___ НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ _ И НАНОМАТЕРИАЛЫ

УДК 546.723-31:544.774.4

ПОЛУЧЕНИЕ НАНОЧАСТИЦ є-Fe₂O₃ В МАТРИЦАХ, ОБРАЗОВАННЫХ ПЛОТНОЙ УПАКОВКОЙ СФЕР ДИОКСИДА КРЕМНИЯ

© 2021 г. А. И. Шарапаев^{а,} *, С. А. Кузнецова^а, А. Н. Норенко^а, А. Г. Мурадова^а, Н. П. Симоненко^b, Е. В. Юртов^а

^а Российский химико-технологический университет им. Д.И. Менделеева, Миусская пл., 9, Москва, 125047 Россия ^bИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119071 Россия

*e-mail: a.sharapaev@gmail.com Поступила в редакцию 04.12.2020 г. После доработки 23.12.2020 г. Принята к публикации 24.12.2020 г.

Разложением нитрата железа(III) в пустотах плотной упаковки сфер диоксида кремния получены смеси полиморфных модификаций оксида железа(III) с высоким содержанием ε -Fe₂O₃. Показана возможность управления фазовым составом нанопорошков Fe₂O₃ за счет использования сфер диоксида кремния различного размера. Определены критические размеры наночастиц Fe₂O₃, соответствующие переходам γ -Fe₂O₃ $\rightarrow \varepsilon$ -Fe₂O₃ $\rightarrow \alpha$ -Fe₂O₃, которые составляют 10 \pm 2 и 28 \pm 3 нм соответственно. Максимальное содержание ε -Fe₂O₃ достигается при размере сфер диоксида кремния 110 нм и составляет 83%.

Ключевые слова: оксиды железа, наноматериалы, опалоподобные матрицы, темплатный синтез **DOI:** 10.31857/S0044457X21050172

введение

Наноматериалы на основе оксидов железа находятся в центре внимания исследователей благодаря возможности их применения при создании новых биомедицинских препаратов, магнитных адсорбентов, катализаторов, в электронике, космической технике [1–5]. Среди разнообразных оксидов железа особое место занимает модификация ε -Fe₂O₃ [6, 7]. Высокая коэрцитивная сила (~20 кЭ) [8, 9], умеренная намагниченность насыщения и ферроэлектрические свойства делают ε -Fe₂O₃ перспективным материалом для поглощения и аттенюации электромагнитного излучения в диапазоне 50–200 ГГц, а также для хранения информации [9–11].

Термодинамически наиболее устойчивой формой оксида железа(III) является α -Fe₂O₃ [7], однако в случае наночастиц возможна стабилизация других модификаций за счет минимизации поверхностной энергии. В связи с этим фазовый состав нанопорошков Fe₂O₃ сильно зависит от размера образующих их наночастиц. Известно, что при размере наночастиц менее 20 нм преобладает γ -Fe₂O₃, размер частиц более 60–100 нм благоприятствует образованию α -Fe₂O₃, а в области размеров 20–60 нм возможно преобладание β - и ϵ -модификаций Fe₂O₃ [6, 7, 12].

Кристаллизация наночастиц и протекание полиморфных превращений в системах на основе Fe₂O₃ требуют воздействия высоких температур (более 600°С) [12–14]. Действие высокой температуры приводит к укрупнению наночастиц, поэтому целенаправленное получение ε-Fe₂O₃ практически всегда включает ограничение агрегации и роста наночастиц. Имеются сведения о получении ε-Fe₂O₃ без использования матрицы диоксида кремния путем термического разложения железосодержаших минералов [7]. гидротермального [15] и плазмодинамического синтеза [16, 17] и даже с использованием магнетотактических бактерий [18], однако подобные методы либо не обеспечивают высокого содержания целевой модификации, либо неявно включают процесс разделения модификаций. Поэтому задача получения материалов с высоким содержанием Е-Fe₂O₃ по-прежнему требует решения.

