ФИЗИКОХИМИЯ РАСТВОРОВ =

YIK 542.61: (546.175 + 546.654 + 546.657 + 546.665 + 546.668 + 546.791.6): 547.495.3: 547.558.1 + 542.06 + 542.9

Посвящается памяти выдающегося советского и российского химика-фосфорорганика чл.-корр. РАН Э.Е. Нифантьева

ЭКСТРАКЦИОННЫЕ СВОЙСТВА ДИФЕНИЛФОСФОРИЛМОЧЕВИН С АЛИФАТИЧЕСКИМИ Ф-АЗОТСОДЕРЖАЩИМИ РАДИКАЛАМИ

© 2021 г. А. М. Сафиулина^{*a*, *}, А. В. Лизунов^{*a*}, Н. Е. Борисова^{*b*}, Т. В. Баулина^{*c*}, Е. И. Горюнов^{*c*}, И. Б. Горюнова^{*c*}, В. К. Брель^{*c*}

^аАкционерное общество "Высокотехнологический научно-исследовательский институт неорганических материалов им. академика А.А. Бочвара", ул. Рогова, 5а, Москва, 123098 Россия

^b Московский государственный университет им. М.В. Ломоносова, Ленинские горы, 1, Москва, 119991 Россия

^сИнститут элементоорганических соединений им. А.Н. Несмеянова РАН, ул. Вавилова, 28, Москва 119991 Россия

*e-mail: AMSafiulina@bochvar.ru Поступила в редакцию 11.11.2020 г. После доработки 29.12.2020 г. Принята к публикации 30.12.2020 г.

Исследована экстракция лантанидов и актинидов из азотнокислых сред растворами N-(дифенилфосфорил)-N'-*н*-пропилмочевин, содержащими в ω -положении алкильного заместителя имидазолильный, диэтиламиновый, пирид-2-ил, 2-оксопирролидиновый фрагменты. Показано, что относящиеся к иттриевой подгруппе лантаниды Ho(III) и Yb(III) экстрагируются значительно лучше La(III) и Nd(III), принадлежащих цериевой подгруппе. Лучшими экстракционными свойствами обладает N-(дифенилфосфорил)мочевина, содержащая ω -(2-оксопирролидино)пропильный радикал у терминального атома азота. Данная зависимость получила свое теоретическое обоснование при моделировании комплексообразования, поскольку координация иона *f*-элемента с амидным атомом кислорода оказывается предпочтительной.

Ключевые слова: экстракция, лантаниды, актиниды, фосфорорганические соединения, фосфорилмочевины

DOI: 10.31857/S0044457X21050159

введение

Полидентатные фосфорорганические соединения привлекают повышенное внимание, учитывая их широкое использование в экстракционной практике. Вследствие того, что фосфорильная группа легко поляризуется и обладает высокой координирующей способностью по отношению к ряду d- и f-элементов, дизайн новых фосфорилсодержащих полидентатных лигандов, обладающих высокой синтетической доступностью, представляет фундаментальный и практический интерес [1-6]. Дополнительным преимуществом фосфорсодержащих экстрагентов является возможность изменять координирующие свойства фосфорильной группы путем варьирования заместителей у атома фосфора [7–11]. Кроме того, методы органической химии позволяют конструировать соединения, различающиеся количеством донорных центров, что открывает широкие возможности для направленной модификации их экстракционных свойств [12–19].

Ранее нами исследованы оригинальные фосфоразотсодержащие лиганды: N-(диорганилфосфорил)мочевины $R_2P(O)NHC(O)NHR'(I)$, в особенности N-дифенилфосфорилированные производные (Ia, R = Ph), которые обладают высокой экстракционной способностью к актинидам и лантанидам в азотнокислых средах [20-22]. В [23] мы показали, что природа заместителей у атома фосфора N-органофосфорилмочевин $R(R'O)P(O)NHC(O)NHC_8H_{17}-H$ – фосфонатных аналогов мочевин (Іb) – оказывает большое влияние на их экстракционную способность. Замена одной фенильной группы у атома фосфора на алкоксильный или ароксильный радикал, как оказалось, приводит к значительному снижению экстракционной способности по отношению к 4*f*-и 5*f*-элементам.

На экстракционную способность соединений класса фосфорилмочевин существенное влияние оказывает также природа заместителей у терминального атома азота. В работе [20] были исследованы N-(дифенилфосфорил)-N'-*н*-алкил(C₆-C₁₀)мочевины Ph₂P(O)NHC(O)NHC_{*n*}H_{2*n*+1} (Ia, *n* = 6–10) и установлено, что наибольшую эффективность по отношению к урану(VI), торию(IV), америцию(III) и европию(III) проявляет N'-*н*-октильное производное.

Известно, что фосфориламиды на основе 2амино-5,7-диметил-1,8-нафтиридина способны извлекать трехвалентные лантаниды из карбонатных сред [24, 25]. Подобный необычный эффект обусловлен наличием дополнительных центров координации, находящихся в азотсодержащем гетероциклическом фрагменте. В случае мочевин Іа следует предположить, что введение разнообразных азотсодержащих фрагментов в алкильный радикал, связанный с терминальным атомом азота, будет способствовать увеличению экстракционных свойств соответствующих лигандов. В настоящей работе исследовано влияние алифатических ω-азотсодержащих радикалов у атома азота N' дифенилфосфорилмочевин (Ia) на их экстракционную способность по отношению к лантанидам и актинидам.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

