СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 536.21

СИНТЕЗ И ТЕПЛОФИЗИЧЕСКИЕ СВОЙСТВА КЕРАМИКИ НА ОСНОВЕ ГАЛЛАТА МАГНИЯ

© 2021 г. О. Н. Кондратьева^{*a*,} *, Г. Е. Никифорова^{*a*}, М. Н. Смирнова^{*a*}, К. И. Печковская^{*a*}

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия

*e-mail: olga.kondratieva@igic.ras.ru Поступила в редакцию 25.01.2021 г. После доработки 01.03.2021 г. Принята к публикации 03.03.2021 г.

Из нанокристаллического порошка галлата магния, синтезированного методом сжигания геля, получена керамика и проведено экспериментальное исследование ее температуропроводности в области высоких температур. Фазовый и химический состав керамического порошка $MgGa_2O_4$ изучен методами рентгеновской дифракции, рентгенофлуоресцентной спектроскопии и элементного CHNS-анализа. Микроструктурные параметры полученных керамических материалов определены с помощью сканирующей электронной микроскопии. Установлено, что средний размер частиц порошка $MgGa_2O_4$ равен 80 нм. Керамика, полученная в результате спекания при 1673 K на воздухе спрессованного порошка $MgGa_2O_4$, имеет плотность 4670 кг/м³ (88% от теоретической плотности). Средний размер кристаллических зерен керамики после спекания не превышает 1 мкм. С использованием метода лазерной вспышки впервые исследована температуропроводность керамики на основе $MgGa_2O_4$ в интервале 300–1173 K. Установлено, что в изученном температурном интервале ее теплопроводность уменьшается от 2.25 до 0.96 Вт/(м K).

Ключевые слова: шпинель, метод сжигания геля, нанокристаллические порошки, теплопроводность **DOI:** 10.31857/S0044457X21070060

введение

Обширное семейство сложных оксидов с общей формулой AB_2O_4 (A = Mg, Zn, Mn, Fe, Co, Ni; B = Al, Ga, Cr, Fe), обладающих кубической структурой минерала шпинели, в течение многих десятилетий привлекает внимание исследователей благодаря сочетанию уникальных физикохимических и электрофизических свойств, открывающих широкие перспективы их применения в различных областях науки и техники. Одним из интересных, но малоизученных представителей семейства кубических шпинелей является галлат магния. MgGa₂O₄ имеет высокую температуру плавления ($T_{\text{пл}} = 2496 \pm 75$ K [1]), обладает термической стабильностью [2] и устойчивостью по отношению к радиационному облучению [3] и, подобно родственному ему алюминату магния $MgAl_2O_4$ [4], может рассматриваться в качестве матрицы для захоронения ядерных отходов. Помимо перечисленных особенностей, материалы, созданные на основе MgGa₂O₄ и его твердых растворов, обладают интересными диэлектрическими [5, 6], люминесцентными [7–10], сенсорными [11], каталитическими [12], оптическими и электрическими свойствами [13-16].

Тепловые свойства галлата магния исследованы фрагментарно. К настояшему моменту достаточно подробно изучена лишь теплоемкость MgGa₂O₄ [1, 17, 18]. Результаты экспериментального исследования температуропроводности и термического расширения монокристаллического MgGa₂O₄ в области высоких температур были опубликованы в работах [19, 20]. Данные о теплопроводности в литературе нами не обнаружены. Следует отметить, что в работах [21, 22] была экспериментально показана возможность применения MgAl₂O₄ в качестве защитного, износостойкого покрытия для компонентов промышленных газотурбинных установок. В связи с этим исследование теплопроводности родственного ему MgGa₂O₄ представляет собой актуальную задачу.

Как правило, для получения указанных материалов используют тонкодисперсные порошки оксидов. Одним из универсальных и эффективных методов, позволяющих синтезировать наноразмерные высокочистые порошки оксидов, обладающих сложной кристаллической структурой, является метод сжигания геля. Характерная особенность этого метода синтеза заключается в том, что перемешивание исходных реагентов происходит на молекулярном уровне. Это позволяет получать сложные по химическому составу однофазные тонкодисперсные порошки сложных оксидов. Кроме того, керамические порошки, полученные в неравновесных условиях, отличаются сложной микроструктурой, разнообразной формой частиц и развитой удельной поверхностью, благодаря чему они проявляют повышенную способность к уплотнению при спекании.

