## \_\_ КООРДИНАЦИОННЫЕ \_\_\_ СОЕДИНЕНИЯ \_\_\_

УДК 548.73+546.94

# КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА МОНОМЕРНЫХ ОКТАЭДРИЧЕСКИХ МОНООКСОКОМПЛЕКСОВ *d*<sup>2</sup>-РЕНИЯ(V) [ReO(L<sup>*n*</sup><sub>пента</sub>)] С ПЕНТАДЕНТАТНО-ХЕЛАТНЫМИ ЛИГАНДАМИ, СОДЕРЖАЩИМИ КИСЛОРОД

© 2021 г. В. С. Сергиенко<sup>*a*, *b*, \*, А. В. Чураков<sup>*a*</sup></sup>

<sup>а</sup>Институт общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия <sup>b</sup>Всероссийский институт научной и технической информации РАН, ул. Усиевича, 20, Москва, 125190 Россия

> \*e-mail: sergienko@igic.ras.ru Поступила в редакцию 25.12.2020 г. После доработки 08.02.2021 г. Принята к публикации 27.02.2021 г.

Рассмотрены особенности строения 11 моноядерных октаэдрических монооксокомплексов  $[d^2$ -Re(V)],  $[\text{ReO}(L_{nehta}^n)]$  с пентадентатно-хелатными лигандами (3O, 2N), (2O, 3N), (2O, 2N, P), (2O, 2N, S), (O, 2N, 2S). В *транс*-позициях к кратносвязанным лигандам O(оксо) всегда располагаются атомы  $O(L_{nehta}^n)$ . В девяти соединениях с отрицательно заряженными атомами кислорода лигандов  $L_{nehta}^n$  в *транс*-положениях к кратносвязанным лигандам O(оксо) связи Re–O(L)<sub>*mpanc*</sub> (1.960–2.065 Å) сопоставимы по длине, несколько длиннее или заметно короче, чем Re–O(L)<sub>*щис*</sub> (1.952–2.140 Å). Эти связи Re–O(L) в *транс*-позициях к оксолигандам можно рассматривать как имеющие повышенную кратность, так как они соизмеримы по длине (а не удлинены вследствие структурного проявления трансвлияния оксолиганда (СПТВ)) с расстояниями Re–O(L)<sub>*щис*</sub>. В данном случае можно говорить о псевдодиоксокомплексах, содержащих два лиганда (O(оксо) и O(L<sub>*mpanc*</sub>)) со связями Re–O повышенной кратности (соответственно ~2.5 и ~1.5). В остальных двух комплексах связи Re–O(L<sub>*nehta*</sub>)<sub>*mpanc*</sub> (2.200 и 2.252 Å) существенно удлинены. В этих двух случаях следует говорить о СПТВ кратносвязанного оксолиганда.

*Ключевые слова:* рентгеноструктурный анализ, мономерные шестикоординационные монооксосоединения, полидентатные лиганды

DOI: 10.31857/S0044457X21070114

### введение

Особенности строения мономерных октаэдрических комплексов (**MOK**)  $d^0$ -,  $d^2$ -металлов V–VII групп (Nb, V, Mo, W, Re, Tc) с кратными связями Re–O(оксо) рассмотрены в работах [1–7]. Для  $d^2$ -Re(V) методом рентгеноструктурного анализа определена кристаллическая структура более пятисот соединений (Кембриджский банк структурных данных, версия 5.42, ноябрь 2020 г. [8]). Большое количество из них — MOK ReO<sub>оксо</sub>O(Lig)<sub>транс</sub> с атомами кислорода моно- и полидентатных лигандов в транс-положениях к лигандам О(оксо). Ранее мы опубликовали обзорные статьи по МОК  $d^2$ -Re(V) с полидентатными лигандами — бидентатно-хелатными (O, O) [9], (O, S) и (O, C) [10], (O, P) [11], (O, N) [12, 13]; тридентатно-хелатными (O, N, O) [14], (O, S, O) и (S, O, S) [15], (O, P, О) и (O, P, N) [16], (O, N, S) [17], (O, O, O) [18], (O,

N, N) [19] и тетрадентатно-хелатными (O, O, O, O) [18], (O, O, N, P) [20].

Структурное проявление трансвлияния (СПТВ) кратносвязанного оксолиганда — удлинение противолежащей связи  $\text{Re}-L_{mpahc}$  — определяется параметром  $\Delta$  (разность длины одноименных связей { $[\text{Re}-L_{mpahc}]$  —  $[\text{Re}-L_{uuc}]$ }).

В данной статье обсуждаются типичные особенности кристаллической структуры мономерных октаэдрических монооксокомплексов [ReO( $L_{nehta}^n$ )], содержащих пентадентатно-хелатные  $L_{nehta}^n$  лиганды пяти типов: (3O, 2N), (2O, 3N), (2O, 2N, P), (2O, 2N, S), (O, 2N, 2S). *Транс*позиции к кратносвязанным оксолигандам всегда занимают атомы кислорода лигандов  $L_{nehta}^n$ . При координации с рением лиганды  $L_{nehta}^n$  замыкают (за одним исключением – см. далее) четыре

