_____ ФИЗИКОХИМИЯ ____ РАСТВОРОВ

УДК 544.35+541.8

АНАЛИЗ КОЭФФИЦИЕНТОВ АКТИВНОСТИ В ВОДНЫХ РАСТВОРАХ НИТРАТОВ ЩЕЛОЧНЫХ МЕТАЛЛОВ НА ОСНОВЕ ДИЭЛЕКТРИЧЕСКИХ СВОЙСТВ

© 2021 г. И. Ю. Шилов^{а, *}, А. К. Лященко^b

^а Московский государственный университет им. М.В. Ломоносова, Химический факультет, Ленинские горы, 1, Москва, 119991 Россия ^b Институт общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия *e-mail: ignatshilov@mail.ru Поступила в редакцию 20.01.2021 г. После доработки 20.02.2021 г. Принята к публикации 24.02.2021 г.

Проведен расчет коэффициентов активности в водных растворах нитратов шелочных металлов при 298 К по обобщенной теории Дебая—Хюккеля с использованием экспериментальных значений статической диэлектрической проницаемости растворов. Показано, что расчет без оптимизации параметров модели воспроизводит зависимость коэффициентов активности в ряду систем от радиуса катиона и эффект нивелирования влияния ионов калия, рубидия и цезия на коэффициенты активности в присутствии нитрат-иона. Рассмотрено влияние гидратации и ионной ассоциации на термодинамические свойства в ряду исследованных систем.

Ключевые слова: растворы электролитов, ионные пары, гидратация **DOI:** 10.31857/S0044457X21070126

введение

В последние годы развитая нами в 2015 г. обобщенная теория Дебая-Хюккеля (ОТДХ) [1] успешно применялась при анализе взаимосвязи диэлектрических, термодинамических и структурных свойств растворов электролитов. Среди рассмотренных систем – водные растворы хлоридов [1], иодидов [2] и сульфатов [3] щелочных металлов, солей натрия [4] и алюминия [5] с различными анионами. Применение ОТДХ позволяет проводить расчет коэффициентов активности без оптимизации параметров модели, используя экспериментальные значения статической диэлектрической проницаемости (ДП) растворов, которая определяется методами диэлектрической спектроскопии [6, 7]. Поэтому при описании коэффициентов активности воды и ионов акцент делается не на количественном совпадении с экспериментальными данными, а на выявлении и анализе различных физико-химических факторов и явлений, влияющих на термодинамические и диэлектрические свойства растворов. С целью расширения круга изучаемых этим методом систем настоящая работа посвящена рассмотрению взаимосвязи ДП и коэффициентов активности в водных растворах нитратов шелочных металлов при 298 К.

КОНЦЕНТРАЦИОННАЯ ЗАВИСИМОСТЬ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ

Диэлектрические свойства растворов нитратов шелочных металлов изучались в работах [8-121. Для расчетов были использованы данные по статической ДП [8, 9], охватывающие все пять систем. Комплексную ДП ε*(ω) растворов в этих работах определяли в интервале частот $\Delta v = 2.4 - 12 \Gamma \Gamma \mu$ и аппроксимировали уравнением Дебая с целью определения статической ДП путем экстраполяции к нулевой частоте. В более поздних работах [10-12] комплексную ДП измеряли в более широком частотном интервале, а для экстраполяции использовали более сложную модель – уравнение Коула-Коула. Рассчитанные значения статической ДП в этих работах оказались выше, чем данные [8, 9]. Однако в настоящей работе эти результаты не использовали, поскольку они недостаточно полные.

Для использования в расчетах коэффициентов активности ДП растворов были аппроксимированы аналитическими выражениями, приведенными в табл. 1. Для ДП чистой воды использовали значение из [13]. Как видно из табл. 1 и рис. 1, при фиксированной концентрации ДП раствора растет с увеличением радиуса катиона, что отражает

шилов, лященко

926

Таблица 1. Концентрационная зависимость статической диэлектрической проницаемости є водных растворо
нитратов щелочных металлов при 298 К по данным [8, 9], c_s – молярная концентрация соли (моль/л), $c_{s, \max}$
<i>m</i> _а max – максимальные молярная концентрация и моляльность соли в экспериментальных ланных по 8

Соль	Зависимость $\varepsilon(c_s)$	<i>с_{s,max}, моль/л</i>	<i>m_{s,max}, моль/кг</i>
LiNO ₃	$\varepsilon = 78.36 - 19.08c_s + 4.521c_s^{3/2}$	6	7.4
NaNO ₃	$\varepsilon = 78.36 - 16.36c_s + 3.994c_s^{3/2}$	4	4.6
KNO ₃	$\varepsilon = 78.36 - 14.16c_s + 4.312c_s^{3/2}$	2	2.2
RbNO ₃	$\varepsilon = 78.36 - 13.68c_s + 4.392c_s^{3/2}$	1.5	1.6
CsNO ₃	$\varepsilon = 78.36 - 10.82c_s + 3.141c_s^{3/2}$	1	1.1

ослабление его гидратации. Такая же закономерность наблюдается в рядах хлоридов и иодидов щелочных металлов [1, 2].

