ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ, 2021, том 66, № 7, с. 857-862

СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 54.056

СИНТЕЗ И ГЛУБОКАЯ ОЧИСТКА ТЕТРАХЛОРИДА ОЛОВА

© 2021 г. М. В. Мастрюков^{*a*}, Л. И. Демина^{*b*}, Л. В. Моисеева^{*a*, *c*}, А. Д. Солдаткина^{*d*}, М. Н. Бреховских^{*a*}, *

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия

^bИнститут физической химии и электрохимии им. А.Н. Фрумкина РАН, Ленинский пр-т, 31, корп. 4, Москва, 119991 Россия

^сИнститут общей физики им. А.М. Прохорова РАН, ул. Вавилова, 38, Москва, 119991 Россия

^dРоссийский химико-технологический университет им. Д.И. Менделеева, Миусская пл., 9, Москва, 125047 Россия

*e-mail: mbrekh@mail.ru

Поступила в редакцию 02.03.2021 г. После доработки 12.03.2021 г. Принята к публикации 13.03.2021 г.

Изложены результаты исследований по разработке физико-химических основ синтеза и глубокой очистки тетрахлорида олова. Образцы SnCl₄ были синтезированы из элементов в специально сконструированной кварцевой установке. Синтезированный SnCl₄ очищали ректификацией на ситчатой колонне. Методом масс-спектрометрического анализа обнаружено, что содержание примесей свинца после ректификационной очистки SnCl₄ уменьшается от 120 до 2 м. д., а также значительно снижаются примеси остальных металлов. Рассчитаны коэффициенты разделения в системе жидкость—пар для трудноразделимых примесей. Чистота образцов SnCl₄ подтверждена методами ИК-и КР-спектроскопии. Получены образцы SnCl₄ с содержанием микропримесей 10^{-4} мас. %.

Ключевые слова: четырехвалентное олово, ректификация, оловоорганические соединения **DOI:** 10.31857/S0044457X21070072

ВВЕДЕНИЕ

Соединения четырехвалентного олова широко используются в органическом синтезе [1–5]. Значительное внимание уделено оловоорганическим карбоксилатным комплексам, поскольку они находят широкое применение в промышленности в качестве катализаторов, противообрастающих агентов, консервантов для древесины, средств защиты растений и т.д. [1, 6].

Оловоорганические соединения (IV) используются как потенциальные биологические средства при лечении различных заболеваний [7, 8]. Из-за биологической активности оловоорганические соединения (IV) нашли применение в ветеринарии, а также в качестве антибактериальных, противогрибковых, противоопухолевых, противомалярийных [9] и амебицидных [10] препаратов.

Моно- и диоловоорганические соединения обладают высокой каталитической активностью из-за связывающей способности неподеленной пары электронов у олова [11, 12]. В химическом синтезе оловоорганические соединения (IV) используются в качестве катализаторов этерификации и переэтерификации [13]. Катализаторы на основе олова не разлагаются при высоких температурах. Катализаторы на основе оловоорганического соединения (IV) используются для образования различных типов полимеров, которые применяются для нанесения покрытий [14].

Тетрахлорид олова является как прекурсором для синтеза оловоорганических соединений, так и катализатором в органическом синтезе [15]. Присутствие примесей в четырехвалентных соединениях галогенидов олова приводит к изменениям их характеристик и физических свойств, которые могут существенно отличаться от свойств тех же соединений высокой чистоты [16–18].

В технологии получения особо чистых веществ используются адсорбционные методы очистки, которые обладают высокой селективностью к извлечению ряда микропримесей и применимы для газов, жидкостей и растворов, а также не требуют использования высоких температур. Однако решающую роль в данном методе играют выбор адсорбента и его подготовка [19].

Другим способом получения особо чистых веществ является дистилляционный метод, который применим и к жидкостям, и к твердым веществам. Преимущество данного способа заключается в простом аппаратурном оформлении по

Рис. 1. Установка синтеза тетрахлорида олова: *1* – дефлегматор, *2* – куб, *3* – кварцевая трубка, *4* – кварцевый "рукав", *5* – приемник.

сравнению с ректификационными методами, которые требуют гораздо более тщательной подготовки оборудования [20].