## СЕРГИЕНКО, ЧУРАКОВ

| Комплекс                                                                          | Re=O      | Re–L <sub>uuc</sub>                                                            | Re—O( $L_{\text{пента}}^n$ ) <sub><i>mpahc</i></sub> | Δ      | Ссылка |
|-----------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------|------------------------------------------------------|--------|--------|
| $[\text{ReO}((L_{\text{пента}}^{1}))] \cdot 2C_4H_8O_2 \cdot$                     | 1.693(8)  | $1.993(8) \pm 0.011 \text{ O}((L^1_{\text{пента}}))$                           | 1.975(7)                                             | -0.018 | [21]   |
| $\cdot O_2 S(=O) Me_2 \cdot 0.5 H_2 O(I)$                                         |           | $2.155(9) \pm 0.009 \operatorname{N}((L_{\text{пента}}^{1}))$                  |                                                      |        |        |
| $[\text{ReO}((L^2_{\text{пента}}))] (II)$                                         | 1.71(2)   | $2.015(20) \pm 0.025 \operatorname{O}((L_{\pi e m ta}^2))$                     | 1.980(20)                                            | -0.035 | [21]   |
|                                                                                   |           | $2.135(20) \pm 0.015 \text{ N}((L_{\text{пента}}^2))$                          |                                                      |        |        |
| $[\text{ReO}(((L_{\text{nehta}}^3))] \cdot \text{OC}_4\text{H}_8 \cdot$           | 1.701(8)  | $1.998(13) \pm 0.035 \operatorname{O}((L^3_{\text{пента}}))$                   | 1.960(7)                                             | -0.038 | [22]   |
| · MeOH (III)                                                                      |           | $2.164 \pm 0.001 \text{ N}((L_{\pi e m ta}^3))$                                |                                                      |        |        |
| $[\text{ReO}((L_{\text{пента}}^4))](\text{PF}_6) (\text{IV})$                     | 1.678(4)  | 1.952(3) $O((L_{\pi e H Ta}^4))$                                               | 1.999(3)                                             | 0.047  | [23]   |
|                                                                                   |           | 2.173(4) N(( $L_{neнтa}^4$ ), амин)<br>2.107(4) ± 0.018 N( $L_{пента}$ , имин) |                                                      |        |        |
| $[\text{ReO}((L_{\text{пента}}^5))] (V)$                                          | 1.72(1)   | 2.14(1) $O((L_{\pi e H \pi a}^5))$                                             | 2.09(1)                                              | -0.05  | [24]   |
|                                                                                   |           | $2.05(1) \pm 0.01 \text{ N}((L_{пента}^5)), транс к О$                         |                                                      |        |        |
|                                                                                   |           | 1.91(1) N( $(L_{\text{пента}}^5)$ ), <i>транс</i> к N                          |                                                      |        |        |
| $[\text{ReO}((L_{\text{пента}}^{6}))] \cdot \text{OC}_{4}\text{H}_{8}(\text{VI})$ | 1.687(6)  | 2.016(7) $O((L_{nehta}^6))$                                                    | 2.035(6)                                             | 0.019  | [26]   |
|                                                                                   |           | 2.035(6) NH( $(L_{nehta}^6)$ )                                                 |                                                      |        |        |
|                                                                                   |           | 1.943(8) N( $(L_{nehta}^6)$ )                                                  |                                                      |        |        |
|                                                                                   |           | 2.4000(3) $P((L_{nehta}^6))$                                                   |                                                      |        |        |
| $[\text{ReO}((L^7_{\text{пента}}))] \text{ (VII)}$                                | 1.672(7)  | 2.055(7) $O((L_{nehta}^7))$                                                    | 2.040(7)                                             | -0.015 | [27]   |
|                                                                                   |           | 2.037(5) N( $sp^2$ )(( $L_{nehta}^7$ ))                                        |                                                      |        |        |
|                                                                                   |           | 2.207(7) N( $sp^3$ )(( $L_{nehta}^7$ ))                                        |                                                      |        |        |
|                                                                                   |           | 2.309(2) S ( $(L_{nehta}^7)$ )                                                 |                                                      |        |        |
| $[\text{ReO}((L^8_{\text{пента}}))] \text{ (VIII)}$                               | 1.662(6)  | 2.078(6) $O((L_{nehta}^8))$                                                    | 2.030(7)                                             | -0.048 | [28]   |
|                                                                                   |           | 2.022(7) N( $sp^2$ )(( $L^8_{\text{пента}}$ ))                                 |                                                      |        |        |
|                                                                                   |           | 2.253(6) N( $sp^3$ )(( $L^8_{\text{пента}}$ ))                                 |                                                      |        |        |
|                                                                                   |           | 2.290(2) $S((L^8_{\text{пента}}))$                                             |                                                      |        |        |
| $[\operatorname{ReO}((L^9_{\text{пента}}))] \cdot$                                | 1.651(8)  | 2.059(6) $O((L_{nehta}^9))$                                                    | 2.065(6)                                             | 0.006  | [28]   |
| · 1.25MeOH (IX)                                                                   |           | 2.047(7) N( $sp^2$ )(( $L_{nehta}^9$ ))                                        |                                                      |        |        |
|                                                                                   |           | 2.219(7) N( $sp^3$ )(( $L_{nehta}^9$ ))                                        |                                                      |        |        |
|                                                                                   |           | 2.294(2) $S((L_{nehta}^9))$                                                    |                                                      |        |        |
| $[\text{ReO}((L_{\text{пента}}^{10}))] \cdot \text{H}_2\text{O}(X)$               | 1.701(9)  | $2.159(9) \pm 0.020 \text{ N}((L_{\Pi e H T a}^{10}))$                         | 2.200(8)                                             |        | [31]   |
|                                                                                   |           | $2.267(3) \pm 0.018 \ \mathrm{S}((L_{\text{пента}}^{10}))$                     |                                                      |        |        |
| $[\text{ReO}((L_{\text{пента}}^{11}))] (XI)$                                      | 1.688(10) | $2.154(13) \pm 0.001 \text{ N}(\text{L}_{\text{пента}})$                       | 2.252(9)                                             |        | [32]   |
|                                                                                   |           | $2.304(4) \pm 0.011 \operatorname{S}((L_{\text{пента}}^{11}))$                 |                                                      |        |        |