N-(Дифенилфосфорил)-N'-(*н*-пропил)мочевины, содержащие в ω -положении пропильного радикала гетероарильные и алкильные азотсодержащие заместители (**II**–**V**), были получены исходя из коммерчески доступных дифенилхлорфосфина и $R_N(CH_2)_3NH_2$ ($R_N =$ имидазол-1-ил, диэтиламино, пирид-2-ил, 2-оксопирролидино) соответственно с применением оригинальных трехстадийных "опе-роt" процессов, ключевой стадией которых является каталитический синтез дифенилфосфорилизоцианата (VI) (схема). Все стадии этих процессов протекают с достаточно высокой скоростью при комнатной температуре, а выходы аналитически и спектрально чистых целевых соединений приближаются к количественному.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 5 2021

Применявшиеся ω -R_N-*н*-пропиламины (Aldrich или Acros, 95–99+%) очищали перегонкой над твердым KOH. Дифенилхлорфосфин (Aldrich, 98%) перегоняли в вакууме непосредственно перед реакцией. Безводный MgCl₂ (Aldrich, ≥98%) использовали без дополнительной очистки. Циановокислый натрий (Aldrich, 96%) сушили 4 ч при 120°С в вакууме (1 Торр) над P₂O₅. Хлористый сульфурил (Acros, 98.5%) перегоняли непосредственно перед реакцией. Четыреххлористый углерод и ацетонитрил абсолютировали перегонкой над P₂O₅. Все операции проводили в атмосфере аргона.

Общая методика синтеза N-дифенилфосфорил-N'-(ω-R_N-н-пропил)мочевин II–V

К раствору 3.64 г (0.0165 моль) Ph₂PCl в 7 мл абсолютированного CCl₄ при перемешивании при комнатной температуре на магнитной мешалке в течение 30 мин добавляли по каплям раствор 2.67 г (0.0199 моль) SO₂Cl₂ в 5 мл абсолютированного CCl₄ и перемешивали еще 1 ч при этой температуре. Растворитель и другие летучие компоненты реакционной смеси удаляли в вакууме. Остаток растворяли в 30 мл абсолютированного MeCN. К полученному раствору добавляли 0.040 г (0.420 ммоль) мелко растертого безводного MgCl₂, перемешивали до полного растворения последнего, прибавляли 2.16 г (0.033 моль) NaOCN и перемешивали 1 ч при комнатной температуре. К полученной суспензии добавляли 0.0165 моль $R_N(CH_2)_3NH_2$ и перемешивали 1 ч при комнатной температуре, удаляли растворитель и к сухому остатку добавляли 60 мл дистиллированной воды, перемешивали в течение 1 ч при комнатной температуре. Осадок отфильтровывали, последовательно промывали смесью 17 мл дистиллированной воды и 3 мл MeCN, дистиллированной водой $(2 \times 20 \text{ мл})$ и сушили на воздухе.

N-Дифенилфосфорил-N'-[3-(имидазол-1-ил)пропил]мочевина (II).

Выход 99.6%. *t*_{пл} = 184–185°С.

	С	Н	Ν	Р
Найдено, %:	61.84;	5.74;	15.09;	8.27.
Для C ₁₉ H ₂₁ N ₄ O ₂ P				
вычислено, %:	61.95;	5.75;	15.21;	8.41.

Спектр ЯМР ¹Н ($\delta_{\rm H}$, м.д.): 1.80 квинтет (2H, CH₂CH₂CH₂, ³J_{H-H} = 6.9 Гц); 2.96 дт (2H, NHCH₂, ³J_{H-CH} = 6.7 Гц, ³J_{H-NH} = 6.1 Гц); 3.91 т (2H, CH₂имидазолил, ³J_{H-H} = 7.0 Гц); 6.65 т (1H, NHCH₂, ³J_{H-H} = 5.7 Гц); 6.88 т (1H, ⁴H-имидазолил, ³J_{H-H} ~ ~ ⁴J_{H-H} = 0.9 Гц); 7.13 т (1H, ⁵H-имидазолил, ³J_{H-H} ~ ~ ${}^{4}J_{\text{H-H}} = 1.1$ Гц); 7.48–7.54 м (4H, *m*-C₆H₅); 7.54–7.59 м (3H, *p*-C₆H₅ + 2 Н-имидазолил); 7.72–7.80 м (4H, *o*-C₆H₅); 8.45 шс [1H, NHP(O)].

Спектр ЯМР ¹³C{¹H} ($\delta_{\rm C}$, м.д.): 31.52 с (CH₂<u>C</u>H₂CH₂); 36.87 с (NHCH₂); 43.92 с (<u>C</u>H₂-имидазолил); 119.75 с (⁵С-имидазолил); 128.87 с (⁴Симидазолил); 129.01 д (*m*-C₆H₅, ³J_{C-P} = 12.7 Гц); 131.56 д (*o*-C₆H₅, ²J_{C-P} = 10.0 Гц); 132.28 д (*p*-C₆H₅, ⁴J_{C-P} = 2.7 Гц); 133.38 д (*unco*-C₆H₅, ¹J_{C-P} = 129.0 Гц); 137.69 с (²С-имидазолил); 155.53 с (C=O).

Спектр ЯМР ³¹Р{¹H} (б_р, м.д.): 15.48 с.

N-Дифенилфосфорил-N'-(3-диэтиламинопропил)мочевина (III).

Выход 90.9%. *t*_{пл} = 157−157.5^oС (хлороформ−гек-сан).

	С	Н	Ν	Р
Найдено, %:	64.39;	7.69;	11.21;	8.35.
Для C ₂₀ H ₂₈ N ₃ O ₂ P				
вычислено, %:	64.33;	7.56;	11.25;	8.29.

