ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ, 2021, том 66, № 7, с. 907–910

____ ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ <u>-</u> НЕОРГАНИЧЕСКИХ СИСТЕМ -

УДК 544.31

ТЕПЛОЕМКОСТЬ И ТЕРМИЧЕСКОЕ РАСШИРЕНИЕ ГАФНАТА ЛАНТАНА

© 2021 г. А. В. Гуськов^{а,} *, П. Г. Гагарин^а, В. Н. Гуськов^а, А. В. Хорошилов^а, К. С. Гавричев^а

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия *e-mail: a.gus@igic.ras.ru

Поступила в редакцию 09.02.2021 г. После доработки 15.03.2021 г. Принята к публикации 16.03.2021 г.

Молярная теплоемкость гафната лантана структурного типа пирохлора измерена методом дифференциальной сканирующей калориметрии в интервале температур 310–1380 К. Установлена температурная зависимость параметра кристаллической решетки *а* в области 303–1273 К. Показано отсутствие структурных превращений и проведена оценка коэффициентов термического расширения в этом температурном интервале.

Ключевые слова: гафнат лантана, пирохлор, теплоемкость, термическое расширение **DOI:** 10.31857/S0044457X21070059

введение

Проблема термической и коррозионной защиты газоэнергетических установок и авиационных двигателей остается актуальной на протяжении последних десятилетий [1-5]. Одним из претендентов на роль защитного материала является гафнат лантана структурного типа пирохлора [6]. Среди положительных качеств следует отметить высокую температуру конгруэнтного плавления, низкие теплопроводность и давление паров, относительно широкую область гомогенности [7-10]. Высокотемпературная химическая стойкость гафната лантана к газообразным и тверлым вешествам. содержащимся в воздухе, особенно к оксидам группы CMAS (calcium-magnesium-alumina-silicate) [11], требует тщательного экспериментального исследования, объем которого в значительной мере может быть сокращен предварительным термодинамическим моделированием [12]. Основой для проведения модельных расчетов служит температурная зависимость свободной энергии Гиббса, которую рассчитывают с учетом энтальпии образования гафната лантана, и температурная зависимость теплоемкости в широком температурном диапазоне. Энтальпия образования La₂Hf₂O₇ структурного типа пирохлора (*Fd3m*) определена в работах [13, 14]. Низкотемпературная теплоемкость (0-346 К) и рассчитанные термодинамические функции представлены нами ранее [15] по результатам адиабатической калориметрии на синтезированном и охарактеризованном образце $La_2Hf_2O_7$ (пирохлор). Молярная теплоемкость при более высоких температурах приведена в работах [6, 10, 16]. Однако эти данные не согласуются между собой, поэтому

целью настоящей работы было измерение температурных зависимостей теплоемкости в интервале 310—1380 К. Второй задачей исследований являлось определение термического расширения путем изучения температурной зависимости параметра *а* кристаллической решетки гафната лантана структурного типа пирохлора в области 303—1273 К.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Особенности синтеза методом обратного осаждения и последующего ступенчатого отжига, идентификации образца гафната лантана методами рентгеновской дифрактометрии, химического и рентгенофлюоресцентного анализа и растровой электронной микроскопии, а также дифференциального термического анализа подробно описаны в работе [15]. Молекулярная масса образца 746.78933 г/моль определена из атомной массы элементов [17]. Молярную теплоемкость гафната лантана измеряли методом дифференциальной сканирующей калориметрии (ДСК) на установке STA 449 F1 Jupiter Netzsch в атмосфере газообразного аргона высокой чистоты (99.995%). Температурную зависимость параметра кристаллической решетки изучали методом высокотемпературной дифракции с использованием приставки HA-1001 и дифрактометра Shimadzu X-ray (Cu K_{α} излучение, $\lambda = 1.5418$ Å) в интервале температур 303-1273 К с шагом 100 К и предварительной выдержкой 20 мин при каждой температуре измерений [18].