**Таблица 1.** Основные геометрические параметры (Å) в мономерных октаэдрических монооксокомплексах  $[\text{ReO}(L_{\text{панта}}^n)]$  (после значков ± приведены разбросы расстояний)

Условные обозначения лигандов  $L_{neHTa}^{n}$ : OC<sub>6</sub>H<sub>4</sub>CH<sub>2</sub>NHC <sub>6</sub>(OH)<sub>2</sub>RNHCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>O; R = NH<sub>2</sub> (*n* = 1) и NHC(=O)(CH<sub>2</sub>)<sub>3</sub>COO (*n* = 2); *n* = 3 - OC<sub>6</sub>H<sub>4</sub>CH<sub>2</sub>NHC{C(OH)C(NHCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>OH)}C(O)CNHCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>O; *n* = 4 - {OC<sub>6</sub>H<sub>4</sub>C(Me)N(CH<sub>2</sub>)<sub>3</sub>})<sub>2</sub>NH; *n* = 5 - {OC<sub>6</sub>H<sub>4</sub>C(H)N(CH<sub>2</sub>)<sub>2</sub>N; *n* = 6 - OC<sub>6</sub>H<sub>4</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>P(Ph)C<sub>6</sub>H<sub>4</sub>CH<sub>2</sub>NHC<sub>6</sub>H<sub>4</sub>O; *n* = 7 - OC(=C)CH<sub>2</sub>N{CH<sub>2</sub>C(=O)O}· CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>NC(Ph)NC(ONC<sub>4</sub>H<sub>4</sub>)S}; *n* = 8 - OC(=O)CH<sub>2</sub>N{C<sub>6</sub>H<sub>4</sub>CH<sub>2</sub>NC(Ph)NC(NEt)S}CH<sub>2</sub>C(=O)O; *n* = 9 - OC(=O)CH<sub>2</sub>N{C<sub>6</sub>H<sub>4</sub>CH<sub>2</sub>NC(Ph)NC(NMeC<sub>6</sub>H<sub>4</sub>COOEt)S}CH<sub>2</sub>C(=O)O; *n* = 10 - OC(=O)C{C(Me<sub>2</sub>)S}NH(CH<sub>2</sub>)<sub>2</sub>NHC(COOH)C(Me<sub>2</sub>)S; *n* = 11 - OC(=O)C(CH<sub>2</sub>S)NH(CH<sub>2</sub>)<sub>2</sub>NHC(HOOC)CH<sub>2</sub>S.

пяти- и шестичленных металлоцикла, попарно сочлененных двумя связями Re–N. Полициклические фрагменты  $\operatorname{Re}(\operatorname{L}_{\operatorname{пента}}^{n})$  либо асимметричные (а), либо симметричные (б). Последние различаются в зависимости от числа мостиковых атомов углерода, связывающих иминные атомы азота (один или два). Две половинки фрагмента  $\operatorname{Re}(\operatorname{L}_{\operatorname{тетра}}^{n})$  в варианте (б) связаны зеркальной плоскостью *m* (как правило, локальной), проходящей через атом Re и либо противолежащий атом N, либо центр противолежащей связи C–C. Основные длины связей в структурно исследованных комплексах приведены в табл. 1.