Цель работы — разработка физико-химических основ синтеза и глубокой очистки $SnCl_4$ от примесей методом высокотемпературной ректификации с получением образцов чистотой 99.999 мас. % (марки 5N).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходных компонентов использовали Sn (ч., Lanhit.ltd) и Cl_2 (ч., Lanhit.ltd). Для синтеза четыреххлористого олова собирали кварцевую установку, состоящую из дефлегматора (холодильника), куба, кварцевого рукава и приемника для отбора синтезированного хлорида олова (рис. 1).

Глубокую очистку тетрахлорида олова проводили в кварцевой ситчатой ректификационной колонне, изготовленной из кварца особой чистоты (рис. 2). Ректификационная колонна является

Рис. 2. Схема установки глубокой очистки тетрахлорида олова: 1 - куб, 2 - ситчатая колонна, 3, 9 - печь сопротивления, <math>4 - игольчатый вентиль, 5 - холодильник, 6 - кварцевая воронка, <math>7 - приемник, 8 - термометр

цельнопаянной; скорость отбора регулируется с помощью игольчатого вентиля. Загрузку в куб и отбор проб осуществляли в условиях, исключающих контакт тетрахлорида с окружающей атмосферой. Температуру в кубовой части поддерживали 120°С, в колонне — 113°С. Скорость отбора проб составляла 1 мл/мин. Отбор каждой фракции составлял 25 мл.

Примесный состав определяли атомно-эмиссионным методом на спектрометре с индуктивно связанной плазмой iCAP 6300 Duo (Thermo). Коэффициенты разделения для системы жидкость пар на основе SnCl₄ определяли методом равновесной перегонки в ампуле по методике [21]. Спектры комбинационного рассеяния регистрировали на спектрометре комбинационного рассеяния inVia Renishaw. Возбуждение производили лазерным излучением с длиной волны $\lambda = 633$ нм и мощностью <1 мВт с разрешением 2 см⁻¹. ИКспектры регистрировали на ИК-Фурье-спектрометре Jasco FT/IR-6600 методом нарушенного полного внутреннего отражения на приставке с алмазным кристаллом в диапазоне 4000–225 см⁻¹.

	$C imes 10^{-4}$, мас. %						
Примесь	фракция SnCl ₄						
	после синтеза	головная фракция	основная фракция	кубовый остаток			
Al	45	15	2	10			
В	3	2	<1.0	<2.0			
Ba	5	<0.4 <0.4		<0.4			
Bi	20	5	<1.0	3			
Ca	6	2	<1.0	4			
Cd	<1.0	<1.0	<0.2	<0.2			
Co	<1.0	<1.0	<0.4	<0.4			
Cr	5	<1.0	<0.5	<0.5			
Cu	30	2	<0.5	<0.5			
Fe	60	10	<1.0	5			
Ge	20	18	<0.5	<0.5			
K	<1.0	<0.5	<0.5	<0.5			
Li	<1.0	<1.0	<0.1	<0.1			
Mg	5	<1.0	<1.0	2			
Mn	<1.0	<1.0	<1.0	<1.0			
Na	<0.5	<0.5	<0.5	<0.5			
Ni	10	3	<0.5	<0.5			
Pb	120	20	2	5			
Sb	20	10	<1.0	4			
Si	<1.3	<1.3	<1.3	<1.3			
Sr	<1.0	<1.0	<0.5	<1.0			
Ti	2	<1.0	<0.5	<1.0			
V	<1.0	<0.5	<0.5	<1.0			
Zn	15	6	<1.0	2			

Таблица 1. Содержание примесей в синтезированном SnCl₄ после ректификационной очистки

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В основе синтеза лежит уравнение химической реакции взаимодействия металлического олова и хлора:

$$\mathrm{Sn} + 2\mathrm{Cl}_2 = \mathrm{Sn}\mathrm{Cl}_4. \tag{1}$$

Энтальпия реакции (1) $\Delta H_{298}^{\circ} = -528.9 \, \text{кДж/моль}$ [22] составляет отрицательную величину и характеризует экзотермический процесс. Именно поэтому необходимо охлаждать дефлегматор во время синтеза, в котором конденсируется образующийся хлорид олова, и, регулируя температурные режимы, отводить его через кварцевый рукав в приемник. В процессе синтеза температура в кубе будет постоянно увеличиваться за счет выделения огромного количества тепла, поэтому нагревание в кубе необходимо проводить только в начале синтеза для инициирования реакции (рис. 1).

