_ ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ ₌ НЕОРГАНИЧЕСКИХ СИСТЕМ

УДК [546.289:546.22-121:546.87]+544.232:544.015.4

ТЕРМОДИНАМИЧЕСКИЙ АНАЛИЗ КРИСТАЛЛИЗАЦИОННОЙ УСТОЙЧИВОСТИ СТЕКОЛ Ge—S—Bi

© 2021 г. К. В. Балуева^{а, *}, А. Д. Плехович^а, А. М. Кутьин^а, М. В. Суханов^а

^аИнститут химии высокочистых веществ им. Г.Г. Девятых РАН, ул. Тропинина, 49, Нижний Новгород, 603951 Россия *e-mail: balueva@ihps-nnov.ru

> Поступила в редакцию 19.01.2021 г. После доработки 03.03.2021 г. Принята к публикации 17.03.2021 г.

В связи с широкими практическими приложениями стеклообразующих систем на основе GeS, в литературе накоплены сведения о процессе кристаллизации из переохлажденного расплава, полученные преимущественно методом ДСК и подкрепленные рентгенографическими данными. Объяснение экспериментально установленных закономерностей кристаллизации с позиции термодинамического метода минимизации энергии Гиббса позволило разработать предсказательную методику, определяющую кристаллизующиеся фазы и температурные условия их выделения в зависимости от исходного состава стекла $GeS_xBi_{0.02}$ (x = 1.25, 1.35, 1.4 и 1.6), а также сформулировать термодинамический фактор кристаллизационной устойчивости стекла. Сопоставление рассчитанной по ассоциированной модели раствора энергии Гиббса с ее полученными из эксперимента значениями в области переохлажденного расплава позволило определить стандартную энтальпию образования для каждого состава стекла. Наконец, пересышение на кристаллизацию – основа термодинамического фактора процесса кристаллизации и показатель кристаллизационной устойчивости стекла - определяется разностью химических потенциалов компонента стеклообразующей системы в кристаллическом состоянии и в состоянии переохлажденного расплава. Методика предсказания и выбора кристаллизационно-устойчивых стекол способствует ускорению технологических разработок новых волоконных световодов.

Ключевые слова: халькогенидное стекло, энергия Гиббса, ассоциированный раствор, термодинамическое моделирование

DOI: 10.31857/S0044457X2108002X

ВВЕДЕНИЕ

Халькогенилные стекла на основе Ge-S обладают высокими показателями преломления и нелинейной восприимчивости [1], широкой областью прозрачности [2, 3], низкой энергией фононов [4], высокой растворимостью редкоземельных элементов [5, 6]. Они находят применение в фотонике, телекоммуникациях, оптоэлектронике, в устройствах для хранения и передачи информации, фотолитографии. Халькогенидные стекла, легированные висмутом, представляют особый интерес ввиду наличия у них ультраширокой полосы люминесценции (1.2-2.3 мкм) [7, 8], обусловленной активными центрами висмута [9], что открывает перспективу создания новых широкополосных волоконных усилителей и лазеров в инфракрасном диапазоне длин волн.

Как и другие халькогенидные стеклообразующие системы [10–12], стекла Ge—S—Ві склонны к кристаллизации, что требует контроля как заготовок, так и вытянутых из них оптических воло-

кон. Таким образом, экспериментальный путь получения образцов различных составов с последующим исследованием их кристаллизационной устойчивости методами термического и рентгенофазового анализа, вискозиметрии, дилатометрии, микроскопии требует значительных временных и материальных затрат. В этой связи задача прогнозирования максимально устойчивого к кристаллизации состава стекла приобретает актуальность и становится необходимой составной частью современной технологии, ускоряющей разработку новых оптических стекол. Наибольшей эффективностью решения подобной задачи обладает метод термодинамического анализа и моделирования.

Наиболее распространенными для моделирования термодинамических процессов являются программы ИВТАНТЕРМО [13], ТЕРРА (ранее АСТРА) [14, 15], СНЕМСАО [16], Аspen HYSYS [17]. Термодинамические расчеты активно применяются в химии для описания транспорт-

ных реакций [18, 19], термолиза [20], химического осаждения [21], оценки содержания структурных составляющих стекол и их вязкости [22, 23], расчета термодинамических характеристик расплавов [24, 25] и других лабораторных и промышленных процессов. Лишь в работе [26] с помощью программы Thermo-Calc [27] проведен термодинамический анализ состава равновесных фаз в сплавах Ni—B, Ni—P(—Sn), Fe—Ni—P, Fe—Ni(—Cr)—P—B и Ni—W—P. Однако литературные данные исследования кристаллизационной устойчивости стекол в температурном интервале переохлажденного расплава методами термодинамики отсутствуют.

