксидных пленок играет очень важную роль, особенно при абляции металлических мишеней. Спектры пропускания пленок WO₃, полученных на с-сапфире и кварце в зависимости от давления кислорода в процессе роста, представлены на рис. 1. Видно, что пропускание пленок, полученных как на с-сапфире, так и на кварце, возрастает во всей исследуемой области спектра от 200 до 1100 нм при изменении давления кислорода в процессе синтеза от 20 до 60 мТорр. Установлено, что увеличение давления кислорода от 20 до 60 мторр в процессе роста пленок WO_3 приводит к увеличению их пропускания в види-

Рис. 1. Пропускание пленок WO₃ в диапазоне от 200 до 1100 нм, осажденных при комнатной температуре на кварцевые (а) и *с*-сапфировые (б) подложки при давлении кислорода в процессе роста: 1 - 20, 2 - 40, 3 - 60 мТорр.

мой и УФ-области спектра от 40 до 75%, а в ИКобласти от 10 до 70%.

При синтезе электрохромной ячейки эффективнее использовать аморфные пленки электрохромного оксида. Диффузия легких ионов (H⁺, Li⁺, Na⁺) в аморфных пленках WO₃ происходит быстрее, чем в кристаллических [21]. Рентгеноструктурные исследования пленок WO₃, полученных низкотемпературным лазерным синтезом как на с-сапфире, так и на кварце, показали, что пленки являются аморфными. На рис. 2 представлена дифрактограмма пленки WO₃ на кварце. Методом АСМ установлено, что шероховатость поверхности пленки WO₃, полученной низкотемпературным лазерным синтезом на кварце, практически не изменяется в процессе роста при увеличении давления кислорода от 20 до 60 мТорр. Шероховатость полученных пленок составила 4-5 нм.

Рис. 2. Дифрактограмма пленки WO₃, полученной на кварцевой подложке при комнатной температуре и давлении кислорода в камере 60 мТорр.

Пленки WO₃, осажденные как на *с*-сапфире, так и на кварце при одном и том же давлении кислорода, обладают одинаковым удельным сопротивлением. При изменении давления кислорода от 20 до 60 мТорр в процессе роста пленок их удельное сопротивление увеличивается. Пленки WO₃ демонстрируют диэлектрические свойства при давлении кислорода 60 мТорр.

На основании исследованных выше условий получения электрохромных пленок WO₃ низкотемпературным лазерным синтезом была создана твердотельная электрохромная ячейка с использованием жидкого электролита. Для этого на всей поверхности *с*-сапфира размером 10 × 10 мм² была выращена пленка SnO₂ : Sb толщиной 200 нм в качестве нижнего прозрачного проводящего электрода. Низкотемпературный лазерный синтез прозрачных проводящих электродов SnO₂ : Sb отработан нами ранее [22]. На пленке нижнего электрода при оптимальных условиях низкотемпературного лазерного синтеза был выращен слой электрохромного оксида WO₃ размером 10 × × 8 мм². К открытому участку нижнего электрода в виде полоски шириной 2 мм был подпаян провод для подключения к источнику питания. Полученную электрохромную тонкопленочную структуру вместе с платиновой пластинкой, служившей противоэлектродом, помещали в оптическую кювету. В качестве электролита использовали водный 0.5 М раствор уксусной кислоты, уровень которого доходил до открытой части нижнего электрода твердотельной электрохромной структуры. При подаче напряжения 2 В электрохромная ячейка окрашивалась в синий цвет в течение 2 мин, что соизмеримо с литературными данными [21]. В основе процессов окрашивания и обесцвечивания электрохромной ячейки лежит обратимая химическая реакция образования соединения с переменным составом:

Рис. 3. Пропускание электрохромной ячейки с жидким электролитом (*1* – осветленное состояние, *2* – окрашенное состояние) при приложении напряжения 2 В к платиновому электроду.

$$WO_3$$
 (бесцветный) + xH^+ +
+ $xe^- \leftrightarrow H_xWO_3$ (синий),

где е⁻ – электрон; x – стехиометрический коэффициент, изменяющийся в диапазоне 0–1 [6]. На рис. 3 представлено пропускание полученной нами низкотемпературным лазерным синтезом электрохромной структуры в исходном осветленном и окрашенном состояниях. Видно, что в окрашенном состоянии пропускание структуры изменяется в среднем от 70 до 40% с большей степенью окрашивания в ближней ИК-области спектра. Таким образом, методом низкотемпературного лазерного синтеза можно получить аморфные электрохромные пленки WO₃, способные изменять свое пропускание в диапазоне спектра от 300 до 900 нм.