РАСЧЕТ КОЭФФИЦИЕНТОВ АКТИВНОСТИ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Расчет коэффициентов активности компонентов исследуемых растворов проводили с помощью уравнений ОТДХ, которые подробно обсуждались в предыдущих публикациях [1, 2, 4]. Напомним, что в этой модели логарифмы коэффициентов активности рассчитываются как сумма вклада кулоновских ион-ионных взаимодействий и сольватационного вклада. Первый вклад аналогичен рассматриваемому в обычной теории Дебая—Хюккеля

Рис. 1. Статическая диэлектрическая проницаемость водных растворов нитратов щелочных металлов при 298 К. Точки – экспериментальные данные [8, 9], линии – аппроксимация данных, *c_s* – молярная концентрация соли.

(с учетом размера ионов), а второй характеризует взаимодействие ионов с окружающей средой, содержащей как растворитель, так и ионы. Оба вклада учитывают концентрационную зависимость ДП раствора.

Параметры модели (расстояние наибольшего сближения ионов *a* и средний ионный радиус R_{\pm}) рассчитывали по формулам:

$$a = R_+ + R_-, \quad R_{\pm} = \frac{R_+ + R_-}{2}$$

где R_+ и R_- – радиусы катиона и аниона. Размеры катионов оценивали по Полингу [14], а радиус нитрат-аниона – по Маркусу [15] (табл. 2). Значения плотности растворов были взяты из справочника [16].

Таким образом, расчет коэффициентов активности проводили без оптимизации параметров модели. Результаты расчета среднеионного коэффициента активности γ_{\pm} при 298 К изображены на рис. 2 в сравнении с экспериментальными данными [17, 18]. Количественное совпадение имеет место только в области разбавленных растворов. Например, для растворов LiNO₃ отклонение превышает 1% при m > 0.4 моль/кг. В остальной концентрационной области рассчитанный среднеионный коэффициент активности заметно превышает экспериментальный, причем расхождение увеличивается при переходе от LiNO₃ к CsNO₃. В соответствии с выводами работы [2] это свидетельствует о наличии вклада ионной ассоциации, роль которого возрастает с увеличением радиуса катиона.

Усиление ионной ассоциации в ряду от NaNO₃ до CsNO₃ подтверждается анализом электропроводности растворов [19]. Количественное описание коэффициентов активности в растворах NaNO₃ до концентрации насыщенного раствора 10.8 моль/кг было продемонстрировано нами в работе [4] с использованием обобщения рассматриваемой модели с включением явного учета образования ионных пар. Это описание носило, однако, эмпирический и малопредсказательный характер, поскольку полученное значение константы равно-

Рис. 2. Рассчитанные по обобщенной теории Дебая—Хюккеля (а) и экспериментальные [17, 18] (б) среднеионные коэффициенты активности в водных растворах нитратов щелочных металлов при 298 К, *m*_s – моляльность соли.

весия лишь по порядку величины соответствовало литературным данным, которые, впрочем, также характеризуются большим разбросом. Поэтому в настоящей работе мы ограничимся лишь результатами описания на основе базовой модели ОТДХ [1].

В качественном плане расчет воспроизводит правильный порядок расположения кривых коэффициентов активности для солей с разными катионами: среднеионный коэффициент активности уменьшается при переходе от LiNO₃ к CsNO₃. Это объясняется как ослаблением вклада гидратации с увеличением радиуса катиона (что учитывается в модели), так и усилением ионной ассоциации в том же ряду. Таким образом, изменение этих двух факторов в данном ряду систем влияет на коэффициенты активности в одном направлении. В этом плане растворы нитратов щелочных металлов аналогичны растворам хлоридов и иодидов.

Таблица 2. Ионные радиусы Полинга (*R_p*) [14] и Маркуса (*R_M*) [15]

Ион	R_{P} , Å	R_M , Å
Li ⁺	0.60	0.69
Na ⁺	0.95	1.02
K^+	1.33	1.38
Rb^+	1.48	1.49
Cs^+	1.69	1.70
NO_3^-	—	2.00

Специфика растворов нитратов, отличающая их от растворов хлоридов и иодидов щелочных металлов, заключается в нивелирующем влиянии нитрат-аниона на коэффициенты активности в растворах ионов K^+ , Rb^+ и Cs^+ . Этот эффект воспроизводится моделью и в основном сводится к нивелирующему влиянию нитрат-аниона на ДП соответствующих растворов (рис. 1) и близости радиусов этих ионов. Второе отличие ряда нитратов (начиная с NaNO₃) состоит в тенденции средне-ионного коэффициента активности к монотонному понижению с концентрацией вместо формирования минимума. Эта особенность в общем случае может быть воспроизведена, по-видимому, только с явным учетом ионной ассоциации.