Спектр ЯМР ¹Н ($\delta_{\rm H}$, м.д.): 0.92 т (6H, CH₃, ³ $J_{\rm H-H}$ = = 7.0 Гц); 1.47 квинтет (2H, CH₂CH₂CH₂, ³ $J_{\rm H-H}$ = = 6.8 Гц); 2.32 т (2H, CH₂NEt₂, ³ $J_{\rm H-H}$ = 7.1 Гц); 2.41 кв (4H, CH₂Me, ³ $J_{\rm H-H}$ = 7.1 Гц); 3.01 дт (2H, NHCH₂, ³ $J_{\rm H-CH}$ = 6.4 Гц, ³ $J_{\rm H-NH}$ = 6.0 Гц); 6.55 т (1H, NHCH₂, ³ $J_{\rm H-H}$ = 5.3 Гц); 7.45–7.62 м (6H, *m*-+ *p*-C₆H₅); 7.75 дд (4H, *o*-C₆H₅, ³ $J_{\rm H-H}$ = 7.1 Гц, ³ $J_{\rm H-P}$ = 12.4 Гц); 8.34 шс [1H, NHP(O)].

Спектр ЯМР ¹³C{¹H} ($\delta_{\rm C}$, м.д.): 12.14 с (CH₃); 27.57 с (CH₂<u>C</u>H₂CH₂); 38.06 с (NHCH₂); 46.72 с (<u>C</u>H₂Me); 50.11 с (<u>C</u>H₂NEt₂); 128.97 д (*m*-C₆H₅, ³J_{C-P} = 12.2 Гц); 131.54 д (*o*-C₆H₅, ²J_{C-P} = 9.9 Гц); 132.22 с (*p*-C₆H₅); 133.50 д (*unco*-C₆H₅, ¹J_{C-P} = = 128.2 Гц); 155.35 с (C=O).

Спектр ЯМР ³¹Р{¹H} (δ_P , м.д.): 15.53 с.

N-Дифенилфосфорил-N'-[3-(пирид-2-ил)пропил]мочевина (IV).

Выход 98.4%. *t*_{пл} = 177–178°С.

	С	Н	Ν	Р
Найдено, %:	66.40;	5.72;	11.50;	8.38.
Для C ₂₁ H ₂₂ N ₃ O ₂ P				
вычислено, %:	66.48;	5.84;	11.08;	8.16.

Спектр ЯМР ¹Н ($\delta_{\rm H}$, м.д.): 1.76 квинтет (2H, CH₂CH₂CH₂, ³J_{H-H} = 7.2 Гц); 2.69 т (2H, CH₂C₅H₄N, ³J_{H-H} = 7.7 Гц); 3.02 дт (2H, NHCH₂, ³J_{H-CH} = 6.5 Гц, ³J_{H-NH} = 6.2 Гц); 6.65 т (1H, NHCH₂, ³J_{H-H} = 5.5 Гц); 7.19 дд (1H, ⁵H-C₅H₄N, ³ J_{H-H} = 7.3 Γц, ³ J_{H-H} = 5.0 Γμ); 7.21 д (1H, ³H-C₅H₄N, ³ J_{H-H} = 7.8 Γμ), 7.51 дт (4H, *m*-C₆H₅, ³ J_{H-H} = 7.4 Γμ, ⁴ J_{H-P} = 3.0 Γμ); 7.56 τ (2H, *p*-C₆H₅, ³ J_{H-H} = 6.8 Γμ); 7.68 дт (1H, ⁴H-C₅H₄N, ³ J_{H-H} = 7.7 Γц, ⁴ J_{H-H} = = 1.7 Γμ); 7.75 дд (4H, *o*-C₆H₅, ³ J_{H-H} = 7.1 Γμ, ³ J_{H-P} = = 12.3 Γμ); 8.41 шс [1H, NHP(O)], 8.47 шд (1H, ⁶H-C₅H₄N, ³ J_{H-H} = 4.1 Γμ).

Спектр ЯМР ¹³C{¹H} ($\delta_{\rm C}$, м.д.): 29.90 с (CH₂<u>C</u>H₂CH₂); 35.10 с (<u>C</u>H₂C₅H₄N); 39.16 с (NHCH₂); 121.70 с (⁵C-C₅H₄N); 123.17 с (³C-C₅H₄N); 129.00 д (*m*-C₆H₅, ³*J*_{C-P} = 13.3 Гц); 131.55 д (*o*-C₆H₅), ²*J*_{C-P} = 10.0 Гц); 132.24 с (*p*-C₆H₅); 133.47 д (*unco*-C₆H₅, ¹*J*_{C-P} = 129.4 Гц); 136.92 с (⁴C-C₅H₄N); 149.45 с (⁶C-C₅H₄N); 155.38 с (C=O); 161.40 с (²C-C₅H₄N).

Спектр ЯМР-³¹Р{¹H} (б_р, м.д.): 15.24 с.

N-Дифенилфосфорил-N'-[3-(2-оксопирролидино)пропил]мочевина (V).

Выход 97.2%. *t*_{пл} = 175–176°С.

	С	Н	Ν	Р
Найдено, %:	60.98;	6.45;	10.60;	7.53.
Для $C_{20}H_{24}N_3O_3P \cdot 0.5 H_2O$				
вычислено. %:	60.91:	6.39:	10.65:	7.85.

Спектр ЯМР ¹Н ($\delta_{\rm H}$, м.д.): 1.53 квинтет (2H, CH₂CH₂CH₂, ³J_{H-H} = 6.8 Гц); 1.89 квинтет (2H, ⁴Н-пирролидино, ³J_{H-H} = 7.5 Гц); 2.21 т (2H, ³Hпирролидино, ³J_{H-H} = 8.0 Гц); 2.95 дт (2H, NHC<u>H</u>₂, ³J_{H-CH} = 6.4 Гц, ³J_{H-NH} = 6.1 Гц); 3.15 т (2H, C<u>H</u>₂-пирролидино, ³J_{H-H} = 6.9 Гц); 3.28 т (2H, ⁵H-пирролидино, ³J_{H-H} = 7.0 Гц); 6.59 т (1H, N<u>H</u>CH₂, ³J_{H-H} = 5.7 Гц); 7.51 дт (4H, *m*-C₆H₅, ³J_{H-H} = = 7.4 Гц, ⁴J_{H-P} = 2.8 Гц); 7.56 т (2H, *p*-C₆H₅, ³J_{H-H} = = 7.0 Гц); 7.74 дд (4H, *o*-C₆H₅, ³J_{H-H} = 7.1 Гц, ³J_{H-P} = = 12.4 Гц); 8.50 шс [1H, NHP(O)].