### СТРОЕНИЕ КОМПЛЕКСОВ [ $\text{ReO}(L_{\text{пента}}^n)$ ] (n = 1-3) С ПЕНТАДЕНТАТНО-ХЕЛАТНЫМИ ЛИГАНДАМИ (30, 2N)

Известна структура трех соединений указанного в заголовке состава:  $[\text{ReO}(L_{\text{пента}}^1)] \cdot 2C_4 H_8 O_2 \cdot$ ·  $O_2S(=O)Me_2 \cdot 0.5H_2O$  (I) [21], [ReO( $L^2_{\text{пента}}$ )] (II) [21] и [ReO( $L_{nehta}^3$ )] · C<sub>4</sub>H<sub>8</sub>O · MeOH (III) [22] (рис. 1). Во всех трех комплексных молекулах атомы азота расположены в цис-положениях друг к другу, три атома кислорода лигандов L<sup>n</sup><sub>пента</sub> – в mer-геометрии. Две комплексные молекулы [ReO( $L_{nenta}^n$ )] кристаллов I, II имеют сходное строение, различаясь лишь одним заместителем R в циклогексановом кольце:  $L_{neHTa}^{n} = 1,3,5$ -тридеокси-1,3-*бис*(2-R)-*цис*-инозитол] OC<sub>6</sub>H<sub>4</sub>CH<sub>2</sub>NHC<sub>6</sub>OHR, где R = NH<sub>2</sub>(I), NHC(=O)CH<sub>2</sub>)<sub>3</sub>COO (II). Циклогексановые кольца имеют разную конформацию: уплощенного кресла в I и *твист*-ванны в II. В I связи N–Н координированного амина ориентированы по направлению к неподеленной электронной паре некоординированного амина. В обоих комплексах есть две пары шести- и пятичленных металлоциклов: ReOC<sub>3</sub>N (A) и ReOC<sub>2</sub>N (B). Пары циклов А и В сочленены по связям Re-N. Кроме того, в каждой структуре I. II формируется еще шестичленный хелатный цикл ReNC<sub>3</sub>N. В комплексной молекуле [ReO(L<sup>3</sup><sub>пента</sub>)] соединения III лиганд  $L_{nehta}^3 = 1,3,5$ -тридеокси-1,3,5-*mpuc*(2-гидроксибензил)амино-цис-инозитол  $[OC_6H_4CH_2NHC\{C(OH)C(NHCH_2C_6H_4OH)\}C(O)]$ СNHCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>O] сопоставим с лигандами L<sup>n</sup><sub>пента</sub> (n = 1, 2) в соединениях I, II, формируя при координации с атомом металла сходную пентациклическую систему пяти- и шестичленных металлоциклов. В структуре III экваториальную плоскость октаэдра ReO<sub>4</sub>N<sub>2</sub> образуют амино- и

нирует атом рения. В аксиальной позиции (*транс* к O4(оксо)) расположен атом O1 гидроксогруппы циклогексантриазольного фрагмента. Связи Re– $O_{mpahc}$  в трех структурах (1.960–1.980 Å, средн. 1.972 Å) в среднем на 0.030 Å короче (а не длиннее), чем Re– $O_{uuc}$  (1.993–2.015 Å, средн. 2.002 Å).

### СТРОЕНИЕ КОМПЛЕКСОВ [ $\text{ReO}(L_{\text{пента}}^n)$ ] (n = 4, 5) С ПЕНТАДЕНТАТНО-ХЕЛАТНЫМИ ЛИГАНДАМИ (20, 3N)

Два комплекса указанного в заголовке состава имеют разный заряд. В структуру [ReO(L<sup>4</sup><sub>пента</sub>)](PF<sub>6</sub>) (**IV**) [23] входит однозарядный комплексный катион (рис. 1) ( $L_{nehra}^{4 \ 2-} = \delta uc$ (N-метилсалицилидениминатопропил)амин  $\{OC_6H_4C(Me)N(CH_2)_3\}_2NH\},\$ а структура  $[\text{ReO}(L_{\text{пента}}^5)]$  · CH<sub>3</sub>OH (V) [24] содержит комплексную молекулу ( $L_{пента}^{53-} = N, N'-3$ -азапентен-1,5-диил-бис(салицилидениминато)  ${O(C_6H_4)C(H)N(CH_2)_2}N)$ . Оба комплекса близ-

кого состава, симметричные; каждый состоит из лвух равных половинок. связанных соответственно NH-группой и атомом N. В обеих структурах атомы кислорода находятся в иис-позиции друг к другу, три атома азота – в *mer*-координации. В структуре комплексов IV и V есть по две пары шестичленных металлоциклов ReNC<sub>3</sub>N и ReNC<sub>3</sub>O, попарно сочлененных тремя связями Re–N. Отклонения атомов рения от экваториальных плоскостей (параметр  $\Delta$ ') равны 0.103 и 0.280 Å соответственно в IV и V. Связь Re-O2<sub>*транс*</sub> (1.999 Å) на 0.047 Å длиннее, чем Re–O1<sub>иис</sub> вследствие СПТВ. Обе связи попадают в интервал значений Re-О(фенолят) 1.92–2.09 Å [25]. Авторы [23] отмечают как неожиданное различие "растворов" циклов: углы NReN равны 87.2(2)° и 97.6(2)°, NReO – 82.3(1)°, 90.3(1)°. Связь Re-N3 (амин), транс к Re-O1 (2.173 Å), в среднем на 0.066 Å длиннее, чем Re–N1,2 (имин), *транс* друг к другу (2.107 Å). Структура IV стабилизирована межионными водородными связями С-Н... F (Н... F 2.38-2.55, С...F 3.26—3.44 Å, углы СНГ 137°-168°), N-H...F (H...F 2.26, N...F 3.14 Å, угол NHF 156°), а также внутримолекулярной водородной связью С-Н...О3(оксо) (Н...О 2.52, С...О 3.04 Å, угол СНО 112°). Кристаллы V изоструктурны кристаллам  $[TcO(L_{пента}^5)] \cdot CH_3OH$  [25]. Сольватная молекула метанола в структуре V неупорядочена. В отличие от структуры IV, в структуре V связь Re-O<sub>транс</sub> (2.09 Å) не длиннее, а на 0.05 Å короче связи Re-О<sub>цис</sub> (2.14 Å), а связь Re–N, *транс* к Re–О<sub>цис</sub> 1.91 Å, в среднем на 0.14 Å короче (а не длиннее, как в IV) связей Re–N, *транс* друг к другу (2.05 Å).