Наиболее простым и распространенным способом получения ε -Fe₂O₃ является использование аморфного геля диоксида кремния с включениями гидроксидов железа [19, 20] либо сочетание зольгель и микроэмульсионного методов [21, 22]. При этом для получения нанопорошков с высоким содержанием ε -Fe₂O₃ требуется введение небольших количеств ионов щелочноземельных металлов (Ba²⁺, Sr²⁺) для ограничения роста нанокристаллитов. Использование такого подхода не позволяет точно контролировать размер получаемых наночастиц и, как следствие, достигать высокого содержания ε-Fe₂O₃.

С целью более точного контроля размера получаемых наночастиц и увеличения доли ε-Fe₂O₃ используется термическая обработка наночастицпредшественников заданного размера (α-Fe₂O₃ [23], γ-Fe₂O₃ [24], FeO [25], β-FeOOH [26, 27] или Fe₃O₄ [28]) в оболочке диоксида кремния или пропитка мезопористых силикагелей соединениями железа (FeSO₄ [12, 29], Fe(NO₃)₃ [30-32], Fe(C₁₀H₉CHO) [12, 33]). Максимальное содержание ε-Fe₂O₃ при этом ограничивается распределением по размерам исходных наночастиц или пор силикагеля и не превышает 70%. Причиной этого является широкое распределение по размерам наночастиц-предшественников в первом случае и малый размер пор силикагелей – во втором. Сушественным недостатком использования наночастиц-предшественников является и то, что в большинстве случаев не удается добиться изолированного покрытия отдельных наночастиц оболочкой диоксида кремния.

В качестве альтернативы мезопористым силикагелям в роли темплата могут выступать плотноупакованные опалоподобные структуры из сферических частиц диоксида кремния. Размер пустот в таких матрицах определяется размерами частиц SiO₂ [34, 35], что позволяет достаточно точно управлять размером формируемых наночастиц.

Подобные структуры широко используются для создания новых каталитических и сенсорных материалов на основе оксидов-перовскитов и ферритов-шпинелей [36, 37]. Известно, что размер пустот таких матриц оказывает влияние на фазовый состав синтезируемых в них наночастиц (например, титанатов висмута [38], оксида титана [39]). Получение оксидов железа в подобных матрицах также исследовалось. Так, в работе [40] прокаливанием при 450°С опалоподобной матрицы с размером исходных частиц 280 нм, пропитанной нитратом железа, была получена смесь наночастиц α- и γ-Fe₂O₃. Несмотря на широкое использование, темплатный синтез в пустотах плотноупакованных и опалоподобных структур диоксида кремния для получения наночастиц Е- Fe_2O_3 ранее не применялся.

В настоящей работе для контроля размера наночастиц Fe_2O_3 и направленного получения ε - Fe_2O_3 был использован темплатный синтез в матрицах, образованных плотной упаковкой монодисперсных частиц SiO₂ размером 80—140 нм.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для получения монодисперсных частиц SiO₂ использовали тетраэтоксисилан (99+%, Across), 25%-ный раствор аммиака (Лаверна) и изопропиловый спирт (х. ч., ЭКОС-1). Для пропитки матриц применяли Fe(NO₃)₃ · 9H₂O (99+%, Across). Реактивы использовали без дополнительной очистки. Бидистиллированная вода была получена в лаборатории.

Исследование пленок диоксида кремния методом оптической микроскопии в проходящем свете выполняли на микроскопе Axiostar Plus (Zeiss, Германия) с цифровой фотокамерой Canоп, при этом использовали стандартную процедуру настройки по Келлеру.

Для определения размера, формы и микроструктуры частиц SiO_2 и структур на их основе применяли сканирующий электронный микроскоп JEOL JEM-6510LV. Исследование наночастиц методом просвечивающей электронной микроскопии (ПЭМ) выполняли на микроскопе JEOL JEM-1011.