Спектр ЯМР ¹³С{¹H} (δ_{C} , м.д.): 17.96 с (⁴С-пирролидино); 27.69 с (CH₂<u>C</u>H₂CH₂); 30.90 с (³С-пирролидино); 37.21 с (CH₂NH); 39.71 с (<u>C</u>H₂-пирролидино); 46.73 с (⁵С-пирролидино); 128.99 д (*m*-C₆H₅, ³J_{С-P} = 12.7 Гц); 131.55 д (*o*-C₆H₅, ²J_{С-P} = 10.0 Гц); 132.20 д (*p*-C₆H₅, ⁴J_{С-P} = 1.9 Гц); 133.48 д (*unco*-C₆H₅, ¹J_{С-P} = 128.9 Гц); 155.40 с [C(O)(NH)₂]; 174.43 с (²С-пирролидино).

Спектр ЯМР ³¹Р{¹H} (б_Р, м.д.): 15.06 с.

Спектры ЯМР ¹Н и ¹³С{¹Н} мочевин II–V регистрировали на приборе Bruker AV-600 (рабочая частота 600.22 МГц (¹H) и 150.925 МГц (¹³С{¹H})), а спектры ЯМР ³¹P{¹H} – на приборе Bruker AV-400 (рабочая частота 161.98 МГц) в растворе (CD₃)₂SO (c = 0.1 моль/л). Внутренний эталон для спектров

ЯМР ¹Н — сигналы остаточных протонов дейтерированного растворителя, а для спектров ЯМР $^{13}C{^{1}H}$ — сигналы ядер атомов углерода дейтерированного растворителя; внешний эталон для спектров ЯМР $^{31}P{^{1}H}$ — 85%-ная $H_{3}PO_{4}$. Отнесение сигналов в спектрах ЯМР ¹Н и $^{13}C{^{1}H}$ было проведено с использованием корреляций COSY, HMQC и HMBC.

Исследование экстракции металлов. В работе использовали хлороформ (х. ч.), арсеназо III (ч. д. а.), HNO₃ (ос. ч.), ГСО 8363-2003 закись-окись урана (аттестовано на содержание урана 84.784 ± $\pm 0.016\%$), Th(NO₃)₄ · 4H₂O (x. ч.), La(NO₃)₃ · 6H₂O $(x. y.), Nd(NO_3)_3 \cdot 6H_2O(x. y.), Ho(NO_3)_3 \cdot 6H_2O(x. y.),$ Yb(NO₃)₃ · 6H₂O (х. ч.). Растворы готовили объемно-весовым методом, водные растворы – в бидистиллированной воде. Растворы нитратов исследуемых элементов готовили растворением навески соответствующего нитрата в 0.01 моль/л растворе HNO₃. Концентрацию растворов нитратов металлов (0.1 ммоль/л) уточняли спектрофотометрически по методике [26] с использованием спектрофотометра Cary 5000 Scan (Varian). Концентрацию растворов HNO₃ определяли потенциометрическим титрованием 0.1 моль/л NaOH с использованием pH-метра/кондуктометра S470 SevenExcellence[™] (Mettler Toledo) с точностью ± 0.01 ед. pH. Электродную пару калибровали по стандартным буферным растворам с рН 1.68, 4.01 и 9.21 (Mettler Toledo) (значения при 20°С). Концентрацию раствора NaOH уточняли потенциометрическим титрованием с 0.1 моль/л HCl (фиксанал).

Исследование экстракции катионов металлов выполняли по следующей методике. В пробирку с притертой пробкой вносили 1.5 мл раствора азотной кислоты, концентрацию которой варьировали от 0.052 до 5.0 моль/л; 0.5 мл 0.1 ммоль/л раствора нитрата металла, 2 мл 0.01 моль/л раствора лиганда в хлороформе. Фазы перемешивали в течение 20 мин в ротаторе. Время установления равновесия экстракции проверяли, увеличивая время контакта фаз до 120 мин, коэффициенты распределения при этом не изменялись. Расслаивание фаз осуществляли центрифугированием. После разделения фаз концентрацию катионов металлов в водной фазе определяли спектрофотометрическим методом [26]. Для каждой концентрации проводили не менее трех независимых опытов. Погрешность результатов составила $\sim 20\%$, учитывая не исключенную и случайную составляющие. Соответственно доверительный интервал определяемых концентраций металлов в эксперименте составляет 0.002 ммоль/л.

Все эксперименты проводили при температуре $20 \pm 1^{\circ}$ С. Коэффициенты распределения при экстракции ($D = [M]_{opr}/[M]_{водн}$) определяли при постоянных концентрациях экстрагента (0.01 моль/л в хлороформе) и исходных концентрациях металла в эксперименте (0.025 ммоль/л в водной фазе).

