__ ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ

УЛК 541.123.4

ИЗУЧЕНИЕ РАСТВОРИМОСТИ СИСТЕМЫ Ca(ClO₃)₂–[90% C₂H₅OH + 10% C₁₀H₁₁ClN₄]–H₂O

© 2021 г. Ж. Ш. Бобожонов^{а, *}, Ж. С. Шукуров^а, А. С. Тогашаров^а, М. Х. Ахмаджонова^а

^аИнститут общей и неорганической химии АН РУз, ул. Мирзо Улугбека, 77-а, Ташкент, 100170 Узбекистан *e-mail: jamshid chem@mail.ru

Поступила в редакцию 12.01.2021 г. После доработки 02.03.2021 г. Принята к публикации 03.03.2021 г.

Визуально-политермическим методом исследована растворимость компонентов в системе $Ca(ClO_3)_2-[90\%\ C_2H_5OH+10\%\ C_{10}H_{11}ClN_4]-H_2O$ в интервале температур от $-43.6\ до+50.0^{\circ}C$. На фазовой диаграмме разграничены поля кристаллизации льда, $Ca(ClO_3)_2\cdot 6H_2O$, $Ca(ClO_3)_2\cdot 4H_2O$, $Ca(ClO_3)_2\cdot 2H_2O$ и ацетамиприда. Изучено изменение физико-химических свойств растворов, обладающих инсектицидной активностью, в зависимости от соотношения компонентов. Компоненты систем сохраняют свою индивидуальность при совместном присутствии. Результаты исследования систем указывают на возможность получения жидкого дефолианта с инсектицидной активностью.

Ключевые слова: дефолианты, диаграмма растворимости, ацетамиприд, хлорат кальция

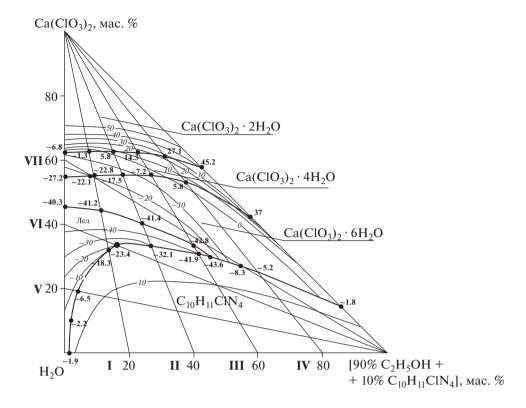
DOI: 10.31857/S0044457X21070035

ВВЕДЕНИЕ

Среди многочисленных химических препаратов наиболее перспективными являются хлоратсодержащие неорганические соединения, которые являются малотоксичными и относительно быстро разлагаются в почве [1-3]. Они положительно влияют на семена урожая и его качество.

Осенью, в период раскрытия коробочек, хлопковая тля может нанести посевам хлопчатника большой ущерб [4—7]. Тля загрязняет волокна хлопка-сырца клейкими сахаристыми выделениями. Такое волокно в процессе хранения загнивает. Выход волокна из загрязненного сырца снижается, затрудняется работа перерабатывающего оборудования, загрязненное волокно обладает меньшей прочностью. Вышеизложенное обусловливает необходимость создания малотоксичных эффективных дефолиантов, обладающих инсектицидной активностью [8, 9].

Ацетамиприд применяется в качестве инсектицида в борьбе против сосущих вредителей хлопчатника [10, 11], этанол — в качестве растворителя ацетамиприда [12], а также в качестве этиленпродуцента [13, 14]. Проникая в растения, этанол легко превращается в этилен под действием обезвоживающих реагентов и тем самым способствует повышению уровня этилена в растительном организме [15, 16].


ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объекты исследования — хлорат кальция, этанол и ацетамиприд. Хлорат кальция получали по обменной реакции плавленого хлористого кальция с хлоратом натрия в среде ацетона по методике [17]. Использовали ацетамиприд марки "х. ч." с наименованием (E)- N^1 -[(6-хлор-3-пиридил)метил]- N^2 -циано- N^1 -метилацетамидин согласно номенклатуре IUPAC [18].

Содержание кальция определяли объемным комплексонометрическим методом [19], содержание хлорат-иона — объемным перманганатометрическим методом (ГОСТ 10483-77), элементный анализ на углерод, азот, водород проводили с помощью аналитических детекторов электронного сканирующего микроскопа (Zeiss EVO MA10) [20].

В работе применяли визуально-политермический [21] (стеклянный ртутный термометр ТН-6 с диапазоном измерения от -30 до +60°C и спиртовой стеклянный термометр ТЛ-15 с диапазоном измерения от -100 до +20°C) и пикнометрический [22] методы. Вязкость растворов определяли с помощью вискозиметра ВПЖ, рН растворов — на рН-метре FE20 Mettler Toledo, показатель преломления — на рефрактометре ИРФ 454 модели БМ.