Цель работы — исследование и термодинамическое моделирование процесса образования кристаллических фаз из переохлажденного расплава стеклообразующей системы Ge—S—Bi.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Халькогенидные стекла $GeS_xBi_{0.02}$ (x = 1.25, 1.35, 1.4 и 1.6) были изготовлены плавлением смеси простых веществ Ge, S, Ві высокой чистоты. Содержание примесей металлов в исходных материалах не превышало 0.1-0.5 м.д., примесей легких элементов (C, H, O, S) -1-2 м.д. Массы навесок реагентов рассчитывали исходя из необходимости получить стекло общей массой 5-7 г. Реагенты загружали в кварцевые ампулы (внутренний диаметр 8-12 мм), которые предварительно обрабатывали фтористоводородной кислотой, промывали дистиллированной водой, сушили при 620 К и отжигали при 1120 К. Затем ампулы с шихтой вакуумировали до остаточного давления 10-5 Торр и гомогенизировали плавлением в течение 2 ч при 1120 К. Закалку стекла осуществляли на воздухе. С целью снижения остаточных напряжений ампулы со стеклами отжигали в режиме охлаждения печи от 600 К до комнатной температуры [28]. Объемные образцы стекла для дальнейших исследований свойств подвергали механической обработке (резка, шлифовка, полировка) для придания им формы дисков диаметром ~5 мм и высотой ~2 мм.

Термодинамическое моделирование проводили при помощи программы расчета многокомпонентных гетерогенных систем с химическими и фазовыми превращениями Chemical Thermodynamics Calculator (СТС) (автор А.М. Кутьин) посредством расчетов как равновесных, так и условно-равновесных состояний [29], включающих ассоциативные равновесия для описания неидеальных растворов. В основу алгоритма программы положен метод минимизации энергии Гиббса.

Расчет содержания компонентов в гетерогенной системе Ge—S—Bi—газ и характеристик равновесия осуществляли при следующих равновес-

ных условиях, близких к условиям получения стекоп:

- состав конденсированной фазы GeS_xBi_y (x = 1.25, 1.35, 1.4 и 1.6; y = 0.02);
 - температурный диапазон 300-1400 K;
 - общее давление 1 атм, включая аргон.

Расплав стекла GeS_xBi_y , включая его переохлажденную часть, был представлен в виде ассоциированных растворов жидкофазных компонентов. Согласно фазовым диаграммам бинарных систем Ge-S, Ge-Bi и Bi-S [30], в рассматриваемом температурном диапазоне компоненты $Ge, S, Bi, GeS, GeS_2, Bi_2S_3$ вводили в расчет в конденсированном состоянии (твердом и жидком). В газовой фазе учитывали следующие компоненты: Ar, $Ge, Ge_2, GeS, GeS_2, S, S_2, S_3, S_4, S_5, S_6, S_7, S_8, BiS, Bi, Bi_2, Bi_3, Bi_4.$

Необходимые для проведения расчетов данные о термодинамических функциях компонентов системы, в частности, стандартных энтальпиях образования, температурных зависимостях теплоемкости и характеристиках переходов между состояниями, были взяты из справочников [31—33].

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Термодинамические функции (**ТФ**), определяемые моделью ассоциированного раствора Д.И. Менделеева, при достаточном полном наборе жидкофазных ассоциатов, охватывающих все детали взаимодействия компонентов в растворе, могут быть сопоставлены с ТФ расплава, полученными в результате прямого калориметрического измерения теплоемкости. Обработка экспериментальной теплоемкости с учетом характеристик перехода между состояниями позволяет определить стандартные ТФ стекла, а также сравниваемые с функциями ассоциированного раствора ТФ расплава, включая его переохлажденное состояние. Равенство сравниваемых, в частности, энергий Гиббса завершает термодинамическую характеризацию исследуемой стеклообразующей системы, добавляя к стандартным ТФ определяемую указанным равенством стандартную энтальпию образования (см. далее).