феноксигруппы двух гидроксибензоаминатных

единиц. Третья аналогичная единица не коорди-



Рис. 1. Строение комплексов [ $\operatorname{ReO}(L_{\operatorname{пента}}^2)$ ] (II), [ $\operatorname{ReO}(L_{\operatorname{пента}}^3)$ ] (III) и [ $\operatorname{ReO}(L_{\operatorname{пента}}^4)$ ] (IV).

## СТРОЕНИЕ КОМПЛЕКСА [ $ReO(HL_{пента}^6)$ ] С ПЕНТАДЕНТАТНО-ХЕЛАТНЫМ ЛИГАНДОМ (20, 2N, P)

Известна одна кристаллическая структура указанного в заголовке комплекса (сольват 1 : 1 с тетрагидрофураном  $OC_4H_8$  (VI)) [26]. В комплексе [ReO(HL<sup>6</sup><sub>пента</sub>)] (рис. 2) в лиганде HL<sup>6 3–</sup><sub>пента</sub> [(2,2'фенилфосфиндиил)-*бис*(2,1-фениленметилен-

фенилфосфиндиил)-*бис*(2,1-фениленметиленимино)дифенолято]

ОС<sub>6</sub>H<sub>4</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>P(Ph)C<sub>6</sub>H<sub>4</sub>CH<sub>2</sub>NHC<sub>6</sub>H<sub>4</sub>О один атом азота (N1H) депротонирован. При этом связи Re—N (в *транс*-позиции друг к другу) неравноценны по длине: Re—N1H (2.035 Å) заметно (на 0.092 Å) длиннее, чем Re—N2 (1.943 Å). Связь Re—O2<sub>*транс*</sub> (2.035 Å) на 0.019 Å длиннее, чем Re— O3<sub>*цис*</sub> (2.016 Å). При координации лиганда атомом металла HL<sup>6</sup><sub>пента</sub> замыкаются четыре металлоцикла: шестичленные ReNC<sub>3</sub>P (A) и ReN(H)C<sub>3</sub>P (Б), сочлененные по связи Re—P, а также пятичленные ReNC<sub>2</sub>O (В) и ReN(H)C<sub>2</sub>O (Г). Хелатные циклы A и B соединены по связи Re—N, циклы Б

## СТРОЕНИЕ КОМПЛЕКСОВ [ReO $(L_{пента}^n)$ ] (n = 7-9) С ПЕНТАДЕНТАТНО-ХЕЛАТНЫМИ ЛИГАНДАМИ (20, 2N, S)

и  $\Gamma$  – по связи Re–N(H).

Известна кристаллическая структура трех комплексов указанного в заголовке состава. В со-

единении [ $\operatorname{ReO}(L_{\operatorname{nehta}}^7)$ ] (VII) [27] (рис. 2) [ $L_{\operatorname{nehta}}^7 = 2,2'-(2-(((морфолин-4-ил(сульфанил)мети$ лен)амино)бензил)имидо)диацетато OC(=O)CH<sub>2</sub>N  $\{CH_2C(=0)O\}CH_2C_6H_4NC(Ph)NC(NOC_4H_4)S\}$ попарно в *транс*-позициях находятся атомы N, O и N, S. Связи Re–N2(*sp*<sup>2</sup>), *транс* к Re–O4 (2.037 Å), и Re-N4(sp<sup>3</sup>), транс к Re-S1 (2.207 Å), сильно различаются по длине: первая на 0.170 Å короче второй. Связь Re-N-C фениламидо-лиганда близка к линейной (соответствующий угол ReNC равен 167.3°). При координации лиганда L<sup>7</sup><sub>пента</sub> с атомом рения замыкаются четыре металлоцикла: два шестичленных ReNCNCS (А), ReNC<sub>3</sub>N (Б) и два пятичленных ReNC<sub>2</sub>O (В, Г). Циклы А, Б, как и циклы Б-Г, сочленены по связям Re-N. Хелатный цикл А имеет конформацию, промежуточную между "ванной" и "креслом". Два соединения –  $[ReO(L_{nehta}^8)]$  (VIII) [28] (рис. 2) и  $[ReO(L_{nehta}^9)]$  · 1.25MeOH (IX) [28] — содержат комплексные молекулы близкого состава:  $L_{пента}^8 = 2,2'-((2-$ (((((4-диэтиламино)(сульфидо)метилен)амино)фенил)метилен)амино)метилфенил)иминодиацетато  $OC(=O)CH_2N\{C_6H_4CH_2NC(Ph)NC(R)S\}CH_2C(=O)O$ 

 $(R = NEt_2); L_{nehta}^9 = 2,2'-((2-(((((4-(этоксикарбо$ нил)фенил)(метиламино)(сульфидо)метилен)амино(фенил)метиленамино)метил)фенил)имино)диацетато



Рис. 2. Строение комплексов [ReO(HL<sup>6</sup><sub>пента</sub>)] (VI), [ReO(L<sup>7</sup><sub>пента</sub>)] (VII), [ReO(L<sup>8</sup><sub>пента</sub>)] (VIII), [ReO(L<sup>10</sup><sub>пента</sub>))] (X) и [ReO(L<sup>11</sup><sub>пента</sub>)] (XI).