Для создания полностью твердотельной электрохромной ячейки в качестве ионопроводящего слоя нами предложено использовать тонкую пленку LiCoO₂. С этой целью были исследованы оптические и электрические свойства, а также морфология поверхности полученных с помощью низкотемпературного лазерного синтеза пленок LiCoO₂ в зависимости от типа подложки. Необходимость проведения таких исследований связана с влиянием морфологии интерфейса на эффективность диффузии ионов лития в электрохромных ячейках [23]. Пленки LiCoO₂, полученные низкотемпературным лазерным синтезом на с-сапфире, обладают развитым рельефом поверхности с шероховатостью 34-35 нм. АСМ-изображение поверхности пленки LiCoO₂ на *с*-сапфире приведено на рис. 4. СЭМ-изображение поверхности пленки LiCoO₂ на кремнии представлено на рис. 5. Видна наноструктурированность поверхности пленок LiCoO₂ как на ACM-, так и на СЭМ-изображении. При этом размер гранул составляет несколько сот нанометров. Пленки, полученные на с-сапфировых и кремниевых подложках при комнатной температуре, демонстрируют схожую структуру поверхности.

Удельное сопротивление пленок LiCoO₂, полученных низкотемпературным лазерным синтезом на *с*-сапфире, в среднем составляло 6 кОм см. Исследование спектров пропускания пленок LiCoO₂, полученных низкотемпературным лазерным синтезом на *с*-сапфире из мишеней LiCoO₂ : Li₂O с содержанием оксида лития 5%,

Рис. 4. АСМ поверхности пленки LiCoO₂, осажденной при комнатной температуре на *c*-сапфировую подложку.

Рис. 5. СЭМ поверхности пленки LiCoO₂ на кремниевой подложке, осажденной при комнатной температуре подложки.

показало, что прозрачность пленок в видимом диапазоне спектра изменяется от 40 до 60% (рис. 6). Это, по-видимому, негативно скажется при создании электрохромных устройств, работающих на изменении оптических свойств в видимом диапазоне спектра.

ЗАКЛЮЧЕНИЕ

Низкотемпературным лазерным синтезом из металлической мишени вольфрама в атмосфере кислорода получены аморфные электрохромные пленки WO₃. При давлении кислорода 60 мторр в процессе низкотемпературного лазерного синтеза аморфные пленки WO₃ демонстрируют диэлектрические свойства. Шероховатость поверхности пленки WO₃, полученной низкотемпературным лазерным синтезом на кварце, практически не меняется в процессе роста при увеличении давления кислорода от 20 до 60 мТорр. Экспериментально доказано, что полученные пленки WO₃ обладают электрохромизмом в диапазоне спектра от 300 до 900 нм. Низкотемпературным лазерным синтезом создана твердотельная электрохромная ячейка с использованием жидкого электролита, которая в течение 2 мин изменяет свое пропускание с 70 до 40% при приложении напряжения 2 В. Для создания полностью твердотельной электрохромной ячейки в качестве ионопроводящего слоя низкотемпературным лазерным синтезом получены тонкие пленки LiCoO₂ на монокристаллических подложках с-сапфира и кремния. Исследовано влияние типа подложки на морфологию полученных пленок. Методом АСМ установлено, что тип подложки практически не влияет на шероховатость поверхности пленок LiCoO₂ на с-сапфире и составляет 35 нм. Прозрачность

Рис. 6. Пропускание *с*-сапфира (*1*) и пленки LiCoO₂ (*2*) толщиной 40 нм, полученной на *с*-сапфировой подложке при комнатной температуре.

пленок LiCoO₂, полученных низкотемпературным лазерным синтезом, изменяется от 40 до 60% в видимом диапазоне спектра, что может негативно сказаться при создании электрохромных устройств, работающих на изменении оптических свойств в видимом диапазоне спектра. Таким образом, с целью увеличения прозрачности пленок твердотельного электролита LiCoO₂ при комнатной температуре подложки методом ИЛО требуются дальнейшие исследования.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при поддержке Министерства науки и высшего образования в рамках выполнения работ по государственному заданию ФНИЦ "Кристаллография и фотоника" РАН в части выращивания тонких пленок, Российского фонда фундаментальных исследований (проект № 19-29-03032) в части исследования тонких пленок.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

дополнительная информация

Статья публикуется по итогам Шестого Междисциплинарного научного форума с международным участием "Новые материалы и перспективные технологии", Москва, 23–26 ноября 2020 г., https://n-materials.ru.