В компьютерной системе СТС используется принятая в банке данных ТФ (ИВТАНТЕРМО [13]) форма температурной зависимости приведенной (деленной на RT) стандартной энергии Гиббса индивидуальных веществ и ассоциатов с безразмерными коэффициентами ϕ_i и энтальпиями об-

разования \emph{h}_{0}° или $\Delta_{f}\emph{h}_{298}^{\circ}$.

$$g^{\circ}(T) = \begin{cases} h_0^{\circ}/x \\ \Delta_f h_{298}^{\circ}/x \end{cases} - \left(\phi_1 + \phi_2 \ln x + \phi_3 x^{-2} + \frac{1}{2} + \frac{1}{2} \left(\phi_1 + \phi_2 \ln x + \phi_3 x^{-2} + \frac{1}{2} + \frac{1}{2} \left(\phi_1 + \phi_2 \ln x + \phi_3 x^{-2} + \frac{1}{2} \right) \right) \end{cases}$$

$$+ \begin{cases} \phi_4 \\ \phi_4 \end{cases} x^{-1} + \phi_5 x + \phi_6 x^2 + \phi_7 x^3 \end{cases}, \tag{1}$$

где $x = T/T_x$ — безразмерная температура, $T_x = 10^4$ K, а также коэффициенты используемых вариантов верхней (2) и нижней (3) форм выражения (1):

$$h_0^{\circ} = \Delta_f h_{298}^{\circ} - \delta; \quad \delta = \frac{H^{\circ}(298) - H^{\circ}(0)}{RT_{\circ}},$$
 (2)

$$\Delta_f h_{298}^{\circ} = \frac{\Delta_f H^{\circ}(298)}{RT_{\circ}}; \quad \phi_4' = \phi_4 + \delta.$$
(3)

Совокупность параметров в выражениях (1)—(3) — это исходные для расчетов данные, которые кроме энергии Гиббса (1) содержат информацию о полном наборе согласованных калорических функций по индивидуальным химическим соединениям, включая их ассоциативные формы, в температурных интервалах, соответствующих их агрегатным состояниям.

Минимальное значение энергии Гиббса G термодинамической системы любой сложности в ее равновесном состоянии определяется содержанием независимых компонентов, в данном случае элементов b_j , и найденными в результате минимизации значениями их химических потенциалов λ_i :

$$G = RT \sum b_j \lambda_j. \tag{4}$$

В формуле общего вида (4) рассматриваемой халькогенидной стеклообразующей системе $\mathrm{GeS}_x\mathrm{Bi}_y$ соответствуют значения $\{b_j\}=1,\ x,\ y$. В свою очередь, индекс $\{j\}=1,2,3$ соответствует порядку записи элементов системы.

Энергия Гиббса сосуществующего с паром расплава определяется рассчитанным содержанием $\{n_i\}$ *i*-х компонентов ассоциированного жидкого раствора и их химическими потенциалами $\{\mu_i\}$.

$$G^{p-p} = RT \sum n_i \mu_i, \qquad (5)$$

$$n_i = \overline{n}_{p-p} \exp\left(\sum_j a_{ij} \lambda_j - g_i^{\circ}\right), \quad \mu_i = \sum_j a_{ij} \lambda_j.$$
 (6)

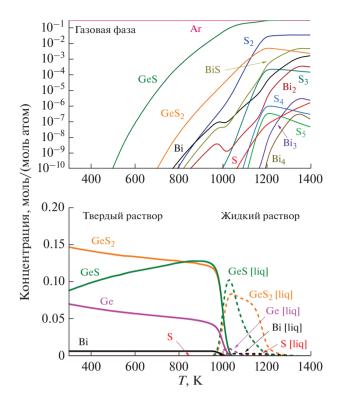
Если из экспериментально полученной температурной зависимости энергии Гиббса вычесть ее изменение от 0 К до T=298.15 К [34, 35] и прибавить искомую стандартную энтальпию образования стекла, то из сопоставления полученной функции $\Delta_f H^{\circ}(298.15) + G^{\circ}(T) - G^{\circ}(298.15)$ с соответствующей функцией (5), (6) в области рас-

плава можно численно определить $\Delta_f H^{\circ}$ (298.15) исследуемого стекла.

Обеспечение стандартного давления 1 атм при исследовании системы, образованной малолетучими компонентами, как правило, осуществляется добавлением в систему некоторого количества n_0 химически инертного Ar. Термодинамическая характеризация системы в силу аддитивности выражения (4) при исключении аргона из суммы (4) сводится к пересчету состава $b_j = n_j / \sum_{j=1} n_j$ остальных независимых компонентов.