Настоящая работа посвящена получению керамических материалов на основе галлата магния $MgGa_2O_4$, синтезированного методом сжигания геля, а также исследованию их теплофизических свойств в области высоких температур.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Порошок MgGa₂O₄ получали методом сжигания геля, используя стехиометрическую смесь нитратов магния и галлия и поливинилового спирта. В качестве исходных реагентов для получения растворов нитратов были использованы металлические магний (ГОСТ 804-93, марка "Mг 90", $\omega(Mg) > 99.90\%$) и галлий (ГОСТ 12797-77, марка "Гл-0", ω(Ga) > 99.99%), а также концентрированная азотная кислота (ГОСТ 11125-84, марка "ос. ч. 18-4", $\omega(HNO_3) = 70\%$). К свежеприготовленной смеси растворов нитратов металлов при постоянном перемешивании добавляли поливиниловый спирт (ГОСТ 10779-78, марка 6/1, высший сорт). Полученную реакционную смесь упаривали на нагревательной плитке при температуре ~373 К в течение 1 ч до состояния очень вязкого геля, который при дальнейшем нагревании самовоспламенялся. Суммарное уравнение реакции можно представить в виде:

$$Mg(NO_{3})_{2(p-p)} + 2Ga(NO_{3})_{3(p-p)} + + 4/n[-CH_{2}-CH(OH)-]_{n(p-p)} = (1)$$
$$= MgGa_{2}O_{4(TB)} + 8CO_{2(r)} + 4N_{2(r)} + 8H_{2}O_{(r)}.$$

После охлаждения полученный порошок-прекурсор тщательно перетирали в агатовой ступке и прокаливали при температуре 1273 К в течение 4 ч в платиновом тигле на воздухе.

Для изготовления керамических таблеток порошок $MgGa_2O_4$ повторно перетирали и затем подвергали холодному одноосному прессованию под давлением ~200 МПа без использования связующего. Спрессованные порошковые заготовки спекали в платиновых тиглях при температуре 1673 К в течение 4 ч на воздухе, а затем медленно охлаждали до комнатной температуры. Плотность полученных керамических образцов рассчитывали путем деления их массы на геометрический объем и выражали в процентах от теоретической (ρ_{XRD}) плотности.

Рентгенофазовый анализ (РФА) керамических образцов проводили на дифрактометре Bruker D8 Advance с использованием Cu K_{α} -излучения ($\lambda = 1.5418$ Å) и Ni-фильтра (геометрия на отражение). Рентгенограммы регистрировали в интервале углов 20 от 10° до 60° с шагом 0.0133°. Обработку результатов РФА и расчет параметров кристаллической решетки проводили с использованием программного пакета Bruker TOPAS. Оценка размеров областей когерентного рассеяния (OKP) была выполнена с использованием уравнения Шеррера:

$$D_{\text{Scher}} = (K\lambda)/(\beta\cos\theta),$$
 (2)

где D_{Scher} — размер кристаллита; K — константа Шеррера (принята равной 0.94); λ — длина волны рентгеновского излучения; β — ширина рефлекса на полувысоте.

Химический состав порошка изучали методом рентгенофлуоресцентной спектроскопии (**РФС**). Энергодисперсионный спектр регистрировали на спектрометре Bruker TORNADO M4. Элементный CHNS-анализ порошка, полученного после прокаливания, выполняли на анализаторе EuroVector EA 300.

Исследование микроструктурных характеристик порошка и поверхности излома керамической таблетки проводили с помощью сканирующей электронной микроскопии (СЭМ). Микрофотографии были получены на сканирующем электронном микроскопе с полевым эмиссионным катодом Carl Zeiss NVision 40 CrossBeam с использованием внутрилинзового детектора вторичных электронов (In-lens SE).