В процессе очистки тетрахлорида олова на ситчатой ректификационной колонне отобрали 8 проб: 2 головные фракции, 4 основные фракции и 2 фракции кубового остатка. Все пробы отличались не только по примесному составу, как будет показано ниже, но и по цвету — от бесцветного до рыжего.

Полагаем, что все примеси металлов присутствуют в виде хлоридов, и селективность в хлорировании примесей маловероятна. Примесный состав определяли с применением метода массспектрометрии с индуктивносвязанной плазмой для 4 проб тетрахлорида олова, а именно: полученного после синтеза из элементов, головной фракции, основной фракции, кубового остатка. В табл. 1 представлено содержание примесей в образцах SnCl₄, полученное из значений, записанных на спектрометре с индуктивно связанной плазмой iCAP 6300 Duo (Thermo).

Как и в случае с дииодидом олова [23], тетрахлорид олова загрязнен нежелательными примесями тяжелых металлов: Fe, Pb, Cu, Al и др. Как

Примесь	BiCl ₃	GeCl ₄	CuCl	FeCl ₃	AlCl ₃	PbCl ₂
<i>t</i> _{пл} , °С	234	-49.5	426	306	192.4	498
Концентрация, мас. %	0.2	0.2	0.3	0.6	0.45	1.2
α _{эксп}	2.51 ± 0.01	14.5 ± 0.01	8.2 ± 0.01	1.33 ± 0.01	2.27 ± 0.01	7.4 ± 0.01
α _{pacy}	2.19	14.15	7.18	1.35	2.15	6.13

Таблица 2. Коэффициенты распределения для некоторых примесей SnCl₄

видно из табл. 1, содержание свинца в SnCl₄ до ректификационной очистки значительно превышает содержание остальных примесей. Показано, что после ректификационной очистки SnCl₄ содержание примесей свинца уменьшается от 120 до 2 м. д., а также значительно снижаются примеси остальных металлов, большая часть которых концентрируется в кубовом остатке и не загрязняет основную фракцию из-за разницы температур кипения хлоридов этих металлов. Легколетучие примеси, такие как тетрахлорид германия, отгоняются в головную фракцию.

С целью оценки эффективности ректификационной очистки рассчитаны идеальные коэффициенты разделения ($\alpha_{\text{расч}}$) для некоторых примесей: Bi, Ge, Al, Pb, Cu, Fe. Для них экспериментально определен коэффициент разделения ($\alpha_{\text{эксп}}$), представленный в табл. 2.

Для идентификации образцов использовали методы КР- и ИК-спектроскопии. Известно, что тетраэдрические (T_d) пятиатомные молекулы SnCl₄ характеризуются четырьмя типами нормальных колебаний: два валентных (A_1 и F_2) и два деформационных (Е и F_2). Все четыре колебания активны в спектре комбинационного рассеяния (**КР**). По данным [24–26], этим колебаниям соответствуют следующие частоты:

$$v_1(A_1) = 368 \text{ cm}^{-1}, v_2(E) = 106 \text{ cm}^{-1}, v_3(F_2) = 403 \text{ cm}^{-1}, v_4(F_2) = 131 \text{ cm}^{-1}.$$

Для образцов SnCl₄ непосредственно после синтеза (рис. 3, спектр 2) и после очистки ректификацией (рис. 3, спектр 1) зарегистрированы спектры КР в диапазоне 50–600 см⁻¹. КР-спектры обоих образцов идентичны. Отсутствие люминесценции в спектрах, зарегистрированных на установке для КР, позволяет их использовать для идентификации полученного соединения. Полосы при 368 и 402 см⁻¹ характеризуют симметричное $v_s(Sn-Cl)$ и асимметричное $v_{as}(Sn-Cl)$ валентные колебания Sn-Cl соответственно. Полои 130 см⁻¹ сы при 107 относятся K деформационным колебаниям δ(Cl-Sn-Cl). Полученные результаты согласуются с литературными данными. Отсутствие дополнительных полос в спектрах обоих образцов (очищенный и до

очистки) свидетельствует о том, что примеси в неочищенном образце неактивны в этой области спектра либо их содержание лежит за пределами чувствительности метода.