ТЕРМОДИНАМИЧЕСКИЙ АНАЛИЗ СТЕКЛООБРАЗУЮЩЕЙ СИСТЕМЫ С ИСПОЛЬЗОВАНИЕМ МОДЕЛИ АССОЦИИРОВАННЫХ РАСТВОРОВ

Получение качественных стекол, в той или иной степени склонных к кристаллизации, требует решения задачи минимизации ее проявлений в процессе охлаждения расплава. При этом успешное, т.е. без кристаллизации, преодоление соответствующего переохлажденному расплаву температурного интервала до температуры стеклования требует выявления в этой области возможных кристаллизующихся фаз и определения термодинамических факторов, уменьшающих кристаллизацию при оптимальном выборе состава стеклообразующей системы. Перед решением этой задачи с использованием пересыщения на кристаллизацию, определяемого соответствующей разностью химических потенциалов (см. предыдущий раздел), приведем результат расчета температуры плавления (рис. 1), измерение которой для многокомпонентных стеклообразующих систем требует постановки отдельного эксперимента.


Определение температурного интервала плавления стекла состава GeS_{1.25}Bi_{0.02}

В рассматриваемой системе расплав моделируется жидким ассоциированным раствором, сформированным из экстраполированных до температуры стеклования ($T_{\rm g}$) жидкофазных компонентов, твердая фаза — аналогичным раствором кристаллических компонентов (рис. 1).

Нижняя часть рис. 1 графически определяет интервал температуры плавления. Однородный расплав без включений кристаллических фаз образуется при температурах выше $\sim 1050~\rm K$, что важно для реализации процесса формирования стекла при охлаждении расплава.

Определение стандартной энтальпии образования стекла

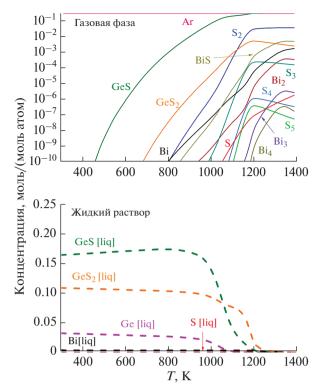

ТФ расплава как равновесного состояния не зависят от способа их получения или описания. С

Рис. 1. Термодинамически обусловленный состав газовой фазы и конденсата стеклообразующей системы $GeS_{1.25}Bi_{0.02}$ в зависимости от температуры при давлении 1 атм.

одной стороны, ТФ расплава могут быть определены ассоциированным раствором [36] жидкофазных компонентов, каждый из которых содержит свою $\Delta_f H^{\circ}(298.15)$. С другой стороны, "нагревательную" ΤФ часть можно измерением теплоемкости исследуемого образца от его стеклообразного состояния до расплава [37]. Изложенная в теоретической части процедура определения $\Delta_f H^{\circ}(298.15)$ при стандартном давлении p = 1 атм ввиду небольшого температурного интервала существования расплава в таких условиях потребовала расширения температурной области сопоставления указанных ТФ в сторону переохлажденного расплава. Иллюстративная часть расчета так называемого условно-равновесного состояния [29], в котором ассоциированный раствор сформирован только из жидких, экстраполированных до $T_{\rm g}$ компонентов с исключенной кристаллизацией, представлен на рис. 2. Сопоставление (рис. 3) рассчитанной энергии Гиббса с ее полученными из эксперимента значениями в области переохлажденного расплава позволило определить стандартную энтальпию образования для каждого состава стекла.

Соответствующие значения представлены в табл. 1. Полученные таким образом значения стандартных энтальпий образования позволят в

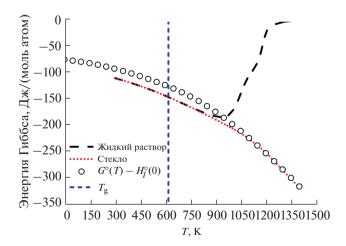


Рис. 2. Термодинамический расчет стеклообразующей системы $GeS_{1.25}Bi_{0.02}$, представленной в виде раствора жидких компонентов.

дальнейшем уточнить степень окисления висмута в стеклах в зависимости от содержания серы [37].

Термодинамический фактор, определяющий состав кристаллизующихся фаз и условия кристаллизации из переохлажденного расплава

Термодинамическое описание кристаллизации из переохлажденного расплава использует

Рис. 3. К определению стандартной энтальпии образования стекла $GeS_{1,25}Bi_{0,02}$.

модель ассоциированного раствора для расплава с его экстраполяцией на переохлажденное состояние, а кристаллические компоненты представлены отдельно кристаллизующимися фазами (рис. 4).