=

Рис. 1. Температурная зависимость теплоемкости гафната лантана (пирохлор): 1 – настоящая работа, 2 – расчет по Нейману–Коппу из теплоемкости La₂O₃ [22] и HfO₂ [23], 3 – данные [16], 4 – [10].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Окончательный отжиг образца гафната лантана проводили при температуре 1773 К в течение 4 ч. Эта процедура необходима для полного взаимодействия исходных компонентов и формирования кристаллической структуры пирохлора, не являющейся наноразмерной [14, 19]. По данным элементного анализа, полученный образец имеет состав La_{1.992}Hf_{2.008}O_{7.004}. Как было показано нами в работе [20], такое отклонение от стехиометрии не может внести существенных искажений в расчет молярной теплоемкости для рационального состава из экспериментальных данных.

Измерения молярной теплоемкости методом дифференциальной сканирующей калориметрии были выполнены в интервале температур 310— 1380 К и приведены на рис. 1 (кривая *I*) с интервалом неопределенности метода ДСК (~2.5%). Полученные результаты хорошо описываются уравнением Майера–Келли [21]:

$$C_p(\mbox{Дж/(мольK)}) = 252.70 + 0.03253159T -$$

- 3682068.4/ T^2 , $R^2 = 0.9999$. (1)

На рис. 1 показана оценка теплоемкости $La_2Hf_2O_7$ по правилу Неймана—Коппа из теплоемкостей индивидуальных оксидов La_2O_3 [22] и HfO_2 [23] (кривая 2):

$$C_p(\mbox{Дж/(мольK)}) =$$

= 263.15 + 0.0329683T - 3878855.8/T², (2)

приведен результат расчета из экспериментальных измерений приращения энтальпии в интервале 988–1773 К [16] (кривая *3*):

$$C_p(\mathcal{A} \times /(\text{моль K})) =$$

$$= 237.08 + 0.054532T - 2135800/T^2,$$
(3)

а также результаты ДСК-исследований теплоем-кости (кривая 4) из работы [10]:

$$C_p(Дж/(моль K)) = 111.94 + 0.57T - -7.60 \times 10^{-4}T^2 + 3.38 \times 10^{-7}T^3.$$
 (4)

Температурную зависимость теплоемкости в работе [6] также измеряли методом дифференциальной сканирующей калориметрии, однако приведенное в этой работе аналитическое выражение содержит явные опечатки, не соответствует графическому изображению и не поддается сравнению с другими данными.

Как видно из рис. 1, кривая расчета по Нейману–Коппу (кривая 2) располагается практически параллельно и выше доверительного интервала для экспериментальной теплоемкости, начиная со значения 229.3 Дж/(моль K) при 298 K, которое отличается от экспериментального значения C_p (Дж/(моль K), 298.15 K) = 221.8 Дж/(моль K), найденного нами методом адиабатической калориметрии в работе [15]. Рассчитанное по Нейману–Коппу значение теплоемкости использовано в работе [16] при расчете теплоемкости из приращения энтальпии $H_T^{\circ} - H_{298.15}^{\circ}$ (уравнение (3)). Как было отмечено нами в [24], дифференцирование прирашения энтальпии не всегла дает удо-

Как было отмечено нами в [24], дифференцирование приращения энтальпии не всегда дает удовлетворительный результат. Необходимо отметить, что, хотя кривая *3* (уравнение (3)) до 1000 К находится в пределах доверительного интервала наших данных, она является более крутой, что при экстраполяции в область высоких температур может внести существенные искажения в расчеты.

Термическое расширение гафната лантана со структурой пирохлора изучали методом высокотемпературной рентгеновской дифракции. Температурная зависимость параметра *а* приведена на рис. 2 и имеет близкий к линейному вид, но более точно может быть описана квадратичной зависимостью:

$$a(\text{\AA}) = 10.7469 + 7.9785 \times 10^{-5}T + + 1.4099 \times 10^{-8}T^{2}, R^{2} = 0.9986.$$
(5)

На основании этой зависимости можно оценить коэффициенты термического расширения: текущий $\alpha_T = (da/dT)/a_T$, относительный $\alpha_{298} = (da/dT)/a_{298}$ и линейный относительный *TE*, % = $100 \times (a_T - a_{298})/a_{298}$.