ОС(=О)CH<sub>2</sub>N{C<sub>6</sub>H<sub>4</sub>CH<sub>2</sub>NC(Ph)NC(R)S}CH<sub>2</sub>C(=O)O (R = NMeC<sub>6</sub>H<sub>4</sub>COOEt). Кристаллы VIII изоструктурны кристаллам Tc-аналога [29]. Как и в структуре VII, в комплексах VIII, IX попарно в *транс*позициях находятся атомы N, O и N, S, а связи Re–N(*sp*<sup>2</sup>), *транс* к Re–O (2.022 и 2.047 Å соответственно в VIII и IX), намного короче, чем Re– N(*sp*<sup>3</sup>), *транс* к Re–S (2.253 и 2.219 Å). Авторы [28] отмечают, что связи Re–N(*sp*<sup>2</sup>) в структуре VII– IX типичны для комплексов Re(V)-тиокарбамоилбензамидинато с аналогичными связями [30]. Так же как в комплексе VII, в соединениях VIII,

IX при координации лиганда  $L_{пента}^{n}$  с атомом металла формируются четыре металлоцикла: два шестичленных ReNCNCS (A), ReNC<sub>3</sub>N (Б) и два пятичленных ReNC<sub>2</sub>O (B, Г). При этом циклы A, Б, как и циклы Б–Г, сочленены по связям Re–N. Во всех трех комплексах VII–IX связи Re–O<sub>транс</sub> (2.030–2.065 Å, средн. 2.045 Å) несколько короче

Таблица 2. Основные геометрические параметры (Å)

мономерных октаэдрических монооксокомплексов  $[\text{ReO}(L_{\text{пента}}^n)]$  с пентадентатно-хелатными лигандами (после значков ± приведены разбросы расстояний)

| Параметр                                                                | Интервалы значений (Å), число<br>примеров (в фигурных скобках) и<br>средние значения с их разбросом<br>(в круглых скобках)         |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Re-О(оксо)                                                              | $1.651 - 1.720 \{11\} (1.688 \pm 0.037)$                                                                                           |
| Re-O( $L_{\Pi e H Ta}^{n}$ ) <sub><i>mpahc</i></sub>                    | $\begin{array}{l} 1.960 - 2.065 \left\{9\right\} (2.032 \pm 0.072) \\ 2.200, 2.252 \left\{2\right\} (2.236 \pm 0.072) \end{array}$ |
| Re–O( $L_{nehta}^n$ ) <sub>цис</sub>                                    | 1.952–2.140 {9} (2.033 ± 0.107)                                                                                                    |
| $\Delta$ {Re-O(L <sup><i>n</i></sup> <sub>пента</sub> )                 | $-0.0500.047$ {9} ( $-0.015 \pm 0.062$ )                                                                                           |
| Re-N( $L_{пента}^{n}$ ) <sub>цис</sub>                                  | 1.910–2.253 {18} (2.107 ± 0.197)                                                                                                   |
| Re-S( $L_{nehta}^n$ ) <sub>цис</sub>                                    | 2.267–2.309 {5} (2.293 ± 0.026)                                                                                                    |
| $\operatorname{Re-P}(\operatorname{L}^{n}_{\operatorname{nehta}})_{uc}$ | 2.400 {1}                                                                                                                          |

(или сопоставимы по длине) связей Re–O<sub>цис</sub> (2.055–2.078 Å, средн. 2.064 Å).

### СТРОЕНИЕ КОМПЛЕКСОВ [ $\text{ReO}(L_{\text{пента}}^n)$ ] (n = 10, 11) С ПЕНТАДЕНТАТНО-ХЕЛАТНЫМИ ЛИГАНДАМИ (O, 2N, 2S)

Определена кристаллическая структура двух комплексов указанного в заголовке состава и близкого строения:  $[\text{ReO}(L_{\text{пента}}^{10})] \cdot H_2\text{O}(X)$  [31] (рис. 2);  $L^{10} = ahmu$ -(DL-тетраметилэтилендицистеин)  $OC(=O)C\{C(Me_2)S\}NH(CH_2)_2NHC(COOH)C(M)$ 

е<sub>2</sub>)S и [ReO(L<sup>11</sup><sub>пента</sub>)] (**XI**) [32] (рис. 2); L<sup>11</sup> = (2R, 7R)-дикарбокси-3,6-диазо-1,8-октадитиолато (OC(=O)C(CH<sub>2</sub>S)NH(CH<sub>2</sub>)<sub>2</sub>NHC(COOH)CH<sub>2</sub>)S. В обоих комплексах при координации лиганда  $L^{n}_{пента}$  (n = 10, 11) с атомом рения замыкаются четыре пятичленных металлоцикла (по два ReNC<sub>2</sub>S (A, Б) и ReNC<sub>2</sub>N (B, Г)), сочлененные по двум связям Re–N (A, B, Г и Б, B) в Х; два ReNC<sub>2</sub>S (A, Б), ReNC<sub>2</sub>N (B) и ReNC<sub>2</sub>O (Г), также соединенные по двум связям Re–N (A, B и Б, B, Г) в XI. В обоих комплексах в *транс*-позициях к O(оксо)

расположены атомы  $O(OCO_2^-)$  лиганда  $L_{пента}^n$ ; оба атома N занимают *транс*-положения к атомам S. Связи Re–O в *транс*-позициях к O(оксо) и в X, и в XI существенно удлинены (соответственно до 2.200 и 2.252 Å) вследствие СПТВ кратносвязанного оксолиганда. Обе группы NH в обеих структурах расположены в син-положениях к оксоли-

гандам. Параметры  $\Delta'_{Re}$  в X и XI составляют 0.38 и 0.45 Å соответственно.