Температуропроводность (α) полученной керамики исследовали методом лазерной вспышки с использованием анализатора температуропроводности Netzsch LFA 457 MicroFlash. Керамические таблетки MgGa₂O₄ диаметром 12.6 мм и толшиной 2.0 мм предварительно покрывали тонким слоем графита. Измерения проводили в интервале температур 299-1174 К в потоке аргона при скорости продувки 50 мл/мин. В каждой температурной точке было выполнено не менее пяти измерений величины температуропроводности. Точность измерений α во всем температурном диапазоне для стандартных образцов меди (ω(Сu) = 99.999%) и алюминия ($\omega(Al) = 99.9\%$)) лежит в пределах ± 3%. Экспериментальные данные были обработаны с использованием программного пакета Netzsch LFA Proteus Software с использованием математической модели Кейпа-Лемана (Cape-Lehman) [23].

Теплопроводность (λ) керамики MgGa₂O₄ рассчитывали по уравнению:

$$\lambda = \rho \alpha c_{\nu}, \qquad (3)$$

где ρ – плотность керамики, кг/м³; α – температуропроводность, м²/с; c_p – удельная теплоем-кость, Дж/(кг К). Необходимые для расчета дан-

Рис. 1. Рентгенограмма (а) и микрофотография (б) порошка MgGa₂O₄, прокаленного при температуре 1273 К в течение 4 ч на воздухе.

ные по теплоемкости MgGa₂O₄ взяты из работы [17].

Поскольку плотность керамического образца MgGa₂O₄, используемого для измерений, не достигала теоретической, величины теплопроводности были скорректированы. С достаточной точностью для коррекции полученных величин можно использовать следующую упрощенную зависимость теплопроводности от плотности:

$$\lambda_{\rm obs} = \lambda_0 (1 - \beta k), \tag{4}$$

где λ_{obs} – теплопроводность пористого материала, Вт/(м K); λ_0 – теплопроводность материала с нулевой пористостью, Вт/(м K); k – общая пористость в долях единицы, $k = (\rho_{XRD} - \rho_{obs})/\rho_{XRD}$; β – коэффициент, значение которого зависит от формы пор, температуры и других факторов (коэффициент β можно принять равным 4/3 [24]).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1а приведена рентгенограмма порошка MgGa₂O₄, полученного после термической обработки порошка-прекурсора при 1273 К в течение 4 ч на воздухе. Из полученных данных видно, что широкие рефлексы, присутствующие на рентгенограмме, относятся только к нанокристаллической фазе MgGa₂O₄. Средний размер ОКР, рассчитанный по уравнению (2) с использованием нескольких наиболее интенсивных рефлексов, составляет ~80 нм. Параметры элементарной ячейки синтезированного порошка $MgGa_2O_4$ (a == 0.8289 нм, *V* = 0.5694 нм³, пр. гр. *Fd*3*m* (№ 227), Z = 8) хорошо совпадают с параметрами, приведенными в работах [2, 15, 25, 26]. Из результатов СЭМ, приведенных на рис. 1б, видно, что порошок MgGa₂O₄ состоит из достаточно однородных по размерам частиц неправильной округлой формы, а их средний размер варьируется в пределах 50–100 нм.

Согласно результатам РФС, мольное соотношение Mg: Ga в образце MgGa₂O₄, найденное путем усреднения десяти отдельных измерений, равно 0.997/2.003, что в целом соответствует заданному составу. По данным элементного СHNS-анализа, содержание углерода в порошке после прокаливания не превышало 0.46 мас. %. В совокупности данные РФА, РФС и элементного CHNS-анализа позволяют сделать вывод о том, что относительная чистота синтезированного порошка MgGa₂O₄ \ge 99.0%. Полученные высокочистые однофазные порошки MgGa₂O₄ в дальнейшем были использованы для приготовления керамических образцов.

На рис. 2а приведена рентгенограмма, полученная с поверхности скола керамики $MgGa_2O_4$. Анализ полученных данных показал, что фазовый состав спеченного керамического образца соответствует шпинели $MgGa_2O_4$. Теоретическая плотность (ρ_{XRD}) керамики, рассчитанная по данным РФА, составила 5310 кг/м³. Найденная по геометрическим размерам и массе плотность (ρ_{obs}) керамического образца, равна 4670 кг/м³. Установлено, что ρ_{obs} составляет ~88% от ρ_{XRD} . Таким образом, предложенный в данной работе способ позволяет получить однофазную керами-ку $MgGa_2O_4$, обладающую плотностью, достаточно близкой к теоретической.