Расчеты выполняли на суперкомпьютере MVS-50К Межведомственного суперкомпьютерного центра РАН (www.jscc.ru). Все расчеты проводили с использованием программы Природа-9 [27, 28] (функционал РВЕ [29, 30]). Комплексы с f-элементами изучали с использованием ссpVDZ-подобных базисов [27], для тяжелых атомов использовали скалярно-релятивистские базисные наборы, описанные в той же работе. Используемые одноэлектронные базисные наборы. представляющие собой сжатые наборы гауссовых функций с угловой частью, представленной действительными сферическими гармониками, являются орбитальными базисными наборами, которые применяли для решения уравнений Кона-Шэма. Вспомогательные базисные наборы использовали для расчета электронной плотности для быстрой оценки обменно-корреляционного вклада. Такой подход ускоряет вычисления без заметной потери точности [28]. Геометрию лиганда и его комплексов с *f*-элементами оптимизировали без ограничений по симметрии системы. Анализ колебательных спектров использовали для идентификации стационарных точек. Применение этой методики ранее позволило удовлетворительно объяснить исчезновение экстракционной способности в тетраалкилзамещенных диамидах 2,2'-бипиридил-6,6'-дикарбоновой кислоты [31].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Соединения II—V входят в состав элементоорганических лигандов класса фосфорилмочевин. Способность лигандов II—V к комплексообразованию с актинидами и лантанидами определяется не только природой заместителей у фосфорильной группы, но и у терминального атома азота. Представляло интерес изучить влияние этого фактора на экстракционные свойства лигандов II—V по отношению к ряду актинидов и лантанидов.

Введение в структуру фосфорилмочевины алкилимидазольного фрагмента приводит к выявлению кислотного характера взаимодействия при экстракции урана(VI) лигандом II. Как следует из рис. 1, при экстракции урана(VI) 0.01 моль/л раствором лиганда II в хлороформ значения коэффициентов распределения (D_U) уменьшаются с ростом концентрации HNO₃. В диапазоне концентраций азотной кислоты от 0.01 до 2 моль/л экстракционная способность лиганда II к лантану(III), так же как и к урану(VI), снижается. Однако в области концентраций до 1 моль/л HNO₃ уран(VI) и лантан(III) извлекаются почти одина-

Рис. 1. Зависимость логарифмов коэффициентов распределения Th(IV), U(VI), La(III), Nd(III), Ho(III) и Yb(III) при экстракции 0.01 моль/л раствором лиганда II в хлороформе.

ково (на ~15%), с ростом концентрации азотной кислоты уран(VI) практически не извлекается в хлороформ, а зависимость D_{La} проходит через минимум в области ~2 моль/л азотной кислоты. В аналогичных условиях эксперимента экстракционная способность лиганда II по отношению к Th(IV), Nd(III), Ho(III) и Yb(III), напротив, растет. Причем эти металлы по сравнению с U(VI) и La(III) экстрагируются значительно лучше. Так, Th(IV) и Nd(III) извлекаются в органическую фазу на ~35%, а Ho(III), Yb(III) – на ~40%.

Следует отметить, что поведение урана(VI) кардинально отличается от поведения тория или лантанидов при извлечении лигандом II. При общем сохранении координации иона уранила с атомами кислорода фосфиноксида наблюдается ряд различий в типе связывания лиганда с образованием более энергетически выгодного гидратированного комплекса $UO_2(HII)_2NO_3 \cdot H_2O$ [15]. Что касается тория и лантанидов, то они экстрагируются с образованием в органической фазе комплексов типа $M(HII)_2(NO_3)_x$ [15].

При экстракции ряда исследуемых актинидов и лантанидов 0.01 моль/л раствором соединения III в хлороформе коэффициенты распределения растут уже во всем диапазоне концентраций азотной кислоты (рис. 2). Соединение III, в молекуле которого у терминального атома азота содержится радикал с ω -диэтиламинной группировкой, при экстракции U(VI), Th(IV) и лантанидов проявляет свойства нейтрального соединения.

В области концентраций HNO_3 от 2 до 4 моль/л исследуемые лантаниды экстрагируются в раствор лиганда III в хлороформе немного лучше, чем U(VI), Th(IV) (рис. 2). Так, степень извлече-

Рис. 2. Зависимость логарифмов коэффициентов распределения Th(IV), U(VI), La(III), Nd(III), Ho(III) и Yb(III) при экстракции 0.01 моль/л раствором лиганда III в хлороформе.

ния лантанидов в области 4 моль/л HNO₃ в одну стадию составляет ~30%, в то время как экстракционная способность лиганда III по отношению к U(VI), Th(IV) – ~15%.

Соединение IV, в терминальную часть молекулы которого встроен ω-(пирид-2-ил)пропильный радикал, проявляет основные свойства. При экстракции трехвалентных лантанидов 0.01 моль/л раствором лиганда IV в хлороформе коэффициенты распределения растут с повышением кислотности среды более резко по сравнению с лигандом III. При этом, как и в случае с лигандом III, экстракционная способность фосфорилмочевины IV по отношению к лантанидам несколько выше, чем к актинидам (рис. 3). La(III), Nd(III), Но(III) и Yb(III) в области концентраций от 2 до 4 моль/л HNO₃ извлекаются в одну стадию на ~30%; Th(IV) в этих условиях экстрагируется лишь незначительно. Коэффициенты распределения урана(VI) $(D_{\rm II})$ растут с увеличением кислотности среды с разной скоростью. Так, до 1.5 моль/л HNO₃ рост $D_{\rm U}$ незначителен, но с дальнейшим повышением концентрации HNO₂ коэффициенты распределения урана сравнимы с D лантанидов.

Иная картина наблюдается при экстракции актинидов и лантанидов 0.01 моль/л раствором соединения V в CHCl₃ (рис. 4). Экстракционная способность лиганда V, содержащего у терминального атома азота ω -(2-оксопирролидино)пропильный фрагмент, по отношению и к актинидам, и к лантанидам оказалась значительно выше, чем у других описанных в данной работе производных N-(дифенилфосфорил)мочевин, причем U(VI) и Th(IV) извлекаются эффективнее

Рис. 3. Зависимость логарифмов коэффициентов распределения Th(IV), U(VI), La(III), Nd(III), Ho(III) и Yb(III) при экстракции 0.01 моль/л раствором лиганда IV в хлороформе.