На рис. 5 и 6 сплошными линиями указаны химические потенциалы кристаллических компонентов, прерывистыми — химические потенциалы жидких компонентов или компонентов расплава. Сравнение химических потенциалов в области переохлажденного расплава проводили от $T_{\rm g}$ до 700 К. Левая температурная граница $(T_{\rm g})$ — начало области переохлажденного расплава, правая (до 700 K) — граница существования кристаллических фаз компонентов.

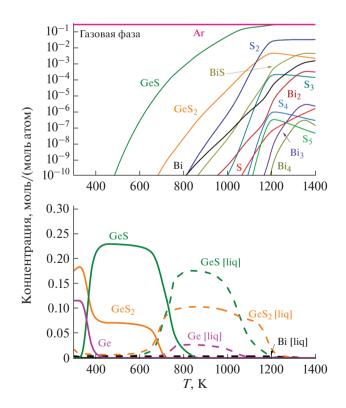
Результаты расчетов в левой из нижней части рис. 5 показывают, что химический потенциал кристаллического сульфида германия(II) ниже его химического потенциала в переохлажденном расплаве, что свидетельствует об энергетической выгодности $\operatorname{GeS}_{(\mathrm{кристалл})}$ по сравнению с $\operatorname{GeS}_{(\mathrm{расплав})}$ и термодинамической разрешенности процесса кристаллизации из расплава при соотношении $\operatorname{Ge}: S = 1: 1.25$ в исходном образце $\operatorname{GeS}_{1.25}\operatorname{Bi}_{0.02}$.

Аналогичное сравнение химических потенциалов GeS_2 в кристаллическом и жидком состоянии (правый из нижней части рис. 5) свидетельствует о термодинамической невыгодности кристаллизации с выделением $\mathrm{GeS}_{2(\mathrm{кристалл})}$ в тех же условиях и в образце того же состава.

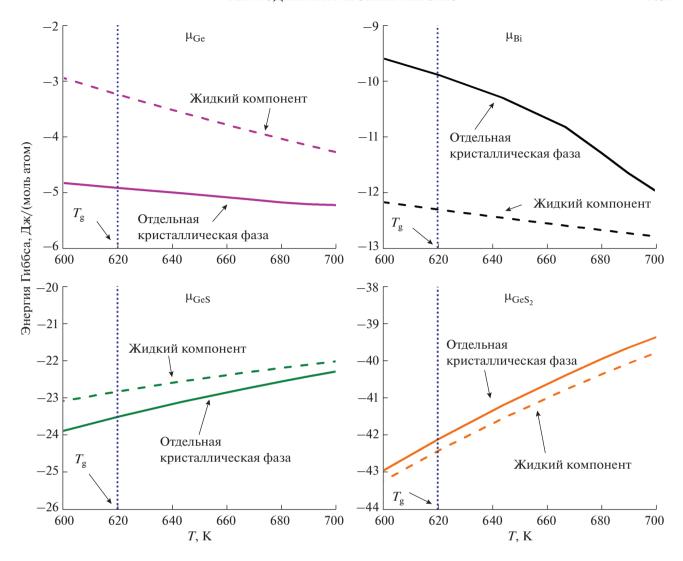
Сближение химических потенциалов кристаллического висмута и его состояния в расплаве является отражением тенденции к кластеризации висмута с ростом температуры.

Изменение состава переохлажденного расплава после кристаллизации GeS, например на 70% по Ge, приводит к избыточному содержанию серы и увеличению соотношения Ge: S=1:1.83. Представленные на рис. 6 химические потенциалы компонентов Ge, GeS и GeS $_2$ показывают тенденцию к кристаллизации лишь сульфида германия(IV). Весь висмут в данных условиях находится в расплаве, поэтому сравнение его химических потенциалов не приводится.

Следует отметить, что полученная из термодинамических расчетов информация о составе кристаллизующихся фаз подтверждает ранние исследования. Так, в работе [38] методом дифференциальной сканирующей калориметрии (ДСК) была изучена кинетика кристаллизации стеклообразующей системы $GeS_xBi_{0.02}$ (рис. 7). При этом было установлено, что при содержании серы x < 1.5 с повышением температуры поочередно выделяются кристаллы GeS и GeS_2 . По мере увеличения содержания серы происходит одновременное сближение двух пиков и их смещение в сторону более высоких температур. При содержании серы


Таблица 1. Стандартные энтальпии образования стекол, полученные в результате сопоставления энергии Гиббса

Состав стекла	$\Delta_f H^{\circ}$ (298.15), кДж/моль
GeS _{1.25} Bi _{0.02}	-90.6
$GeS_{1.35}Bi_{0.02}$	-112.2
$GeS_{1.4}Bi_{0.02}$	-114.5
$GeS_{1.6}Bi_{0.02}$	-147.5


 $x \sim 1.5$ кристаллизационные пики сульфидов германия совмещаются в один, а при x > 1.5 кристаллизуется лишь GeS₂.