### ОСОБЕННОСТИ СТРОЕНИЯ МОНОМЕРНЫХ ОКТАЭДРИЧЕСКИХ МОНООКСОКОМПЛЕКСОВ РЕНИЯ(V) С ПЕНТАДЕНТАТНО-ХЕЛАТНЫМИ ЛИГАНДАМИ

В табл. 2 приведены средние значения основных геометрических параметров в структуре I– XI. Во всех 11 комплексах в *транс*-положениях к кратносвязанным лигандам O(оксо) находятся ацидо-атомы кислорода пентадентатно-хелатных лигандов L<sub>пента</sub>.

Только в двух комплексах – X и XI (табл. 1, 2) – связи Re–O( $L_{пента}$ )<sub>*транс*</sub> (2.200 и 2.252 Å) существенно удлинены. В этих двух случаях резонно говорить о СПТВ кратносвязанного лиганда O(оксо).

В остальных девяти соединениях I–IX с отрицательно заряженными атомами кислорода ли-

гандов L<sup>*n*</sup><sub>пента</sub> в *транс*-позициях к кратносвязанным оксолигандам имеет место принципиально другой вариант. В этих соединениях связи Re-O(L)<sub>транс</sub> (1.960-2.065 Å, средн. 2.032 Å – здесь и далее см. табл. 2) сопоставимы по длине, несколько длиннее или заметно короче, чем Re-O(L)<sub>иис</sub> (1.952-2.140 Å, средн. 2.033 Å,  $\Delta = -0.050-0.047$  Å, средн. —0.015 Å). Казалось бы, этот факт противоречит "принципу самосогласованности" [2]. Однако на самом деле вышеупомянутые связи Re–O(L) в *транс*-положениях к лигандам O(оксо) можно рассматривать как имеющие повышенную кратность, так как они соизмеримы по длине (а не удлинены вследствие СПТВ) с величинами Re-O(L)<sub>иис</sub>, т.е. в данном случае можно говорить о псевдодиоксокомплексах, содержащих два лиганда (O(оксо) и O(L)<sub>транс</sub>) со связями Re—О повышенной кратности (соответственно ~2.5 и ~1.5). Напомним, что в  $d^2$ -комплексах металлов V–VII групп (в том числе рения) два кратносвязанных лиганда всегда располагаются в транс-позициях друг к другу. Этот случай формирования *транс*-диоксогруппы MO<sub>2</sub> в *d*<sup>2</sup>-переходных металлах V–VII групп (Nb, V, Mo, W, Re, Tc) подробно рассмотрен в работе [7].

Следует отметить весьма широкий интервал средних значений (1.910–2.253 Å) длин связей Re–N<sub>цис</sub>. При этом в ряде структур, например VI–IX, два индивидуальных расстояния Re–N существенно различаются в зависимости от степени гибридизации и природы *транс*-партнера (также и в *транс*-позициях друг к другу). Подробнее об этих фактах см. при описании конкретных структур.

#### ЗАКЛЮЧЕНИЕ

В данной обзорной статье рассмотрены особенности строения мономерных октаэдрических монооксокомплексов [ReO( $L_{nehra}^n$ )], содержащих пентадентатно-хелатные лиганды L<sup>*n*</sup><sub>пента</sub> пяти разных вариантов: (30, 2N), (20, 3N), (20, 2N, P), (20, 2N, S), (O, 2N, 2S). *Транс*-позиции к кратносвязанным оксолигандам всегда занимают атомы  $O(L_{n_{\text{пента}}}^{n})$ . При координации с рением лиганды L<sup>*n*</sup><sub>пента</sub> замыкают преимущественно четыре пяти- и шестичленных металлоцикла, попарно соединенных двумя связями Re-N. Полициклические фрагменты  $\text{Re}(L_{\text{пента}}^n)$  либо асимметричные (а), либо симметричные (б). Фрагменты б) различаются в зависимости от числа мостиковых атомов углерода, связывающих иминные атомы азота (один или два). Две половинки фрагмента  $\operatorname{Re}(\operatorname{L}^{n}_{\operatorname{тетра}})$  в варианте (б) связаны зеркальной плоскостью *m* (в основном некристаллографиче-

ской), проходящей через атом рения и либо противолежащий атом азота, либо через центр противолежащей связи С–С.

#### ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований.

#### КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

### СПИСОК ЛИТЕРАТУРЫ

- Порай-Кошиц М.А., Гилинская Э.А. Кристаллохимия. М.: ВИНИТИ. Итоги науки и техники, 1966. С. 130.
- 2. Porai-Koschits M.A., Atownian L.O // Russ. J. Coord. Chem. 1975. V. 1. № 8. Р. 1271. [Порай-Кошиц М.А., Атовмян Л.О. // Коорд. химия. 1975. Т. 1. № 8. C. 1271.]
- 3. *Griffith F., Wicing C.* // J. Chem. Soc. A. 1968. № 3. P. 379.
- 4. Порай-Кошиц М.А. // Изв. Югосл. Кристаллогр. Центра. 1974. Т. 9. С. 19.
- 5. Порай-Кошиц М.А., Атовмян Л.О. Кристаллохимия кординационных соединений молибдена. М.: Наука, 1974. 231 с.
- 6. Shustorovich E.M., Porai-Koshits M.A., Buslaev Yu.A. // Coord. Chem. Rev. 1975. V. 17. № 1. P. 1.
- 7. Порай-Кошиц М.А., Сергиенко В.С. // Успехи химии. 1990. Т. 59. № 1. С. 86.
- 8. Groom C.R., Bruno I.J., Lightfool P., Word S.C. // Acta Crystallogr. 2016. V. 72B. № 1. P. 171.