лантанидов. Лантаниды, входящие в иттриевую подгруппу (Ho(III) и Yb(III)), экстрагируются значительно лучше (~60% извлечения в раствор соединения V в одну стадию), чем La(III) и Nd(III), принадлежащие цериевой подгруппе (~45% извлечения). Торий(IV) и уран(VI) извлекаются в органическую фазу с коэффициентами распределения 4.5 и 3.9 соответственно, что составляет ~80% экстракции в одну стадию. Наблюдается также симбатный рост коэффициентов распределения и актинидов, и лантанидов при повышении концентрации азотной кислоты.

Методом сдвига равновесия (рис. 5) был определен состав экстрагируемых комплексов урана(VI), тория(IV) и неодима(III) с лигандом V, содержащим ω -(2-оксопирролидино)пропильный радикал.

Сольватное число для урана(VI) близко к 2, для тория — 1.5, а для неодима — 1. Следовательно, в указанных условиях неодим(III) экстрагируется в виде моносольвата, торий(IV) — в виде моно- и дисольватов, а уран(VI) — в виде дисольвата:

$$Nd^{3+} + 3NO_3^- + L = Nd(NO_3)_3 \cdot L,$$
 (1)

$$Th^{4+} + 4NO_3 + L = Th(NO_3)_4 \cdot L,$$
 (2)

$$Th^{4+} + 4NO_3 + 2L = Th(NO_3)_4 \cdot 2L,$$
 (3)

$$UO_2^{2+} + 2(NO_3^-) + 2L = UO_2(NO_3) \cdot 2L.$$
 (4)

Для объяснения разницы в экстракционной способности в серии лигандов проведено квантово-химическое моделирование строения и энергии координации ионов *f*-элементов с лигандом V методом теории функционала плотности. Предварительное исследование лиганда показало, что

Рис. 4. Зависимость логарифмов коэффициентов распределения Th(IV), U(VI), La(III), Nd(III), Ho(III) и Yb(III) при экстракции 0.01 моль/л раствором лиганда V в хлороформе.

наибольший отрицательный заряд (табл. 1) наблюдается для атома кислорода фосфиноксидной группы, тогда как для атомов азота заряды систематически ниже. Атомы кислороды двух карбонильных групп, хотя и несут близкие отрицательные заряды, неравноценны. Атом кислорода карбоксамидной группы по сравнению с атомом кислорода карбамидного фрагмента несет немного больший по величине отрицательный заряд, также являясь привлекательной позицией для дополнительной координации иона металла.

Координация лиганда V с ионом уранила может проходить по монодентатному, бидентатному и тридентатному типу. Все три типа координации могут быть реализованы при образовании комплексов с ионом уранила (табл. 2). Энергия взаимодействия лиганда V с ионом уранила, катионом $UO_2(NO_3)^+$ и молекулой $UO_2(NO_3)_2$ сильно зависит от типа координации лиганда. Координация атома кислорода карбоксамидной группы энергетически менее выгодна, чем фосфиноксидного атома кислорода, но существенно выигрышнее по энергии по сравнению с координацией атома кислорода карбамидного фрагмента. При сравнении энергетического выигрыша (уравнение (7)) бидентатной координации лиганда с карбамидным и фосфиноксидным атомами кислорода и

Рис. 5. Логарифмическая зависимость коэффициентов распределения урана(VI), тория(IV) и неодима(III) от логарифма концентрации лиганда V.

монодентатной координации с амидным и фосфиноксидным атомами кислорода монодентатная координация оказывается даже более выигрышной, но всего на 0.88 ккал/моль. В случае стерически не нагруженного катионного комплекса выигрыш в энергии при монодентатной координации минимален, однако включение в координацию амидного атома кислорода незначительно проигрывает включению в координацию атома кислорода фосфиноксидной группы (уравнение (6)). Для свободного уранил-катиона глобальному минимуму на поверхности потенциальной энергии (ППЭ) отвечает структура, в которой в координацию включены амидные атомы кислорода обоих лигандов.

В отличие от стерически не нагруженного свободного иона уранила, на ППЭ комплекса нитрата тория с реагентом V не наблюдается тридентатной координации лиганда (табл. 3); для указанной системы наблюдается только моно- и бидентатная координация. Для комплексов, содержащих два лиганда, наблюдается только монодентатная координация последнего, и на ППЭ не существует комплексов с координацией по атому кислорода карбамидного фрагмента. Хотя координация амидного атома кислорода приводит к меньшему выигрышу в энергии, чем фосфи-

Способ	P=O	Карбамидный СО	Амидный СО*	Амидный N	Карбамидный NHR	Карбамидный NHP
Хиршфелд	-0.3346	-0.2610	-0.2694	-0.0204	-0.0819	-0.1318
Малликен	-0.4818	-0.3837	-0.3848	-0.3032	-0.4514	-0.3405

Таблица 1. Заряды по Хиршфелду и Малликену на некоторых гетероатомах (q)

* Здесь и далее СО* – группа С=О амидного фрагмента молекулы.