Рассчитанные коэффициенты и параметр кристаллической решетки при температурах 303-1273 К с интервалом в 100 К приведены в табл. 1. Термическое расширение носит положительный характер: (da/dT) > 0, а структурный тип *Fd3m* сохраняется во всем температурном интервале.

Рис. 2. Температурная зависимость параметра кристаллической решетки (пирохлор): $1 - La_2Hf_2O_7$, $2 - Nd_2Hf_2O_7$ [24], $3 - Gd_2Hf_2O_7$ [25], 4 - данные [26].

Как видно из рис. 2, температурные зависимости параметров решетки гафната лантана и полученные ранее кривые для гафната неодима (кривая 2) [24] и гадолиния (кривая 3) [25] практически параллельны, следовательно, коэффициенты термического расширения, рассчитанные с помощью производной (da/dT), имеют близкие зависимости от температуры. Здесь же показана зависимость a(T) (кривая 4), взятая из работы [26] при условии, что аргументом в приведенном в статье уравнении является (T - 273 K), но не T. При такой замене температурная зависимость приобретает смысл и фактически совпадает с полученной нами.

Таблица 1. Температурная зависимость параметра *а* кристаллической решетки La₂Hf₂O₇ и коэффициентов термического расширения: текущего (α_T) относительного (α_{298}) и линейного относительного (*TE*), *P* = 101.3 кПа

<i>Т</i> , К	a, Å	$\alpha T \times 10^{-6},$ \mathbf{K}^{-1}	$\alpha_{298} \times 10^{-6},$ K^{-1}	TE, %
303	10.774	8.20	8.20	0.02
473	10.786	8.63	8.65	0.13
573	10.796	8.89	8.91	0.22
673	10.806	9.14	9.17	0.32
773	10.818	9.39	9.43	0.43
873	10.828	9.64	9.69	0.52
973	10.838	9.89	9.95	0.61
1073	10.850	10.14	10.22	0.72
1173	10.860	10.39	10.48	0.82
1273	10.870	10.64	10.74	0.91

ЗАКЛЮЧЕНИЕ

Синтезирован и идентифицирован поликристаллический образец La₂Hf₂O₇ структурного типа пирохлора и с помошью лифференциальной сканирующей калориметрии измерена его теплоемкость в интервале температур 310-1380 К, которая согласуется с полученными ранее методом адиабатической калориметрии результатами. Температурная зависимость молярной теплоемкости представлена в виде уравнения Майера-Келли. При температурах 303-1273 К методом высокотемпературной дифрактометрии рассчитано изменение параметра кристаллической решетки гафната лантана. показан положительный характер термического расширения и отсутствие структурных превращений, проведена оценка коэффициентов термического расширения. Результаты исследований могут быть использованы в термодинамических расчетах фазовых равновесий с участием гафната лантана, определении его химической стойкости в агрессивных средах, а также в разработках технологий синтеза и нанесения зашитных покрытий.

БЛАГОДАРНОСТЬ

Авторы благодарят к. х. н. А.А. Ашмарина за помощь в проведении высокотемпературных дифракционных исследований.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при поддержке Российского научного фонда (грант № 18-13-00025) с использованием оборудования ЦКП ИОНХ РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Subramanian M.A., Aravamudan G., Subba Rao G.V. // Prog. Solid State Chem. 1983. V. 15. P. 55. https://doi.org/10.1016/0079-6786(83)90001-8
- Vaβen R., Jarligo M.O., Steinke T. et al. // Surf. Coat. Technol. 2010. V. 205. P. 938. https://doi.org/10.1016/j.surfcoat.2010.08.151
- Padture N.P., Gell M., Jordan E.H. // Science. 2002. V. 296. P. 280. https://doi.org/10.1126/science.1068609
- Tejero-Martin D., Bennett C., Hussain T. // J. Eur. Ceram. Soc. 2021. V. 41. P. 1747. https://doi.org/10.1016/j.jeurceramsoc.2020.10.057
- Chen H.-F., Zhang C., Liu Y.-C. et al. // Rare Metals. 2019. https://doi.org/10.1007/s12598-019-01307-1