ЗАКЛЮЧЕНИЕ

Результаты расчетов коэффициентов активности воды и ионов в растворах нитратов щелочных металлов в рамках обобщенной теории Дебая— Хюккеля объясняют характер изменения коэффициентов активности в зависимости от радиуса катиона, а также отражают эффект нивелирования влияния ионов калия, рубидия и цезия на коэффициенты активности в присутствии нитратиона. Найденные закономерности могут быть использованы при разработке методов прогнозирования термодинамических свойств растворов электролитов, в том числе содержащих нитратионы систем [20], имеющих технологическое значение.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при поддержке РФФИ (проект № 19-03-00033) и в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Shilov I.Yu., Lyashchenko A.K. // J. Phys. Chem. B. 2015. V. 119. № 31. P. 10087. https://doi.org/10.1021/acs.jpcb.5b04555
- Shilov I.Yu., Lyashchenko A.K. // J. Mol. Liq. 2017. V. 240. P. 172. https://doi.org/10.1016/j.molliq.2017.05.010
- 3. *Shilov I.Yu., Lyashchenko A.K.* // Russ. J. Inorg. Chem. 2020. V. 65. № 8. Р. 1240. [*Шилов И.Ю., Лященко А.К.* // Журн. неорган. химии. 2020. Т. 65. № 8. С. 1114.] https://doi.org/10.1134/S003602362008015X
- Shilov I.Yu., Lyashchenko A.K. // J. Solution Chem. 2019. V. 48. № 2. P. 234. https://doi.org/10.1007/s10953-019-00860-8
- Shilov I. Yu., Lyashchenko A.K. // Russ. J. Inorg. Chem. 2019. V. 64. № 9. Р. 1186. [Шилов И.Ю., Лященко А.К. // Журн. неорган. химии. 2019. Т. 64. № 9. С. 1006.] https://doi.org/10.1134/S0036023619090213
- 6. Buchner R., Hefter G. // Phys. Chem. Chem. Phys. 2009. V. 11. № 40. P. 8984. https://doi.org/10.1039/B906555P
- Lyashchenko A., Lileev A. // J. Chem. Eng. Data. 2010.
 V. 55. № 5. P. 2008. https://doi.org/10.1021/je900961m
- Barthel J., Schmithals F., Behret H. // Z. Phys. Chem. N. F. 1970. B. 71. № 1–3. S. 115. https://doi.org/10.1524/zpch.1970.71.1_3.115

- 9. Barthel J., Buchner R., Münsterer M. Electrolyte data collection. Pt. 2: Dielectric properties of water and aqueous electrolyte solutions. Franfurt am Main: Dechema, Chemistry Data Series. 1995. V. XII. Pt. 2. 365 p.
- Filimonova Z.A., Lileev A.S., Lyashchenko A.K. // Russ. J. Inorg. Chem. 2002. V. 47. № 12. Р. 1890. [Филимонова З.А., Лилеев А.С., Лященко А.К. // Журн. неорган. химии. 2002. Т. 47. № 12. С. 2055.]
- Lileev A.S., Filimonova Z.A., Lyashchenko A.K. // J. Mol. Liq. 2003. V. 103–104. P. 299. https://doi.org/10.1016/S0167-7322(02)00148-4
- 12. Wachter W., Kunz W., Buchner R., Hefter G. // J. Phys. Chem. A. 2005. V. 109. № 39. P. 8675. https://doi.org/10.1021/jp053299m
- Kaatze U. // J. Chem. Eng. Data. 1989. V. 34. № 4. P. 371. https://doi.org/10.1021/je00058a001
- Pauling L. // J. Am. Chem. Soc. 1927. V. 49. № 3. P. 765. https://doi.org/10.1021/ja01402a019
- 15. *Marcus Y*. Ions in Solution and their Solvation. New
- Jersey: Wiley, Hoboken, 2015.
- 16. Зайцев И.Д., Асеев Г.Г. Физико-химические свойства бинарных и многокомпонентных растворов неорганических веществ. М.: Химия, 1988. 416 с.
- Hamer W.J., Wu Y.-C. // J. Phys. Chem. Ref. Data. 1972. V. 1. № 4. P. 1047. https://doi.org/10.1063/1.3253108
- Wu Y.C., Hamer W.J. // J. Phys. Chem. Ref. Data. 1980. V. 9. № 2. P. 513. https://doi.org/10.1063/1.555621
- 19. Justice M.-C., Bury R., Justice J.-C. // Electrochim. Acta. 1971. V. 16. № 6. P. 687. https://doi.org/10.1016/0013-4686(71)85037-5
- 20. Malyutin A.S., Kovalenko N.A., Uspenskaya I.A. // Russ. J. Inorg. Chem. 2020. V. 65. № 5. Р. 781. [Малютин А.С., Коваленко Н.А., Успенская И.А. // Журн. неорган. химии. 2020. Т. 65. № 5. С. 711.] https://doi.org/10.1134/S0036023620050149