- Sergienko V.S., Churakov A.V. // Russ. J. Inorg. Chem. 2016. V. 61. № 14. P. 1708. https://doi.org/10.1134/S0036023616140047
- Sergienko V.S. // Russ. J. Inorg. Chem. 2017. V. 62. № 6. Р. 751. [Сергиенко В.С. // Журн. неорган. химии. 2017. Т. 62. № 6. С. 766.] https://doi.org/10.1134/S0036023617060195
- Sergienko V.S., Churakov A.V. // Russ. J. Inorg. Chem. 2017. V. 62. № 10. Р. 1316. [Сергиенко В.С., Чураков А.В. // Журн. неорган. химии. 2017. Т. 62. № 10. С. 1337.] https://doi.org/10.1134/S0036023617100151
- Sergienko V.S., Churakov A.V. // Russ. J. Inorg. Chem. 2018. V. 63. № 5. Р. 631. [Сергиенко В.С., Чураков А.В. // Журн. неорган. химии. 2018. Т. 63. № 5. С. 601.] https://doi.org/10.1134/S0036023618050121
- Sergienko V.S., Churakov A.V. // Russ. J. Inorg. Chem. 2018. V. 63. № 6. Р. 753. [Сергиенко В.С., Чураков А.В. // Журн. неорган. химии. 2018. Т. 63. № 6. С. 718.] https://doi.org/10.1134/S0036023618060219
- Sergienko V.S. // Russ. J. Inorg. Chem. 2018. V. 63. № 14. P. 1757. https://doi.org/10.1134/S0036023618140048
- 15. Sergienko V.S., Churakov A.V. // Russ. J. Coord. Chem. 2019. V. 45. № 5. P. 332. https://doi.org/10.1134/S1070328419030072 [*Серги-енко В.С., Чураков А.В.* // Коорд. химия. 2019. Т. 45. № 5. С. 276.
- Sergienko V.S., Churakov A.V. // Russ. J. Coord. Chem. 2019. V. 45. № 6. Р. 439. [Сергиенко В.С., Чураков А.В. // Коорд. химия. 2019. Т. 45. № 6. С. 378.] https://doi.org/10.1134/S107032841906007
- 17. Sergienko V.S., Churakov A.V. // Russ. J. Coord. Chem. 2019. V. 45. № 9. Р. 651. [Сергиенко В.С., Чураков А.В. // Коорд. химия. 2019. Т. 45. № 9. С. 553.] https://doi.org/10.1134/S1070328419080074
- Sergienko V.S., Strashnova S.B. // Russ. J. Inorg. Chem. 2019. V. 64. № 7. Р. 882. https://doi.org/10.1134/S10036023619070143 [Сергиенко В.С., Страшнова С.Б. // Журн. неорган. химии. 2019. Т. 64. № 7. С. 727.]
- Sergienko V.S., Churakov A.V. // Russ. J. Inorg. Chem. 2019. V. 64. № 14. P.1803. https://doi.org/10.1134/S0036023619140055
- Sergienko V.S., Churakov A.V. // Russ. J. Inorg. Chem. 2019.
  V. 64. № 9. Р. 1127. [Сергиенко В.С., Чураков А.В. // Журн. неорган. химии. 2019. Т. 64. № 9. С. 945.] https://doi.org/10.1134/S0036023619090183
- 21. *Kramer A., Alberto R., Egli A.* // Bioconjugate Chem. 1998. V. 9. № 6. P. 691.
- 22. *Hegetschweiler K., Egli A., Alberto R. et al.* // Inorg. Chem. 1992. V. 31. № 20. P. 4027.
- 23. Abrahams A., Gerber T.I.A., Luzipo D.R., Mayer P. // J. Coord. Chem. 2007. V. 60. № 20. P. 2215.
- 24. *Tisato F., Refosco F., Mazzi U. et al.* // Inorg. Chim. Acta. 1991. V. 189. № 1. P. 97.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 7 2021

- 25. Gerber T.I.A., Luzipo D.R., Mayer P. // J. Coord. Chem. 2006. V. 59. № 12. P. 1149.
- 26. *Barandov A., Abram U.* // Inorg. Chem. 2009. V. 48. Nº 17. P. 8072.
- 27. Nguen H.H., Yhang P.C., Abram U. // Polyhedron. 2015. V. 99. № 2. P. 216.
- 28. Nguen H.H., Phan C.T., Abram U. // Inorg. Chem. 2015. V. 54. P. 5949.
- 29. Luo H., Liu S., Rettig S., Orvig C. // Can. J. Chem. 1995. V. 73. P. 2272.
- *Nguen H.H., Abram U. //* Polyhedron. 2009. V. 28. P. 3945.
- 31. *Hansen L., Hirota S., Xu X. et al.* // Inorg. Chem. 2000. V. 39. № 25. P. 5731.
- 32. *Mazzilli L.G., Banaszczak M.G., Hansen L. et al.* // Inorg. Chem. 1994. V. 33. № 22. P. 4850.