- Liang P, Dong S., Zeng J. et al. // Ceram. Int. 2019. V. 45. P. 22432. https://doi.org/10.1016/j.ceramint.2019.07.235
- 7. Арсеньев П.А., Глушкова В.Б., Евдокимов А.А. и др. Соединения редкоземельных элементов. Цирконаты, гафнаты, ниобаты, танталаты, антимонаты. М.: Наука, 1985. 261 с.
- Andrievskaya E.R. // J. Eur. Ceram. Soc. 2008. V. 28. P. 2363. https://doi.org/10.1016/jeurceramsoc.2008.01.009
- 9. Ushakov S.V., Saradhi P.M., Navrotsky A. et al. // Meet. Abstr. 2012. MA2012-02. 2329.
- https://doi.org/10.1149/MA2012-02/24/2329
 10. Vorozhtcov V.A., Stolyarova V.L., Chislov M. et al. // J. Mater. Res. 2019. P. 1.
- https://doi.org/10.1557/jmr.2019.206
 11. Costa G., Harder B.J., Wiesner V.L. et al. // J. Am. Ceram. Soc. 2019. V. 102. P. 2948.
- https://doi.org/10.1111/jace.16113 12. Summers W.D., Poerschke D.L., Begley M.R. et al. //
- Summers W.D., Poerschke D.L., Begley M.R. et al. // J. Am. Ceram. Soc. 2020. https://doi.org/10.1111/jace.17187
- 13. Глушко В.П. Термодинамические свойства индивидуальных веществ. Справочник. М.: Изд-во АН СССР, 1978.
- Ushakov S.V., Navrotsky A. // J. Am. Ceram. Soc. 2007. V. 90. P. 1171. https://doi.org/10.1111/j.1551-2916.2007.01592.x
- Гуськов В.Н., Гагарин П.Г., Гуськов А.В. и др. // Журн. неорган. химии. 2019. Т. 64. С. 1210. [Guskov V.N., Gagarin P.G., Guskov A.N. et al. // Russ. J. Inorg. Chem. 2019. V. 64. Р. 1436.] https://doi.org/10.1134/S0036023619110068

- Babu R., Nagarajan K. // J. Alloys Compd. 1998.
 V. 265. P. 137. https://doi.org/10.1016/s0925-8388(97)00430-1
- 17. Wieser M.E. // Pure Appl. Chem. 2006. V. 78. P. 2051. https://doi.org/10.1351/pac200678112051
- Коломиец Т.Ю., Тельнова Г.Б., Ашмарин А.А. и др. // Неорган. материалы. 2017. Т. 53. С. 890. [Kolomiets T.Yu., Tel'nova G.B., Ashmarin A.A., et al. // Inorg. Mater. 2017. V. 53. P. 874. https://doi.org/10.1134/s0020168517080076]
- Popov V.V., Menushenkov A.P., Yaroslavtsev A.A. et al. // J. Alloys Compd. 2016. V. 689. P. 669. https://doi.org/10.1016j.jallcom.2016.08.019
- Gagarin P.G., Guskov A.V., Guskov V.N. et al. // Ceram. Int. 2021. V. 47. P. 2892. https://doi.org/10.1016/j.ceramint.2020.09072
- Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932.
 V. 54. P. 3243. https://doi.org/10.1021/ja01347a029
- 22. Konings R.J.M., Beneš O., Kovács A. et al. // J. Phys. Chem. Ref. Data. 2014. V. 43. Art. 013101. https://doi.org/10.1063/1.4825256
- Pankratz L.B. // U.S. Bureau of Mines Bulletin. 1982. V. 672. P. 188.
- 24. *Guskov V.N., Gagarin P.G., Guskov A.V. et al.* // Ceram. Int. 2019. V. 45. P. 20733. https://doi.org/10.1016/j.ceramint.2019.07.057
- 25. *Guskov V.N., Tyurin A.V., Guskov A.V. et al.* // Ceram. Int. 2020. V. 46. P. 128229. https://doi.org/10.1016/j.ceramint.2020.02.052
- Govindan Kutti, Rajagopaian S., Mathews C.K., Varadaraju U.V. // Mater. Res. Bull. 1994. V. 29. P. 759. https://doi.org/10.1016/0025-5408(94)90201-1