Номер	Реакция	Энергия взаимодействия, ккал/моль			
5	5 $UO_2^{2+} \xrightarrow{+2L} UO_2(L)_2^{2+}$	CO*CO CO*COPO	COPO COPO	C) C)	0* 0*
		-368.21	-349.60	-27	6.00
6	$6 \qquad UO_2(NO_3)^+ \xrightarrow{+2L} UO_2(L)_2(NO_3)^+$	CO*PO CO*	CO* CO*	COPO COPO	COPO PO
		-158.70	-129.44	-151.67	-160.34
7	7 $UO_2(NO_3)_2 \xrightarrow{+2L} UO_2(L)_2(NO_3)_2$	COPO PO		C	0* 0*
		-54	1.00	-54	4.88

Таблица 2. Электронные энергии взаимодействия лиганда V с катионом уранила, моно- и динитратами уранила, ккал/моль

Таблица 3. Энергии взаимодействия лиганда V с нитратом тория в стехиометрических соотношениях 1 : 1 и 2 : 1, ккал/моль

Номер	Реакция	Энергия взаимодействия, ккал/моль		
8	8 Th (NO) \downarrow Th (L)(NO)	CO*	СОРО	CO*PO
$\delta \qquad \qquad \text{In}(\text{NO}_3)_4 \xrightarrow{\text{AD}} \text{In}(\text{L})(\text{NO}_3)_4 \qquad \qquad$	-32.41	-40.67	-52.99	
9 $\operatorname{Th}(\mathrm{NO}_3)_4 \xrightarrow{+2L} \operatorname{Th}(\mathrm{L})_2(\mathrm{NO}_3)_4$		CO*	РО	
	CO*	РО		
	· · · · · · · · · · · · · · · · · · ·	-62.28	-68	8.84

ноксидного атома кислорода, эта разница невелика (уравнение (9)). Для бидентатной координации также наблюдается существенно больший выигрыш при включении в координацию амидного атома кислорода (рис. 6а), а не атома кислорода карбамидной группы, несмотря на возникающий в последнем случае устойчивый шестичленный хелатный металлоцикл (рис. 6б). На ППЭ комплекса реагента V с нитратом неодима наблюдаются три минимума, которые отвечают тридентатной и бидентатной координации лиганда (табл. 4). Глобальному минимуму отвечает тридентатный тип координации, при котором все три донорных атома включены в координацию с металлом. В отличие от комплекса тория, образование шестичленного хелатного металло-

Рис. 6. Строение комплексов нитрата тория с лигандом V, содержащих координированную с металлом амидную (а) и карбамидную (б) группы.

Номер	Реакция	Энергия взаимодействия, ккал/моль		
10 $Nd(NO_3)_3 \xrightarrow{+L} Nd(L)(NO_3)_3$	CO*CO	CO*COPO	СОРО	
	-39.54	-51.75	-43.36	

Таблица 4. Энергии взаимодействия лиганда V с нитратом неодима, ккал/моль

цикла при бидентатной координации неодима с атомами кислорода карбамидной и фосфиноксидной групп энергетически более выгодно, чем бидентатная координация металла с двумя атомами кислорода карбонильных групп. Вероятно, это вызвано меньшими стерическими затруднениями вокруг иона металла, окруженного тремя противоионами.

Таким образом, можно однозначно установить, что именно присутствие в молекуле экстрагента амидной группы приводит к значительному повышению экстракционных характеристик за счет энергетически выгодной координации иона металла с атомом кислорода карбоксамидной группы.

ЗАКЛЮЧЕНИЕ

В ряду исследованных соединений наилучшими экстракционными свойствами обладает N-(дифенилфосфорил)мочевина V, содержащая ω -(2-оксопирролидино)пропильный радикал у терминального атома азота, что может быть предпосылкой для создания технологии переработки техногенных отходов различного происхождения на базе этого лиганда.

БЛАГОДАРНОСТЬ

Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации с использованием научного оборудования Центра исследования строения молекул ИНЭОС РАН. Выполнение расчетов поддержано грантом РНФ (№ 16-13-10451). Расчеты выполнены на суперкомпьютере MVS-50K Межведомственного суперкомпьютерного центра РАН (www.jscc.ru).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Розен А.М., Крупнов Б.В. // Успехи химии. 1996. Т. 65. № 11. С. 1052. [Rozen А.М., Krupnov B.V. // Russ. Chem. Rev. 1996. V. 65. № 11. Р. 973. https://doi.org/10.1070/RC1996v065n11ABEH000241]
- Leoncini A., Huskens J., Verboom W. // Chem. Soc. Rev. 2017. V. 46. № 23. https://doi.org/10.1039/c7cs00574a