Рентгенофазовый анализ образцов осуществляли на рентгеновском дифрактометре D8 Advance (Bruker-AXS, Германия) с использованием CuK_{α} -излучения, измерения проводили в режиме $2\theta - \theta$ с шагом 0.01°, время накопления в точке 0.5 с.

Сферические частицы диоксида кремния размером <100 нм получали в ходе щелочного гидролиза тетраэтоксисилана в среде изопропилового спирта (метод Штобера) [41], наночастицы большего размера — путем доращивания слоя диоксида кремния на поверхности наночастиц-затравок [42]. В качестве наночастиц-затравок использовали наночастицы диоксида кремния, полученные методом Штобера.

Матрицы для создания наночастиц ε -Fe₂O₃ были получены путем естественного осаждения сферических частиц SiO₂ из водно-спиртовой дисперсии в неоднородном поле температур. В качестве подложек использовали чашки Петри. Объем дисперсии частиц SiO₂ выбирали исходя из необходимой расчетной толщины матрицы. Градиент температуры создавался за счет нагрева нижней части чашек Петри до 70°С. Испарение растворителя происходило в течение 30 мин.

После высушивания матрицы пропитывали раствором нитрата железа(III). Избыток раствора удаляли вакуумной фильтрацией, после чего матрицы высушивали при 120°С и прокаливали при температурах 900–1100°С в течение 2–16 ч. Для исследования наночастиц оксида железа методом ПЭМ диоксид кремния растворяли в 5 М растворе NaOH в течение 72 ч.

Рис. 1. Результаты оптической (а) и сканирующей электронной (б) микроскопии матрицы.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Исследовано влияние состава растворителя на однородность получаемых пленок. Для этого использовали водно-спиртовые дисперсии с концентрацией воды от 25 до 50 об. %, полученные разбавлением исходной дисперсии. Установлено, что увеличение содержания воды в дисперсии приводит к снижению однородности получаемых пленок, что можно объяснить повышением поверхностного натяжения раствора и соответствующим увеличением внутренних напряжений при его высыхании. На рис. 1 приведена оптическая микрофотография и результаты сканирующей электронной микроскопии пленки.

При средней расчетной толщине <10—15 мкм получаемые пленки обладают высокой макроскопической однородностью. Механическое разрушение таких пленок приводит к образованию относительно правильных ромбических фрагментов с углами, близкими к 60° и 120°, что объясняется гексагональной симметрией пленки, характерной для большинства коллоидных кристаллов (рис. 1а).

Как видно на изображении, полученном методом сканирующей электронной микроскопии (рис. 16), пленки характеризуются плотной упаковкой сфер SiO₂. Увеличение средней толщины >25 мкм приводит к формированию оптически неоднородных пленок, имеющих многочисленные макроскопические дефекты. Механическое разрушение таких пленок способствует образованию фрагментов произвольной формы. Для дальнейших исследований средняя толщина пленок была ограничена уровнем 10–15 мкм.

Для проверки формирования упорядоченных структур дополнительно были получены пленки из дисперсий с размером частиц 200—300 нм. При нормальном падении света на поверхность пленки наблюдается яркая окраска, цвет которой соответствует дифракции на плоскостях {111} структуры, образованной сферическими частицами SiO₂ соответствующего размера. На рис. S1a представлено фотоизображение пленки, состоящей из наночастиц размером 230 нм. Структурная окраска при нормальном падении света сохраняется после пропитки матриц раствором нитрата железа(III) и прокаливания, что свидетельствует о сохранении структуры. При этом окраска изменяется в более длинноволновую область вследствие увеличения эффективного показателя преломления среды (рис. S1б).

На рис. 2 представлены ПЭМ-изображения наночастиц диоксида кремния, использованных для получения матриц. Как видно из рис. 2, наночастицы обладают узким распределением по размерам и склонны к самопроизвольному образованию слоев гексагональной симметрии с плотнейшей упаковкой наночастиц.