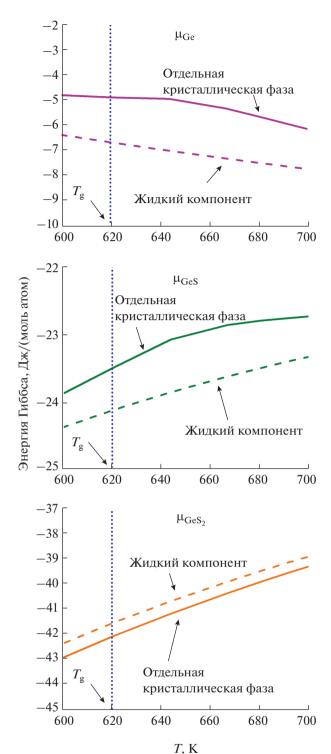
Авторами [28] методом высокотемпературной рентгеновской дифракции было установлено, что при расстекловывании первым кристаллизуется GeS, а затем GeS_2 . При этом кристаллизация проходит не полностью — в образце сохраняется довольно значительное количество аморфной фазы (примерно 10% по массе).

Развитие данной методологии в применении к другим стеклообразующим системам позволит прогнозировать возможные продукты кристаллизации и определять температурный интервал их

Рис. 4. Равновесный состав стекла $GeS_{1.25}Bi_{0.02}$: отдельно кристаллизующиеся фазы и компоненты ассоциированного раствора (расплав).

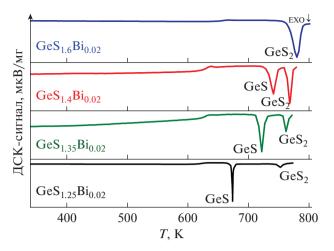
Рис. 5. Химические потенциалы жидких и кристаллических компонентов стекла $\mathrm{GeS}_{1.25}\mathrm{Bi}_{0.02}.$

образования, а в ряде случаев выявлять тенденцию на возможную кластеризацию.


Заметим, что разность рассчитанных химических потенциалов компонента стеклообразующей системы в кристаллическом состоянии и состоянии переохлажденного расплава определяет так называемое пересыщение на кристаллизацию, которое является количественной основой термодинамического фактора кристаллизационного процесса.

ЗАКЛЮЧЕНИЕ

Методом минимизации энергии Гиббса с использованием ассоциированных растворов проведено моделирование конденсированных состояний стеклообразующей системы Ge—S—Bi, что позволило найти температурный интервал ее плавления, значение которого необходимо в ходе синтеза стекла при его гомогенизации.


Сопоставление химических потенциалов кристаллических компонентов и компонентов расплава, экстраполированных в область переохлажденного расплава, позволило определить термодинамический фактор (степень пересыщения на кристаллизацию) и предсказать кристаллизацию стекол в зависимости от их состава. В результате термодинамических расчетов установлено, что в стеклообразующей системе Ge—S—Ві кристаллизуются фазы моно- и дисульфида германия. Ранние исследования кинетики кристаллизации методом ДСК и данные рентгенофазового анализа подтверждают это.

Определены стандартные энтальпии образования стекол путем сопоставления их стандартных термодинамических функций, ранее полученных из калориметрических данных, с результатами расчета по ассоциативной модели, что позволило полностью термодинамически охарактеризовать стеклообразующую систему Ge—S—Bi.

Рис. 6. Химические потенциалы жидких и кристаллических компонентов стекла $GeS_{1.25}Bi_{0.02}$ с учетом закристаллизовавшегося ранее $Ge_{0.7}S_{0.7}$ (соотношение Ge:S=1:1.83).

Полученные данные способствуют выбору состава стекол GeS_xBi_y (x = 1.25, 1.35, 1.4, 1.6; y = 0.02), с одной стороны, максимально устойчи-

Рис. 7. Термограммы стекол GeS_xBi_y , полученные методом ДСК [38].