СПИСОК ЛИТЕРАТУРЫ

- Yang H., Yu J.H., Seo H.J. et al. // Appl. Surf. Sci. 2018. V. 461. P. 88. https://doi.org/10.1016/j.apsusc.2018.05.231
- Qiu D., Ji H., Zhang X. et al. // Inorg. Chem. 2019. V. 58. P. 2089. https://doi.org/10.1021/acs.inorgchem.8b03178

- Yuan G., Hua C., Huang L. et al. // Appl. Surf. Sci. 2017. V. 421. P. 630. https://doi.org/10.1016/j.apsusc.2016.10.176
- 4. Yong T., Li X., Bae J. et al. // Mater. Des. 2019. V. 162. P. 45. https://doi.org/10.1016/j.matdes.2018.11.016
- Nanda O., Gupta N., Grover R. et al. // AIP Adv. 2018
 V. 8. P. 095117. https://doi.org/10.1063/1.5037454
- 6. Белоусов А.Л., Патрушева Т.Н. // Журн. Сиб. фед. ун-та. Техника и технологии. 2014. Т. 7. № 2. С. 154. http://elib.sfu-kras.ru/bitstream/handle/2311/10348/03a_Belousov.pdf;jsessionid=1F76FBFB923DD8104A85B44FC13DCF75?sequence=1
- Sauvet K., Sauques L., Rougier A. // J. Phys. Chem. Solids. 2010. V. 71. P. 696. https://doi.org/10.1016/j.jpcs.2009.12.069
- Wang S.-C., Liu K.-Y., Huang J.-L. // Thin Solid Films. 2011. V. 520. P. 1454. https://doi.org/10.1016/j.tsf.2011.08.046
- 9. Li J., Jiang Q., Yuan N. et al. // Materials. 2018. V. 11. P. 2280. https://doi.org/10.3390/ma11112280
- 10. *Kim K., Choi D., Kim H. et al.* // Int. J. Prec. Engineer. Manufacturing-Green Technol. 2018. V. 5. № 3. P. 409. https://doi.org/10.1007/s40684-018-0043-4
- Ah C.S., Song J., Cho S.M. et al. // Bull. Korean Chem. Soc. 2018. V. 39. P. 1186. https://doi.org/10.1002/bkcs.11574
- Yan X., Wang L., Qian X. // Coatings. 2020. V. 10. № 1. P. 35. https://doi.org/10.3390/coatings10010035

- Wang D., Wei L., Shi P. et al. // J. Alloys Compd. 2019. V. 771. P. 100. https://doi.org/10.1016/j.jallcom.2018.08.268
- 14. Yano A., Hikima K., Hata J. et al. // J. Electrochem. Soc. 2018. V. 165. № 14. P. A3221. https://doi.org/10.1149/2.0151814jes
- Patel K.J., Bhatt G.G., Ray J.R. et al. // J. Solid State Electrochem. 2017. V. 21. P. 337. https://doi.org/10.1007/s10008-016-3408-z
- 16. *Atak G., Coşkun Ö.D.* // Opt. Mater. 2018. V. 82. P. 160. https://doi.org/10.1016/j.optmat.2018.05.062
- Mehmood A., Long X., Haidry A.A. et al. // Ceram. Int. 2020. V. 46. P. 23295. https://doi.org/10.1016/j.ceramint.2020.06.035
- Parshina L.S., Novodvorsky O.A., Khramova O.D. et al. // Semiconductors. 2019. V. 53. № 2. P. 160. https://doi.org/10.1134/S1063782619020192
- Parshina L.S., Khramova O.D., Novodvorsky O.A. et al. // Semiconductors. 2017. V. 51. № 3. P. 407. https://doi.org/10.1134/S1063782617030228
- Novodvorsky O.A., Khramova O.D., Filippova E.O. et al. // Proc. SPIE. 2001. V. 4644. P. 58. https://doi.org/10.1117/12.464189
- Evecan D., Zayim E. Highly // Curr. Appl. Phys. 2019.
 V. 19. P. 198. https://doi.org/10.1016/J.CAP.2018.12.006
- 22. Parshina L.S., Novodvorsky O.A., Khramova O.D. et al. // Optical and Quantum Electronics. 2016. V. 48. № 6. P. 316. https://doi.org/10.1007/s11082-016-0586-y
- 23. Shiraki S., Shirasawa T., Suzuki T. et al. // ACS Appl. Mater. Interfaces. 2018. V. 10. № 48. P. 41732. https://doi.org/10.1021/acsami.8b08926