Для изучения влияния продолжительности прокаливания на кристаллизацию наночастиц оксида железа(III) прокаливание проводили при 1000°С от 2 до 16 ч. Средний размер частиц диоксида кремния, образующих матрицы, составлял 120 ± 4 нм. Как видно из рис. 3, увеличение времени прокаливания сопровождается ростом контрастности наночастиц на электронно-микроскопических снимках, что свидетельствует об увеличении их кристалличности. Следует отметить наличие частиц округлой и продолговатой формы, что может свидетельствовать о различии их кристаллической структуры. Увеличение продолжительности прокаливания не оказывает значительного влияния на средний размер наночастиц, но приводит к увеличению количества наблюдаемых стержнеобразных частиц.

Результаты исследования наночастиц оксида железа, полученных в матрицах с различным размером сфер SiO₂, показывают, что размер наночастиц оксида железа пропорционален размеру частиц матрицы, что хорошо согласуется с образованием наночастиц Fe_2O_3 в пустотах плотнейшей упаковки (рис. 4). Полученные результаты

Рис. 2. ПЭМ-изображение и распределение наночастиц SiO₂ по размерам.

свидетельствуют о том, что использованный подход позволяет управлять размером наночастиц оксида железа и получать наночастицы с размерами в области стабильности ε-Fe₂O₃.

На рис. 5 представлена характерная рентгеновская дифрактограмма нанопорошка. На дифрактограмме отчетливо видны рефлексы, соответствующие трем модификациям оксида железа(III): α -Fe₂O₃, γ -Fe₂O₃, ϵ -Fe₂O₃. Наиболее интенсивным является рефлекс, соответствующий плоскостям (122) ϵ -Fe₂O₃ и расположенный в области 32° (2 θ). Присутствие β -Fe₂O₃ нельзя полностью исключить, однако отсутствие наиболее интенсивных рефлексов данной модификации говорит о ее малом содержании.

Анизотропия уширения дифракционных пиков свидетельствует о том, что частицы ε -Fe₂O₃ имеют форму эллипсоидов вращения с отношением больших осей 1 : 3 : 2 для осей кристалличе-

(**б**)

200 нм

(a)

ской решетки *a*, *b* и *c* соответственно, что хорошо согласуется с результатами измерения анизометричных частиц по ПЭМ и кристаллографической симметрией ε -Fe₂O₃ (пр. гр. *Pna*2₁).

В табл. 1 дана оценка фазового состава полученных нанопорошков. Приведенные данные показывают, что увеличение размера сфер, образующих матрицу, сопровождается постепенным изменением фазового состава. При этом характер изменения согласуется с общепринятой гипотезой о влиянии размера наночастиц на устойчивость полиморфных модификаций Fe₂O₃ и порядке их следования.

Для установления пороговых значений, соответствующих границам стабильности полиморфных модификаций, были рассчитаны квантили распределений объема наночастиц Fe₂O₃. Распределения объема наночастиц были построены по результатам просвечивающей электронной микроскопии. Критический размер, соответствующий переходу γ -Fe₂O₃ $\rightarrow \varepsilon$ -Fe₂O₃, составил 10 ± 2 нм. Размер, соответствующий переходу ε -Fe₂O₃ $\rightarrow \rightarrow \alpha$ -Fe₂O₃, составил 28 ± 3 нм.

Наблюдаемые распределения объемов наночастиц могут быть описаны логарифмически-нормальным распределением, параметры которого зависят от размера частиц матрицы. Установленные пороговые значения размеров, соответствующих стабилизации полиморфных модификаций Fe_2O_3 , указывают на максимальное содержание ϵ - Fe_2O_3 при размере частиц матрицы 100–110 нм, что хорошо объясняет экспериментально наблюдаемые результаты.