вых к кристаллизации, а с другой — с требуемой степенью окисления висмута и, таким образом, ускоряют разработку технологии получения перспективных для практики висмутсодержащих стекол и вытяжки из них волоконных световодов.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 19-33-90220.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

ИНФОРМАЦИЯ О ВКЛАДЕ АВТОРОВ

А.М. Кутьин разработал методику термодинамического моделирования; М.В. Суханов синтезировал образцы стекол; К.В. Балуева и А.Д. Плехович проводили теоретические расчеты. К.В. Балуева, А.Д. Плехович и А.М. Кутьин участвовали в написании текста статьи. Все авторы участвовали в обсуждении результатов.

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Статья публикуется по итогам Шестого Междисциплинарного научного форума с международным участием "Новые материалы и перспективные технологии", Москва, 23—26 ноября 2020 г., https://n-materials.ru.

СПИСОК ЛИТЕРАТУРЫ

 Guo H., Hou C., Gao F. et al. // Opt. Express. 2010.
 V. 18. P. 23275. https://doi.org/10.1364/OE.18.023275

- He Y., Wang X., Nie Q. et al. // Infrared Phys. Technol. 2013. V. 60. P. 129. https://doi.org/10.1016/j.infrared.2013.04.008
- Dong G., Tao H., Xiao X. et al. // J. Mater. Sci. 2007.
 V. 42. P. 9632.
 https://doi.org/10.1007/s10853-007-1969-z
- Tang G., Xiong H., Chen W. et al. // J. Non-Cryst. Solids. 2011. V. 357. P. 2463. https://doi.org/10.1016/j.jnoncrysol.2010.11.060
- Simons D.R., Faber A.J., Waal H. // Opt. Lett. 1995.
 V. 20. P. 468. https://doi.org/10.1364/OL.20.000468
- 6. *Yan Q.Q., Shen C., Wang W. et al.* // J. Am. Ceram. Soc. 2010. V. 93 № 11. P. 3539. https://doi.org/10.1111/j.1551-2916.2010.04072.x
- Plotnichenko V.G., Philippovskiy D.V., Sokolov V.O. et al. // Opt. Mater. Express. 2014. V. 4. P. 366. https://doi.org/10.1364/OME.4.000366
- 8. *Xu Y., Qi J., Lin Ch. et al.* // Chin. Opt. Lett. 2013. V. 11. № 4. P. 041601. https://doi.org/10.3788/col201311.041601
- Dong G.P., Xiao X.D., Ren J.J. et al. // Chin. Phys. Lett. 2008. V. 25. P. 1891. https://doi.org/10.1088/0256-307X/25/5/101
- Asha Bhat N., Sangunni K.S. // Solid State Commun. 2000. V. 116. P. 297. https://doi.org/10.1016/S0038-1098(00)00340-9
- 11. *Zhang J., Li Y., Zhang C. et al.* // J. Non-Cryst. Solids. 2020. V. 545. P. 120240. https://doi.org/10.1016/j.jnoncrysol.2020.120240
- Fernandes B.J., Ramesh K., Udayashankar N.K. // Mater. Sci. Eng., B. 2019. V. 246. P. 34. https://doi.org/10.1016/j.mseb.2019.05.030
- Belov G., Iorish V.S., Yungman V.S. // Calphad. 1999.
 V. 23. № 2. P. 173. https://doi.org/10.1016/S0364-5916(99)00023-1
- 14. *Bourago N.G.* // Proc. 7th Nordic Seminar on Computational Mechanics. Trondheim: Norway, 1994. P. 48. https://doi.org/10.13140/2.1.3798.3520
- 15. Ватолин Н.А., Моисеев Г.К., Трусов Б.Г. Термодинамическое моделирование в высокотемпературных неорганических системах. М.: Металлургия, 1994. 352 с.
- 16. CHEMCAD, Chemstations, Inc., USA. https://www.chemstations.com/
- 17. Aspen HYSYS, Aspen Technology, USA. https://www.aspentech.com/en/products/engineering/aspen-hysys
- 18. *Никонов К.С., Ильясов А.С., Бреховских М.Н.* // Журн. неорган. химии. 2020. Т. 65. № 9. С. 1222. https://doi.org/10.31857/S0044457X20090123
- 19. *Piekarczyk W.* // J. Cryst. Growth. 1981. V. 55. № 3. P. 543. https://doi.org/10.1016/0022-0248(81)90113-5
- 20. *Ezhov Yu.S.* // Russ. J. Phys. Chem., A. 2008. V. 82. № 3. P. 487. [*Ежов Ю.С.* // Журн. физ. химии. 2008. T. 82. № 3. C. 575.] https://doi.org/10.1007/s11504-008-3029-z
- 21. Kosyakov V.I., Shestakov V.A., Kosinova M.L. // Russ. J. Inorg. Chem. 2018. V. 63. № 6. P. 822. [Косяков В.И., Шестаков В.А., Косинова М.Л. // Журн. неорган.