Для физико-химического обоснования процесса получения нового класса дефолианта [23], обладающего инсектицидно-активным свойством [24], нами изучена растворимость компо-

Рис. 1. Политерма растворимости системы $Ca(ClO_3)_2 - [90\% \ C_2H_5OH + 10\% \ C_{10}H_{11}ClN_4] - H_2O$.

нентов в системе $Ca(ClO_3)_2$ –[90% $C_2H_5OH + 10\%$ $C_{10}H_{11}ClN_4$]– H_2O визуально-политермическим методом в широком температурном интервале.

Растворимость компонентов в системе $Ca(ClO_3)_2-[90\%\ C_2H_5OH+10\%\ C_{10}H_{11}ClN_4]-H_2O$ изучена с помощью семи внутренних разрезов (рис. 1), из которых разрезы I-IV исследованы со стороны $[90\%\ C_2H_5OH+10\%\ C_{10}H_{11}ClN_4]-H_2O$ к вершине $Ca(ClO_3)_2$, разрезы V-VII — со стороны $Ca(ClO_3)_2-H_2O$ к вершине $[90\%\ C_2H_5OH+10\%\ C_{10}H_{11}ClN_4]$.

На основе политерм растворимости бинарных систем и внутренних разрезов построена политермическая диаграмма растворимости от эвтектической точки замерзания -43.6 до +50.0°C, которая характеризуется наличием областей кристаллизации льда, $Ca(ClO_3)_2 \cdot 6H_2O$, $Ca(ClO_3)_2 \cdot 4H_2O$, $Ca(ClO_3)_2 \cdot 2H_2O$ и ацетамиприда. Эвтектическая точка системы соответствует 30.2% $Ca(ClO_3)_2$, 44.0% [90% C_2H_5OH + 10% $C_{10}H_{11}ClN_4$] и 25.8% H_2O при -43.6°C.

Поля кристаллизации льда, $Ca(ClO_3)_2 \cdot 6H_2O$ и $C_{10}H_{11}ClN_4$ сходятся в одной тройной нонвариантной точке ($-43.6^{\circ}C$) системы. Как видно из рис. 1, основная фигуративная точка соответствует $-23.4^{\circ}C$. Установлены химические составы равновесных растворов [25] и соответствующие им температуры кристаллизации (табл. 1).

На политермическую диаграмму состояния нанесены изотермы через каждые 10° С. Построены проекции политермических кривых растворимости на боковые стороны системы $Ca(ClO_3)_2-H_2O$ и $[90\%\ C_2H_5OH+10\%\ C_{10}H_{11}ClN_4]-H_2O$.

Изменение температуры и концентрации компонентов в системе не оказывает существенного влияния на взаимную растворимость. В системе не происходит образования новых химических соединений, компоненты сохраняют свою индивидуальность.

С целью обоснования процесса получения растворов с участием хлората кальция, этанола и ацетамиприда изучено взаимодействие компонентов и физико-химические свойства растворов в системе $[40\% \text{ Ca}(\text{ClO}_3)_2 + 60\% \text{ H}_2\text{O}] - [90\% \text{ C}_2\text{H}_5\text{OH} + 10\% \text{ C}_{10}\text{H}_1\text{ClN}_4]$. Определены температура кристаллизации, рH, плотность, вязкость и показатель преломления растворов данной системы в зависимости от содержания компонентов при температуре 25°C (табл. 2).

Согласно приведенным данным состав—температура кристаллизации, рассматриваемая система характеризуется наличием двух ветвей кристаллизации с явными изломами на кривых растворимости. Кристаллизация льда продолжается до температуры —23.4°С и содержания 10%-ного спиртового раствора ацетамиприда, составляющего 17.6%. При температуре кристаллизации вы-

Таблица 1. Двойные и тройные узловые точки системы $Ca(ClO_3)_2 - [90\% C_2H_5OH + 10\% C_5H_{11}ClN_4] - H_2O$