Наглядное представление о форме и распределении кристаллических зерен, а также о распределении дефектов микроструктуры полученной керамики $MgGa_2O_4$ могут дать микрофотографии поверхности ее скола. Как видно из результатов СЭМ (рис. 2б), на поверхности скола керамики отсутствуют макроскопические трещины и поры,

Рис. 2. Рентгенограмма (а) и микрофотография (б), полученные с поверхности скола керамики MgGa₂O₄, спеченной при температуре 1673 К в течение 4 ч на воздухе.

однако наблюдается небольшое количество изолированных, хаотично расположенных микропор (показаны стрелками), образованных границами керамических зерен. Из рис. 26 видно, что керамика MgGa₂O₄ обладает достаточно плотной, но неоднородной мелкокристаллической структурой, сформированной хорошо ограненными, примыкающими друг к другу зернами, имеющими разброс по размерам от 0.1 до 1 мкм. Эти данные в целом коррелируют с результатами исследования плотности керамических таблеток, полученными на основании их геометрических размеров и массы.

Таблица 1. Экспериментальные данные по температуропроводности MgGa₂O₄, полученные методом лазерной вспышки

$T_{av} \pm 2SD$,	Температуропроводность $\alpha \times 10^6, {\rm m}^2/c$					
K	№ 1	Nº 2	Nº 3	Nº 4	№ 5	$\alpha_{av} \pm 2SD$
299.0 ± 0.1	0.853	0.851	0.851	0.848	0.848	0.850 ± 0.004
373.4 ± 0.7	0.717	0.706	0.701	0.699	0.699	0.704 ± 0.015
474.0 ± 1.7	0.587	0.577	0.572	0.572	0.572	0.576 ± 0.013
573.7 ± 0.6	0.502	0.496	0.493	0.493	0.491	0.495 ± 0.009
673.8 ± 0.9	0.437	0.435	0.435	0.433	0.434	0.435 ± 0.003
773.9 ± 0.7	0.394	0.390	0.387	0.384	0.384	0.388 ± 0.009
$873.7\pm\!\!0.4$	0.346	0.353	0.353	0.352	0.351	0.351 ± 0.006
973.6 ± 0.3	0.331	0.324	0.324	0.326	0.324	0.326 ± 0.006
1073.6 ± 0.2	0.303	0.296	0.295	0.299	0.292	0.297 ± 0.008
1173.6 ± 0.3	0.275	0.275	0.267	0.270	0.263	0.270 ± 0.010

Примечание. T_{av} – среднее значение температуры; α_{av} – среднее значение температуропроводности; 2SD – удвоенная величина стандартного отклонения.

Экспериментальные данные и усредненная температурная зависимость температуропроводности MgGa₂O₄ в интервале 299-1174 К приведены в табл. 1 и на рис. За. Из результатов, представленных в табл. 1, видно, что в каждой температурной точке наблюдается хорошая воспроизводимость величин температуропроводности. Сглаженные значения для температурной зависимости усредненных экспериментальных точек $\alpha_{av}(T)$ приведены в табл. 2. Следует отметить, что данные по температуропроводности MgGa₂O₄ в литературе практически отсутствуют. Ранее исследование этой теплофизической характеристики было проведено для монокристалла MgGa₂O₄ [19]. Для сравнения результаты последней из упомянутых работ приведены на рис. За. Очевидно, что температуропроводность монокристаллического образца MgGa₂O₄ значительно выше, чем керамического.