Максимальное содержание ε -Fe₂O₃ и размер наночастиц матрицы, при котором оно достигается, сильно зависят от размеров, соответствующих переходам γ -Fe₂O₃ $\rightarrow \varepsilon$ -Fe₂O₃ и ε -Fe₂O₃ $\rightarrow \alpha$ -Fe₂O₃. Максимальное содержание ε -Fe₂O₃ составляет от 70 до 80% для диапазонов переходов 8–12 и 25– 30 нм соответственно.

Для подтверждения полученных закономерностей использовали плотноупакованные матри-

200 нм

(в)

200 нм

Рис. 4. Распределение наночастиц Fe_2O_3 по размерам для матриц, образованных частицами SiO₂ размером 80 (а), 100 (б), 120 (в) и 140 нм (г).

цы, полученные из дисперсий SiO₂ со средним размером частиц 110 нм, прокаливание проводили при 1000°С. Полученные при этом образцы содержат до 83% ε -Fe₂O₃ (по сравнению с другими модификациями) с учетом большого количества аморфного диоксида кремния и возможного наложения рефлексов α - и γ -модификаций, снижающих точность количественного фазового анализа.

ЗАКЛЮЧЕНИЕ

Подтверждена возможность получения ε -Fe₂O₃ путем термического разложения нитрата железа(III) в пустотах матриц, образованных плотной упаковкой монодисперсных частиц SiO₂. Критические размеры наночастиц, соответствующие переходам γ -Fe₂O₃ $\rightarrow \epsilon$ -Fe₂O₃ и ϵ -Fe₂O₃ $\rightarrow \rightarrow \alpha$ -Fe₂O₃, составляют 10 ± 2 и 28 ± 3 нм соответственно. Вследствие этого фазовый состав нанопорошков определяется размером наночастиц SiO₂, образующих матрицу. Максимальное содержание ϵ -Fe₂O₃ достигается при размере частиц матрицы 100–110 нм, что было подтверждено экспериментально. Результаты работы могут быть использованы для контролируемого получения наночастиц ϵ -Fe₂O₃. Кроме того, предложенный подход можно применять для установления размерных границ стабильности полиморфных модификаций других неорганических соединений.

Рис. 5. Рентгеновская дифрактограмма матрицы после термообработки.

БЛАГОДАРНОСТЬ

Исследования методом сканирующей электронной микроскопии выполнены на оборудовании Центра коллективного пользования им. Д.И. Менделеева.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20–03-00668.

ИНФОРМАЦИЯ О ВКЛАДЕ АВТОРОВ

А.И. Шарапаев — идея и планирование экспериментов, термическая обработка экспериментальных образцов, анализ методом просвечивающей электронной микроскопии, анализ экспериментальных данных, написание статьи. С.А. Кузнецова — получение монодисперсных частиц оксида кремния, получение плотноупакованных матриц. А.Н. Норенко — получение монодисперсных частиц оксида кремния, получение плотноупакованных матриц, пропитка матриц. А.Г. Мурадова — организация инструментальных исследований, анализ экспериментальных данных, на-

Таблица 1. Фазовый состав продуктов термообработки в зависимости от размера сфер, образующих матрицу, %

Размер сфер SiO ₂ , нм	α -Fe ₂ O ₃	γ-Fe ₂ O ₃	ε-Fe ₂ O ₃
72	15	32	53
80	15	16	69
100	15	9	76
120	19	15	66
140	24	9	67

писание статьи. Н.П. Симоненко — рентгенофазовый анализ экспериментальных образцов. Е.В. Юртов разработка идеи и планирование экспериментов, написание статьи. Все авторы участвовали в обсуждении результатов.

КОНФЛИКТ ИНТЕРЕСОВ

Конфликт интересов отсутствует.