- 3. *Horwitz E.P., Kalina D.G., Kaplan L. et al.* // Separation Sci. Technol. 1982. V. 17. № 10. P. 1261. https://doi.org/10.1080/01496398208060649
- 4. *Jensen M., Chiarizia R., Ulicki J.S. et al.* // Solvent Extr. Ion Exch. 2015. V. 33. № 4. P. 329. https://doi.org/10.1080/07366299.2015.1046292
- Ta A.T., Hegde G.A., Etz B.D. et al. // J. Phys. Chem. B. 2018. V. 122. № 22. P. 5999. https://doi.org/10.1021/acs.ipcb.8b03165
- 6. *Mahanty B., Mohapatra P.K., Leoncini A. et al.* // Separ. Purif. Technol. 2019. V. 229. № 15. P. 115846. https://doi.org/10.1016/j.seppur.2019.115846
- 7. *Mohapatra P.K., Kandwal P., Iqbal M. et al.* // Dalton Trans. 2013. V. 42. P. 4343. https://doi.org/10.1039/c3dt32967d
- Sengupta A., Mohapatra P.K., Pathak P. et al. // New J. Chem. 2017. V. 41. P. 836. https://doi.org/10.1039/C6NJ03102A
- 9. *Braley J.C., Lumetta G.J., Carter J.C. et al.* // Solvent Extr. Ion Exch. 2013. V. 31. № 6. P. 567. https://doi.org/10.1080/07366299.2013.785912
- Sasaki Y., Umetani S. // J. Nucl. Sci. Technol. 2006. V. 43. № 7. P. 794. https://doi.org/10.1080/18811248.2006.9711161
- 11. Sharova E.V., Artyushin O.I., Odinets I.L. // Russ. Chem. Rev. 2014. V. 83. № 2. P. 95. https://doi.org/10.1070/RC2014v083n02ABEH004384
- Туранов А.Н., Карандашев В.К., Матвеева А.Г. и др. // Радиохимия. 2017. Т. 59. № 5. С. 430. [*Turanov A.N., Kadandashev V.K., Matveeva A.G. et al.* // Radiochemistry. 2017. V. 59. № 5. Р. 490.] https://doi.org/10.1134/S1066362217050083
- Dam H.H., Reinhoudt D.N., Verboom W. // Chem. Soc. Rev. 2007. V. 36. P. 367. https://doi.org/10.1039/B603847F
- Tatarinov D.A., Mironov V.F., Kostin A.A. et al. // Phosphorus, Sulfur, and Silicon. 2011. V. 186. P. 694. https://doi.org/10.1080/10426507.2010.515955
- 15. Борисова Н.Е., Сафиулина А.М., Лизунов А.В. и др. // Журн. неорган. химии. 2019. Т. 64. № 3. С. 330. [Borisova N.E., Safiullina А.М., Lizunov A.V. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 3. P. 414.] https://doi.org/10.1134/S0036023619030057
- 16. *Turanov A.N., Karandashev V.K., Baulin V.E. et al.* // Solvent Extr. Ion Exch. 2009. V. 27. № 4. P. 551. https://doi.org/10.1080/07366290903044683
- Туранов А.Н., Карандашев В.К., Артюшин О.И. и др. // Журн. неорган. химии. 2020. Т. 65. № 8. С. 1099. [*Turanov A.N., Karandashev V.K., Artyushin O.I. et al.* // Russ. J. Inorg. Chem. 2020. V. 65. № 8. Р. 1226. https://doi.org/10.1134/S0036023620080185
- 18. Демин С.В., Жилов В.И., Нефедов С.Е. и др.// Журн. неорган. химии. 2012. Т. 57. № 6. С. 970. [Demin S.V., Nefedov S.E., Zhilov V.I. et al. // Russ. J. Inorg. Chem.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 5 2021

2012. V. 57. № 6. P. 897.]

https://doi.org/10.1134/S0036023612060095

- 19. Туранов А.Н., Карандашев В.К., Артюшин О.И. и др. // Журн. неорган. химии. 2020. Т. 65. № 6. С. 837. [*Turanov A.N., Karandashev V.K., Artyushin O.I. et al.* // Russ. J. Inorg. Chem. 2020. V. 65. № 6. Р. 905.] https://doi.org/10.31857/S0044457X20060240
- Тананаев И.Г., Летюшов А.А., Сафиулина А.М. и др. // Докл. АН. 2008. Т. 422. № 6. С. 762. [Tananaev I.G., Letyushov A.A., Safiulina A.M. et al. // Dokl. Chem. 2008. Т. 422. № 2. Р. 260.] https://doi.org/10.1134/S0012500808100054
- 21. Горюнов Е.И., Шипов А.Э., Горюнова И.Б. и др. // Докл. АН. 2011. Т. 438. № 4. С. 480. [Goryunov E.I., Shipov A.E., Goryunova I.B. et al. // Dokl. Chem. 2011. V. 438. № 2. Р. 151.] https://doi.org/10.1134/S0012500811060012
- 22. Safiulina A.M., Goryunov E.I., Letyushov A.A. et al. // Mendeleev Commun. 2009. V. 19. P. 263. https://doi.org/10.1016/j.mencom.2009.09.010
- Горюнов Е.И., Баулина Т.В., Горюнова И.Б. и др. // Изв. АН. Сер. химическая. 2014. № 1. С. 141. [Goryunov E.I., Baulina T.V., Goryunova I.B. et al. // Russ. Chem. Bull. 2014. V. 63. № 1. Р. 141.] https://doi.org/10.1007/s11172-014-0408-y
- 24. Лемпорт П.С., Горюнов Е.И., Горюнова И.Б. и др. // Докл. АН. 2009. Т. 425. № 6. С. 773. [Lemport P.S.,

Goryunov E.I., Goryunova I.B. et al. // Dokl. Chem. 2009. V. 425. № 2. P. 84.] https://doi.org/10.1134/S0012500809040053

- Сафиулина А.М., Синегрибова О.А., Матвеева А.Г. и др. // Журн. неорган. химии. 2012. Т. 57. № 1. С. 115. [Safiulina A.M., Grigoriev M.S., Nifant'ev E.E. et al. // Russ. J. Inorg. Chem. 2012. V. 57. № 1. Р. 108.] https://doi.org/10.1134/S0036023612010196
- 26. *Саввин С.Б.* Органические реагенты группы арсеназо III. М.: Атомиздат, 1971. 352 с.
- 27. *Laikov D.N.* // Chem. Phys. Lett. 2005. V. 416. № 1–3. P. 116. https://doi.org/10.1016/j.cplett.2005.09.046
- 28. Laikov D.N. // Chem. Phys. Lett. 1997. V. 281. № 1–2. P. 151. https://doi.org/10.1016/S0009-2614(97)01206-2
- Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865. https://doi.org/10.1103/PhysRevLett.77.3865
- Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1997. V. 78. P. 1396. https://doi.org/10.1103/PhysRevLett.78.1396
- Borisova N.E., Kostin A.A., Eroshkina E.A. et al. // Eur. J. Inorg. Chem. 2014. P. 2219. https://doi.org/10.1002/ejic.201301271