- химии. 2018. Т. 63. № 6. С. 777.] https://doi.org/10.1134/S0036023618060153
- 22. Goncharov O.Y., Kanunnikova O.M. // Russ. J. Phys. Chem., A. 2009. V. 83. № 12. Р. 2007. [Гончаров О.Ю., Канунникова О.М. // Журн. физ. химии. 2009. Т. 83. № 12. С. 2205.] https://doi.org/10.1134/S0036024409120012
- 23. Chromčíková M., Liška M., Macháček J. et al. // J. Non-Cryst. Solids. 2014. V. 401. P. 237. https://doi.org/10.1016/j.inoncrysol.2014.01.021
- 24. Senin A.V., Kuznetsova O.V., Lykasov A.A. // Russ. J. Phys. Chem., A. 2006. V. 80. № 11. Р. 1773. [Сенин А.В., Кузнецова О.В., Лыкасов А.А. // Журн. физ. химии. 2006. Т. 80. № 11. С. 1992.] https://doi.org/10.1134/S003602440611015X
- 25. Cruz R.A., Romero S.A., Vargas R.M. et al. // J. Non-Cryst. Solids. 2005. V. 351. № 16–17. P. 1359. https://doi.org/10.1016/j.jnoncrysol.2005.03.008
- 26. *Sha W.* // J. Alloys Compd. 2001. V. 322. № 1–2. P. L17. https://doi.org/10.1016/S0925-8388(01)01258-0
- Sundman B., Jansson B., Andersson J.-O. // Calphad. 1985. V. 9. P. 153. https://doi.org/10.1016/0364-5916(85)90021-5
- 28. Iskhakova L.D., Ermakov R.P., Sukhanov M.V. et al. // J. Non-Cryst. Solids. 2015. V. 428. P. 132. https://doi.org/10.1016/j.jnoncrysol.2015.08.021
- 29. *Воронин Г.Ф.* Основы термодинамики. М.: Изд-во МГУ, 1987. 192 с.
- Диаграммы состояния двойных металлических систем / Под ред. Лякишева Н.П. М.: Машиностроение, 1996—2000. Т. 1—3.
- 31. *Binnewies M., Milke E.* Thermochemical Data of Elements and Compounds. Weinheim: Wiley-VCH Verlag GmbH, 2002. 928 p. https://doi.org/10.1002/9783527618347
- 32. Термические константы веществ / Под ред. Глушко В.П. М.: ВИНИТИ, 1965—1982. Вып. 1—10.
- Robie R.A., Hemmingway B.S., Fisher J.R. // U.S. Geol. Survey Bull. 1978. V. 1452. https://doi.org/10.3133/b1452
- 34. *Kut'in A.M.*, *Plekhovich A.D.*, *Balueva K.V. et al.* // Thermochim. Acta. 2019. V. 673. P. 192. https://doi.org/10.1016/j.tca.2019.01.027
- 35. *Kut'in A.M.*, *Plekhovich A.D.*, *Balueva K.V. et al.* // Inorg. Mater. 2018. V. 54. № 7. Р. 706. [*Кутьин А.М.*, *Плехович А.Д.*, *Балуева К.В. и др.* // Неорган. материалы. 2018. Т. 54. № 7. С. 745.] https://doi.org/10.1134/S0020168518070075
- 36. *Berdnikov V.I., Gudim Y.A.* // Steel Transl. 2014. V. 44. № 9. Р. 635. [*Бердников В.И., Гудим Ю.А.* // Изв. вуз. Черная металлургия. 2014. Т. 57. № 9. С. 29.] https://doi.org/10.3103/S0967091214090034
- 37. Kut'in A.M., Plekhovich A.D., Balueva K.V. et al. // J. Non-Cryst. Solids. 2019. V. 509. P. 74. https://doi.org/10.1016/j.jnoncrysol.2018.12.030
- 38. *Kut'in A.M., Plekhovich A.D., Sukhanov M.V. et al.* // Inorg. Mater. 2019. V. 55. № 10. Р. 1039. [*Кутьин А.М., Плехович А.Д., Суханов М.В. и др.* // Неорган. материалы. 2019. Т. 55. № 10. С. 110107.] https://doi.org/10.1134/S0020168519080053