Состав жидкой фазы, %						
Ca(ClO ₃) ₂	[90% C ₂ H ₅ OH + + 10% C ₅ H ₁₁ ClN ₄]	H ₂ O	$t_{\rm kp}$, °C	Твердая фаза		
62.4	_	37.6	-6.8	$Ca(ClO_3)_2 \cdot 2H_2O + Ca(ClO_3)_2 \cdot 4H_2O$		
63.2	7.6	29.2	-1.3	»		
63.2	14.8	22.0	6.8	»		
62.4	22.4	15.2	14.3	»		
61.2	31.2	7.6	27.1	»		
58.4	41.6	_	45.2	»		
54.8	_	45.2	-27.2	$Ca(ClO_3)_2 \cdot 4H_2O + Ca(ClO_3)_2 \cdot 6H_2O$		
55.2	8.0	36.8	22.1	»		
55.2	8.8	36.0	-22.8	»		
54.8	18.0	27.2	-17.5	»		
54.0	27.6	18.4	-7.2	»		
52.0	38.8	9.2	5.2	»		
42.0	58.0	_	37.0	»		
45.6	_	54.4	-40.3	Лед + $Ca(ClO_3)_2 \cdot 6H_2O$		
44.4	11.0	44.6	-41.2	»		
40.4	24.0	35.6	-41.4	»		
32.4	40.4	27.2	-42.8	»		
30.2	44.0	25.8	-43.6	Лед + Ca(ClO ₃) ₂ · 6H ₂ O + [90% C ₂ H ₅ OH + $+$ 10% C ₅ H ₁₁ ClN ₄]		
_	1.6	98.4	-1.9	Лед + $[90\% \text{ C}_2\text{H}_5\text{OH} + 10\% \text{ C}_5\text{H}_{11}\text{CIN}_4]$		
10.0	1.8	88.2	-2.2	»		
19.2	3.8	77.0	-6.5	»		
31.6	13.6	54.8	-18.3	»		
33.0	17.6	49.4	-23.4	»		
33.0	27.0	40.0	-32.1	»		
30.8	41.6	27.6	-41.9	»		
27.2	54.6	18.2	-8.3	$Ca(ClO_3)_2 \cdot 6H_2O + [90\% C_2H_5OH + 10\% C_5H_{11}ClN_4]$		
25.6	60.0	14.4	-5.2	»		
14.4	85.6	_	1.8	»		

ше -20.1°С и концентрации 10%-ного спиртового раствора ацетамиприда выше 23.2% в системе кристаллизуется чистый ацетамиприд.

Анализ диаграммы состав—рН системы $[40\% \ Ca(ClO_3)_2 + 60\% \ H_2O]$ — $[90\% \ C_2H_5OH + 10\% \ C_{10}H_{11}ClN_4]$ показывает, что с увеличением концентрации 10%-ного спиртового раствора ацетамиприда величина рН растворов уменьшается до 7.02 в двойных точках, отвечающих совместному существованию льда с ацетамипридом. Увеличение концентрации 10%-ного спиртового раствора ацетамиприда >17.6% приводит к постепенному повышению рН.

Плотность исследуемой системы монотонно уменьшается от 1.306 до 1.208 г/см 3 , а вязкость увеличивается от 1.18 до 1.715 мм 2 /с.

Анализ диаграммы состав-показатель преломления показывает, что показатель преломле-

ния системы повышается до 1.3829 в двойных точках, отвечающих совместному существованию льда с ацетамипридом. Дальнейшее увеличение концентрации 10%-ного спиртового раствора ацетамиприда приводит к постепенному уменьшению показателя преломления.

ЗАКЛЮЧЕНИЕ

Таким образом, установлено, что в изученной системе не происходит химического взаимодействия между компонентами. Изученная система является системой простого эвтонического типа. Показано, что путем растворения 10%-ного спиртового раствора ацетамиприда в водном растворе хлората кальция можно получить жидкий дефолиант с инсектицидной активностью.

Таблица 2. Физик	о-химические и реол	логические свой	йства системы	[40% Ca(ClO ₃) ₂	$+60\% \text{ H}_2\text{O}]-[9]$	$90\% C_2H_5OH +$	
$+ 10\% C_{10}H_{11}ClN_4$] при температуре 25°С							
	~						

Содержание в 40% Ca(ClO ₃) ₂ + + 60% H ₂ O	компонентов, % 90% C ₂ H ₅ OH + + 10% C ₁₀ H ₁₁ ClN ₄	рН	Плотность р, г/см ³	Показатель преломления света, n_D	t _{kp} , °C	Вязкость η, мм ² /с
100.0	_	7.13	1.306	1.3798	-18.4	1.180
95.2	4.8	7.11	1.302	1.3807	-19.6	1.225
88.0	12.0	7.06	1.294	1.3820	-21.6	1.285
82.4	17.6	7.02	1.288	1.3829	-23.4	1.335
76.8	23.2	7.10	1.281	1.3829	-20.1	1.370
72.0	28.0	7.15	1.276	1.3828	-17.4	1.405
64.0	36.0	7.23	1.264	1.3827	-13.6	1.450
59.2	40.8	7.28	1.260	1.3826	-11.7	1.453
51.6	48.4	7.34	1.250	1.3825	-8.8	1.530
44.8	55.2	7.41	1.240	1.3824	-6.7	1.575
39.0	61.0	7.46	1.232	1.3822	-5.2	1.610
33.6	66.4	7.50	1.223	1.3820	-3.8	1.645
29.0	71.0	7.54	1.221	1.3819	-2.5	1.670
24.7	75.3	7.57	1.224	1.3818	-1.8	1.695
20.0	80,0	7.61	1.208	1.3816	-1.0	1.715