ИК-спектры регистрировали в диапазоне 250-800 см⁻¹ методом нарушенного полного внутреннего отражения. Для группы симметрии *T*_d в ИКспектрах активны только два колебания F₂: одно валентное и одно деформационное (v_3 и v_4). В исследуемый диапазон V_4 не попадает, а V_3 описывается в спектре очищенного $SnCl_4$ (рис. 4, спектр *1*) интенсивной полосой v_{as}(Sn-Cl) при 392 см⁻¹. Появление на этой полосе плеча при 366 см⁻¹, характеризующего колебание v_s(Sn-Cl), можно объяснить нарушением симметрии молекулы. В спектре неочищенного образца полоса (рис. 4, спектр 2) $v_{as}(Sn-Cl)$ несколько смещена в низкочастотную область до 386 см⁻¹ и уширена по сравнению с этой полосой в спектре чистого вещества. Уширение полосы не позволяет отдельно вычленить полосу $v_{s}(Sn-Cl)$.

ЗАКЛЮЧЕНИЕ

Разработан способ синтеза тетрахлорида олова из элементов. Показано, что с помощью ректификационной очистки можно получить SnCl₄ особой чистоты с содержанием примесей менее 10⁻⁴ мас. %. Установлено, что экспериментальные коэффициенты распределения примесей хорошо согласуются с рассчитанными. Методом масс-спектрометрического анализа обнаружено, что содержание примесей свинца после ректификационной очистки SnCl₄ уменьшается от 120 до 2 м. д., а также значительно уменьшаются примеси остальных металлов. Образцы тетрахлорида олова идентифицированы методами КР- и ИКспектроскопии. Полученные результаты КРспектроскопии образцов SnCl₄ до и после ректификационной очистки хорошо согласуются с литературными данными ($v_1(A_1) = 368 \text{ см}^{-1}$, $v_2(E) = 106 \text{ cm}^{-1}, v_3(F_2) = 403 \text{ cm}^{-1}, v_4(F_2) = 131 \text{ cm}^{-1}).$ В ИК-спектрах очищенного тетрахлорида олова в исследованном диапазоне интенсивная полоса при 392 см⁻¹ соответствует валентному колебанию $v_{as}(Sn-Cl)$ в молекуле $SnCl_4$.

Рис. 3. КР-спектры SnCl₄: 1 – после ректификационной очистки, 2 – непосредственно после синтеза.

Рис. 4. ИК-спектры SnCl₄: 1 – после ректификационной очистки, 2 – непосредственно после синтеза.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено при финансовой поддержке гранта РФФИ № 19-33-90217 в части синтеза и очистки, а также в рамках государственного задания при финансовой поддержке Минобрнауки ИОНХ РАН в части изучения свойств с использованием оборудования ЦКП ИОНХ РАН и ИОФ РАН, а также частично при поддержке Минобрнауки России (№ государственного учета НИОКТР АААА-А19-119101590111-2). КР- и ИК-спектры получены на оборудовании ЦКП ФМИ ИФХЭ РАН.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 7 2021