Температурная зависимость теплопроводности (λ_{obs}) керамики MgGa₂O₄ с плотностью 88% от р_{хвр} была рассчитана по уравнению (3) с использованием сглаженных величин температуропроводности, приведенных в табл. 2, и величин теплоемкости из [17]. С использованием уравнения (4) теплопроводность полученного керамического материала (λ_{obs}) была скорректирована на плотность, равную теоретической (рис. 36, табл. 2). Из полученных данных видно, что в интервале от 300 до 1173 К скорректированная теплопроводность керамики MgGa₂O₄ постепенно убывает от 2.69 до 1.15 Вт/(м К). Эти значения близки к величине теплопроводности алюмината магния MgAl₂O₄ (2.5 Вт/(м К) [22]), который используется в качестве верхнего защитного слоя для термобарьерного покрытия на основе стабилизированного оксидом иттрия диоксида циркония (7YSZ). Отметим также, что скорректированные величины

Рис. 3. Температурные зависимости температуропроводности (а) и теплопроводности (б) для керамики $MgGa_2O_4$. Планки погрешностей, приведенные на рис. За, соответствуют относительной погрешности измерений температуропроводности. На вставке к рис. За приведены значения температуропроводности монокристаллического $MgGa_2O_4$ [19]. Для сравнения на рис. Зб представлены значения теплопроводности 7YSZ [27].

теплопроводности керамики $MgGa_2O_4$ достаточно близки при комнатной температуре к таковым для 7YSZ, однако по мере увеличения температуры разница становится существенной [27].

ЗАКЛЮЧЕНИЕ

Наноразмерный порошок кубической шпинели $MgGa_2O_4$ синтезирован методом сжигания геля с использованием поливинилового спирта с последующим отжигом при температуре 1273 К. Методами РФА, РФС и элементного CHNSанализа установлено, что полученный порошок

Таблица 2. Сглаженные значения температуропроводности и теплопроводности $MgGa_2O_4$

ΤK	$\alpha \times 106 x^{2}/c$	λ, Вт/(м К)			
1, К	α ~ 10°, м /c	$\rho_{obs} = 88\%$	$\rho = 100\%$		
300	0.848	2.25	2.69		
400	0.664	2.02	2.40		
500	0.552	1.79	2.13		
600	0.476	1.60	1.90		
700	0.422	1.44	1.72		
800	0.379	1.31	1.56		
900	0.345	1.20	1.43		
1000	0.315	1.10	1.31		
1100	0.289	1.02	1.21		
1173	0.272	0.96	1.15		

 $MgGa_2O_4$ соответствует заданному химическому составу, однофазный и почти не содержит углеродсодержащих примесей. Структурные и МИКроструктурные исследования позволили установить, что порошок шпинели MgGa₂O₄ состоит из округлых наноразмерных частиц неправильной формы. С использованием холодного одноосного компактирования наноразмерных порошков Мд- Ga_2O_4 с последующим спеканием на воздухе при 1673 К в течение 4 ч получена керамика MgGa₂O₄ (88% от теоретической плотности). Впервые проведено экспериментальное исследование температуропроводности керамики MgGa₂O₄ метолом лазерной вспышки. Показано, что ее теплопроводность при комнатной температуре равна 2.25 Вт/(м К), а при увеличении температуры до 1173 К уменьшается до 0.96 Вт/(м К). Полученные результаты позволяют предположить, что керамические материалы, приготовленные на основе наноразмерных порошков MgGa₂O₄, могут быть рассмотрены как потенциальные эффективные защитные керамические покрытия.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Российского научного фонда (грант РНФ № 20-73-00241) с использованием оборудования ЦКП ИОНХ РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Wilkerson K.R., Smith J.D., Sander T.P. et al. // J. Am. Ceram. Soc. 2013. V. 96. P. 859. https://doi.org/10.1111/jace.12125
- 2. *Galazka Z.* Transparent Semiconducting Oxides: Bulk Crystal Growth and Fundamental Properties. N.Y.: Jenny Stanford Publishing Pte. Ltd., 2020.
- Shen T.D., Feng S., Tang M. et al. // Appl. Phys. Lett. 2007. V. 90. P. 263115. https://doi.org/10.1063/1.2753098
- Gentils A., Enescu S.E., Thomé L. et al. // J. Appl. Phys. 2005. V. 97. P. 113509. https://doi.org/10.1063/1.1924879
- Wu S., Xue J., Wang R. et al. // J. Alloys Compd. 2014. V. 585. P. 542. https://doi.org/10.1016/j.jallcom.2013.09.176
- Wu S., Xue J., Fan Y. // J. Am. Ceram. Soc. 2014. V. 97. P. 3555.
- https://doi.org/10.1111/jace.13157
- Luchechko A., Kravets O. // J. Lumin. 2017. V. 192. P. 11. https://doi.org/10.1016/i.ilumin.2017.05.046
- Jiang B., Chi F., Wei X. et al. // J. Appl. Phys. 2018. V. 124. P. 063101. https://doi.org/10.1063/1.5024771
- Luchechko A., Shpotyuk Y., Kravets O. et al. // J. Adv. Ceram. 2020. V. 9. P. 432. https://doi.org/10.1007/s40145-020-0386-5
- Zhao Y., Du J., Wu X. et al. // J. Lumin. 2020. V. 220. P. 117035. https://doi.org/10.1016/j.jlumin.2020.117035
- He L., Gao C., Yang L. et al. // Sens. Actuators, B. 2019. V. 306. P. 127453.
 - https://doi.org/10.1016/j.snb.2019.127453
- Feng P., Zhao J., Zhang J. et al. // J. Alloys Compd. 2017. V. 695. P. 1884. https://doi.org/10.1016/j.jallcom.2016.10.324
- Duan X., Liu J., Wang X. et al. // Opt. Mater. 2014.
 V. 37. P. 854. https://doi.org/10.1016/j.optmat.2014.09.029