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Toghasharov A.S., Askarova M.K., Tukhtaev S. // East Europ. Sci. J. Wschodnioeur. Czasop. Nauk. 2016. V. 3. Ng 8, P. 56.
- 2. *Тогашаров А.С., Шукуров Ж.С., Тухтаев С.* Новые дефолианты на основе хлоратов и техногенных отходов хлопкоочистительных заводов. Ташкент: Навруз, 2019.
- 3. *Хамдамова Ш.Ш., Тухтаев С., Дадамухамедова Н.* // Universum: техн. науки. 2018. Т. 55. № 10. С. 42. https://7universum.com/ru/tech/archive/item/6412
- 4. *Singh R.*, *Singh G.* // Aphids. Singapore: Springer, 2021. https://doi.org/10.1007/978-981-15-8075-8 3
- 5. *El-Sherbeni A.E.-H.E.-D., Khaleid M.S. et al.* // Bull. Natl. Res. Cent. 2019. V. 63. P. 57. https://doi.org/10.1186/s42269-019-0103-0
- Shera P.S., Kumar V., Jindal V. // Sucking Pests of Crops. Singapore: Springer, 2020. https://doi.org/10.1007/978-981-15-6149-8 8
- 7. Rajendran T.P., Birah A., Burange P.S. // Pests and Their Management. Singapore: Springer, 2018. https://doi.org/10.1007/978-981-10-8687-8 11
- 8. Шукуров Ж.С., Тогашаров А.С., Аскарова М.К. и др. Комплексно действующие дефолианты, обладающие физиологически активными и инсектицидными свойствами. Ташкент: Навруз, 2019.
- 9. Shukurov Z.S., Askarova M.K., Tukhtaev S. // Russ. J. Inorg. Chem. 2018. V. 63. № 2. Р. 275. [Шукуров Ж.С., Аскарова М.К., Тухтаев С. // Журн. неорган. химии. 2018. Т. 63. № 2. С. 261.] https://doi.org/10.1134/S0036023618020201
- 10. *Basit M.* // Phytoparasitica. 2018. V. 46. P. 183. https://doi.org/10.1007/s12600-018-0659-5
- 11. Anees M., Shad S.A. // Cotton Production and Uses. Singapore: Springer, 2020. https://doi.org/10.1007/978-981-15-1472-2 11

- 12. *Xi Zhao, Ali Farajtabar, Hongkun Zhao et al.* // J. Chem. Eng. 2019. V. 64. № 8. P. 3505. https://doi.org/10.1021/acs.jced.9b00294
- Veselova S.V., Burkhanova G.F., Nuzhnaya T.V. // Russ. J. Plant. Physiol. 2016. V. 63. P. 609. https://doi.org/10.1134/S1021443716050150
- 14. *Noreen S., Mahmood S., Faiz S. et al.* // Cotton Production and Uses / Eds. Ahmad S., Hasanuzzaman M. Singapore: Springer, 2020. https://doi.org/10.1007/978-981-15-1472-2 8
- 15. Zemlyanskaya E.V., Omelyanchuk N.A., Ermakov A.A. et al. // Russ. J. Gen. Appl. Res. 2017. № 7. P. 335. https://doi.org/10.1134/S2079059717030169
- 16. *Шарипов С.Я.* Получение дефолиантов на основе хлоратов, 2-бутин-1,4-диола, моноэтаноламина и этилового спирта. Дис. ... канд. тех. наук. Ташкент, 2007.
- 17. *Набиев М.Н., Шаммасов Р., Тухтаев С. и др.* Способ получения хлорат-хлорид кальциевого дефолианта А.с. 1143691 СССР // Открытия. Изобретения. 1985. № 9. С. 84.
- 18. Мельников Н.Н., Новожилов К.В., Белан С.Р. и др. Справочник по пестицидам. М.: Химия, 1985.
- 19. Шварценбах Γ ., Флашка Γ . Комплексонометрическое титрование. М.: Химия, 1970.
- 20. Климова В.А. Основные микрометоды анализа органических соединений М.: Химия, 1975.
- Трунин А.С., Петрова Д.Г. Визуально-политермический метод. Куйбышев: Куйбышевский политех. ин-т, 1977.
- 22. Здановский А.Б. Галлургия. Л.: Химия, 1972.
- 23. Умаров А.А., Кутянин Л.И. Новые дефолианты: поиск, свойства, применения. М.: Химия, 2000.
- 24. *Адилов З.Х.* Химия и технология получения хлоратсодержащих дефолиантов, обладающих инсектицидными свойствами. Автореф. дис... канд. тех. наук. Ташкент, 2010.
- 25. *Boyd C.E.* // Water Quality. Springer, Cham. 2020. https://doi.org/10.1007/978-3-030-23335-8_4