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Рис. S1. Матрица SiO_2 до (а) и после (б) пропитывания раствором $Fe(NO)_3$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Strapolova V.N., Yurtov E.V., Muradova A.G. et al. // J. Spacecr. Rockets. 2017. V. 55. № 1. P. 1. https://doi.org/10.2514/1.A33805
- Zarschler K., Rocks L., Licciardello N. et al. // Nanomedicine Nanotechnology, Biol. Med. 2016. V. 12. № 6. P. 1663. https://doi.org/10.1016/j.nano.2016.02.019
- Ali A., Zafar H., Zia M. et al. // Nanotechnol. Sci. Appl. 2016. V. 9. P. 49. https://doi.org/10.2147/NSA.S99986
- Mjakin S.V., Nikolaev A.M., Khamova T.V. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 4. P. 626. https://doi.org/10.1134/S0036023620040129
- Naderi S., Morsali A., Bozorgmehr M.R. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 4. P. 503. https://doi.org/10.1134/S0036023619040156
- MacHala L., Tuček J., Zbořil R. // Chem. Mater. 2011. V. 23. № 14. P. 3255. https://doi.org/10.1021/cm200397g
- Lee S., Xu H. // J. Phys. Chem. C. 2016. V. 120. Acs. Jpcc.6b05287. https://doi.org/10.1021/acs.jpcc.6b05287
- Jin J., Ohkoshi S., Hashimoto K. // Adv. Mater. 2004.
 V. 16. № 1. P. 48. https://doi.org/10.1002/adma.200305297
- 9. *Tuček J., Zbořil R., Namai A. et al.* // Chem. Mater. 2010. V. 22. № 24. P. 6483. https://doi.org/10.1021/cm101967h
- 10. *Namai A., Sakurai S., Nakajima M. et al.* // J. Am. Chem. Soc. 2009. V. 131. № 3. P. 1170. https://doi.org/10.1021/ja807943v
- 11. Ohkoshi S.I., Kuroki S., Sakurai S. et al. // Angew. Chem. Int. Ed. 2007. V. 46. № 44. P. 8392. https://doi.org/10.1002/anie.200703010
- 12. Sakurai S., Namai A., Hashimoto K. et al. // J. Am. Chem. Soc. 2009. V. 131. № 51. P. 18299. https://doi.org/10.1021/ja9046069
- Brázda P., Večerníková E., Pližingrová E. et al. // J. Therm. Anal. Calorim. 2014. V. 117. № 1. P. 85. https://doi.org/10.1007/s10973-014-3711-9
- 14. Gich M., Roig A., Taboada E. et al. // Faraday Discuss. 2007. V. 136. P. 345. https://doi.org/10.1039/b616097b

- 15. *Ma J., Chen K.* // Ceram. Int. 2018. V. 44. № 16. P. 19338. https://doi.org/10.1016/j.ceramint.2018.07.162
- Shanenkov I., Sivkov A., Ivashutenko A. et al. // J. Alloys Compd. 2019. V. 774. P. 637. https://doi.org/10.1016/j.jallcom.2018.10.019
- Sivkov A., Naiden E., Ivashutenko A. et al. // J. Magn. Magn. Mater. 2016. V. 405. P. 158. https://doi.org/10.1016/j.jmmm.2015.12.072
- Wen T., Zhang Y., Geng Y. et al. // Biomater. Res. 2019.
 V. 23. № 1. P. 1. https://doi.org/10.1186/s40824-019-0162-1
- 19. Nikolic V.N., Spasojevic V., Panjan M. et al. // Ceram. Int. 2017. V. 43. № 10. P. 7497. https://doi.org/10.1016/j.ceramint.2017.03.030
- Barick K.C., Varaprasad B.S.D.C.S., Bahadur D. // J. Non. Cryst. Solids 2010. V. 356. № 3. P. 153. https://doi.org/10.1016/j.jnoncrysol.2009.10.001
- Jin J., Hashimoto K., Ohkoshi S. // J. Mater. Chem. 2005. V. 15. № 10. P. 1067. https://doi.org/10.1039/B416554C
- López-Sánchez J., Muñoz-Noval A., Serrano A. et al. // RSC Adv. 2016. V. 6. № 52. P. 46380. https://doi.org/10.1039/C6RA01912A
- Tadić M., Spasojević V., Kusigerski V. et al. // Scr. Mater. 2008. V. 58. № 8. P. 703. https://doi.org/10.1016/j.scriptamat.2007.12.009
- 24. *Taboada E., Gich M., Roig A.* // ACS Nano 2009. V. 3. № 11. P. 3377. https://doi.org/10.1021/nn901022s
- 25. Nakaya M., Nishida R., Hosoda N. et al. // Cryst. Res. Technol. 2017. V. 52. № 11. P. 1700110. https://doi.org/10.1002/crat.201700110
- Tadic M., Milosevic I., Kralj S. et al. // Nanoscale. 2017. V. 9. № 30. P. 10579. https://doi.org/10.1039/c7nr03639f
- Tadic M., Milosevic I., Kralj S. et al. // Acta Mater. 2020. V. 188. P. 16. https://doi.org/10.1016/j.actamat.2020.01.058
- Klekotka U., Satuła D., Kalska-Szostko B. // J. Magn. Magn. Mater. 2020. V. 497. At. 165999. https://doi.org/10.1016/j.jmmm.2019.165999