СПИСОК ЛИТЕРАТУРЫ

- Win Y.F., Teoh S.G., Yousif E. // Asian J. Chem. 2013. V. 25. № 16. https://doi.org/10.14233/ajchem.2013.15086
- Antsyshkina A.S., Sadikov G.G., Sevastyanov V.G. et al. // Russ. J. Inorg. Chem. 2011. V. 56. № 4. P. 530. https://doi.org/10.1134/S0036023611040036
- Radulov P.S., Belyakova Yu.Yu., Demina A.A. et al. // Russ. Chem. Bull. 2019. V. 68. № 6. P. 1289. https://doi.org/10.1007/s11172-019-2555-7
- Попов В.С., Севастьянов В.Г., Симоненко Е.П. и др. // Успехи в химии и химической технологии. 2010. Т. 24. № 7. С. 103.
- Chizhova N.V., Mal'tseva O.V., Mamardashvili N.Z., Zav'yalov A.V. // Russ. J. Inorg. Chem. 2017. V. 62. № 5. P. 683. https://doi.org/10.1134/S0036023617050072
- 6. *Yousif E., Mehdi B.I., Yusopet R. et al.* // J. Taibah University Sci. 2014. V. 8. № 3. P. 276. https://doi.org/10.1016/j.jtusci.2014.01.005
- 7. Osada S., Nishikawa J., Nakanish T. et al. // Toxicol. Lett. 2005. V. 155. № 2. P. 329. https://doi.org/10.1016/j.toxlet.2004.10.009
- Jeyaseelan E.C., Tharmila S., Niranjan K. // Spectrochim. Acta, A. 2005. V. 61. № 1-2. P. 77. https://doi.org/10.1016/j.saa.2004.03.018
- Wasi N., Singh H.B., Gajanana A., Raichowdhary A.N. // Inorg. Chim. Acta. 1987. V. 135. № 2. P. 133. https://doi.org/10.1016/S0020-1693(00)83277-6
- Saxena A.K., Koacher J.K., Tandon J.P., Das S.R. // J. Toxicol. Environ. Health. 1982. V. 10. № 4–5. P. 709. https://doi.org/10.1080/15287398209530289
- Yousif E. // J. King Saud University-Sci. 2012. V. 24. № 2. P. 167.
 - https://doi.org/10.1016/j.jksus.2010.12.002
- 12. *Yousif E., Farina Y., Graisa A. et al.* // Iran. J. Chem. Chem. Engineer. 2011. V. 30. № 2. P. 67. https://doi.org/10.30492/IJCCE.2011.6287

- Ferreira A.B., Lemos Cardoso A., da Silva M.J. // Int. Schol. Res Not. 2012. V. 2012. https://doi.org/10.5402/2012/142857
- Jung K.D., Joo O.S., Han S.H. et al. // Catal. Lett. 1995.
 V. 35. № 3. P. 303. https://doi.org/10.1007/BF00807187
- Pilgrim W., Murphy P.V. // J. Org. Chem. 2010. V. 75. № 20. P. 6747. https://doi.org/10.1021/jo101090f
- Li X. // MRS Online Proceedings Library Archive. 2009. V. 1165. https://doi.org/10.1557/PROC-1165-M06-04
- 17. *Yavari M., Ebadi F., Meloni S. et al.* // J. Mater. Chem. 2019. V. 7. № 41. P. 23838. https://doi.org/10.1039/C9TA01744E
- Dhere R.G., Moutinho H.R., Asher S. et al. // AIP Conference Proceedings. – American Institute of Physics, 1999. V. 462. № 1. P. 242. https://doi.org/10.1063/1.57901
- 19. Степин Б.Д., Горштейн И.Г., Блюм Г.З. и др. Методы получения особо чистых неорганических веществ. Л.: Химия, 1960. 127 с.
- 20. Девятых Г.Г., Чурбанов М.Ф. Методы получения веществ особой чистоты. М.: Знание, 1976. 63 с.
- 21. *Нисельсон Л.А.* Межфазовые коэффициенты распределения. М.: Наука, 1992.
- 22. CRC handbook of chemistry and physics / Ed. Lide D.R. CRC press, 2004.
- 23. Brekhovskikh M.N., Mastryukov M.V., Kornev P.V. et al. // Inorg. Mater. 2019. V. 55. № 9. P. 974. https://doi.org/10.1134/S0002337X1909001X
- 24. Welsh H.L., Crawford M.F., Scott G.D. // J. Chem. Phys. 1948. V. 16. № 2. P. 97. https://doi.org/10.1063/1.1746824
- 25. Long D.A., Spencer T.V., Waters D.N. et al // Proc. R. Soc. London, Ser. A. 1957. V. 240. № 1223. P. 499. https://doi.org/10.1098/rspa.1957.0103
- Накамото К. ИК-спектры и спектры КР неорганических и координационных соединений / Пер. с англ. Христенко Л.В., под ред. Пентина Ю.А. М.: Мир, 1991.