- Galazka Z., Klimm D., Irmscher K. et al. // Phys. Status Solidi A. 2015. V. 212. P. 1455. https://doi.org/10.1002/pssa.201431835
- 15. *Wang L., Cui X., Rensberg J. et al.* // Nucl. Instrum. Methods Phys. Res., Sect. B. 2017. V. 409. P. 153. https://doi.org/10.1016/j.nimb.2017.05.023
- Thielert B., Janowitz C., Galazka Z. et al. // Phys. Rev. B. 2018. V. 97. P. 235309. https://doi.org/10.1103/PhysRevB.97.235309
- Kondrat'eva O.N., Tyurin A.V., Nikiforova G.E. et al. // Thermochim. Acta. 2016. V. 641. P. 49. https://doi.org/10.1016/j.tca.2016.08.015
- Jacob K.T., Sivakumar S. // J. Alloys Compd. 2018. V. 775. P. 1357. https://doi.org/10.1016/j.jallcom.2018.10.147
- Schwarz L., Galazka Z., Gesing T.M. et al. // Cryst. Res. Technol. 2015. V. 50. P. 961. https://doi.org/10.1002/crat.201500275
- Hirschle C., Schreuer J., Galazka Z. // J. Appl. Phys. 2018. V. 124. P. 065111. https://doi.org/10.1063/1.5037786
- Schlegel N., Ebert S., Mauer G. et al. // J. Therm. Spray Technol. 2015. V. 24. P. 144. https://doi.org/10.1007/s11666-014-0138-6
- Ebert S., Mücke R., Mack D. et al. // J. Eur. Ceram. Soc. 2013. V. 33. P. 3335. https://doi.org/10.1016/j.jeurceramsoc.2013.06.021
- Cape J.A., Lehman G.W. // J. Appl. Phys. 1963. V. 34. P. 1909. https://doi.org/10.1063/1.1729711
- Schlichting K.W., Padture N.P., Klemens P.G. // J. Mater. Sci. 2001. V. 36. P. 3003. https://doi.org/10.1023/A:1017970924312
- Weidenborner J.E., Stemple N.R., Okaya Y. // Acta Crystallogr. 1966. V. 20. P. 761. https://doi.org/10.1107/S0365110X66001816
- 26. Ito T., Yoshiasa A., Yamanaka T. // Z. Anorg. Allg. Chem. 2000. V. 626. P. 42. https://doi.org/10.1002/(SICI)1521-3749(200001)626: 1<42::AID-ZAAC42>3.0.CO;2-O
- Wu J., Wei X., Padture N.P. et al. // J. Am. Ceram. Soc. 2002. V. 85. P. 3031. https://doi.org/10.1111/j.1151-2916.2002.tb00574.x