- 29. Bukhtiyarova G.A., Shuvaeva M.A., Bayukov O.A. et al. // J. Nanoparticle Res. 2011. V. 13. № 10. P. 5527. https://doi.org/10.1007/s11051-011-0542-5
- 30. Delahaye E., Escax V., El Hassan N. et al. // J. Phys. Chem. B. 2006. V. 110. № 51. P. 26001. https://doi.org/10.1021/jp0647075
- 31. *Kubíčková L., Kohout J., Brázda P. et al.* // Hyperfine Interact. 2016. V. 237. № 1. https://doi.org/10.1007/s10751-016-1356-8
- 32. Brázda P., Kohout J., Bezdička P. et al. // Cryst. Growth Des. 2014. V. 14. P. 1039. https://doi.org/10.1021/cg4015114
- Nakamura T., Yamada Y., Yano K. // J. Mater. Chem. 2006. V. 16. № 25. P. 2417. https://doi.org/10.1039/B604025J
- 34. Rouault Y., Assouline S. // Powder Technol. 1998. V. 96. № 1. P. 33. https://doi.org/10.1016/S0032-5910(97)03355-X
- 35. *Aste T., Weaire D.* // The pursuit of perfect packings. Taylor & Francis Group, 2008.
- 36. Sadakane M., Takahashi C., Kato N. et al. // Bull. Chem. Soc. Jpn. 2007. V. 80. № 4. P. 677. https://doi.org/10.1246/bcsj.80.677
- Qin J., Cui Z., Yang X. et al. // Sens. Actuators, B: Chem. 2015. V. 209. P. 706. https://doi.org/10.1016/j.snb.2014.12.046
- 38. Ивичева С.Н., Каргин Ю.Ф., Куцев С.В. и др. // Журн. неорган. химии. 2015. Т. 60. № 11. С. 1439. https://doi.org/10.7868/s0044457x15110082
- 39. Ивичева С.Н., Каргин Ю.Ф., Ляпина О.А. и др. // Неорган. материалы. 2009. Т. 45. № 11. С. 1337.
- 40. Ивичева С.Н., Каргин Ю.Ф., Ашмарин А.А. и др. // Журн. неорган. химии. 2012. Т. 57. № 11. С. 1508.
- Ibrahim I.A.M., Zikry A.A.F., Sharaf M.A. // J. Am. Sci. 2010. V. 6. № 11. P. 985. https://doi.org/10.7537/marsjas061110.133
- 42. Zaytseva M.P., Muradova A.G., Sharapaev A.I. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 12. P. 1684. https://doi.org/10.1134/S0036023618120239