= НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ

УДК 546.02:54.05

ФОРМИРОВАНИЕ НАНОКРИСТАЛЛОВ $Bi_{m+1}Fe_{m-3}Ti_{3}O_{3m+3}$ (m = 4-9) ПРИ ТЕРМИЧЕСКОМ РАЗЛОЖЕНИИ СООСАЖДЕННЫХ ГИДРОКСИДОВ

© 2021 г. Н. А. Ломанова^{*a*, *}, М. В. Томкович^{*a*}, А. В. Осипов^{*b*}, В. Л. Уголков^{*b*}, В. В. Панчук^{*c*, *d*}, В. Г. Семенов^{*c*, *d*}, В. В. Гусаров^{*a*}

^аФизико-технический институт им. А.Ф. Иоффе РАН, Политехническая ул., 26, Санкт-Петербург, 194021 Россия

^bИнститут химии силикатов им. И.В. Гребенщикова РАН, наб. Макарова, 2, Санкт-Петербург, 199034 Россия

^сСанкт-Петербургский государственный университет,

Университетская наб., 7–9, Санкт-Петербург, 199034 Россия

^dИнститут аналитического приборостроения РАН, ул. Ивана Черных, 31—33, Санкт-Петербург, 198095 Россия

*e-mail: natus@mail.ioffe.ru

Поступила в редакцию 30.11.2020 г. После доработки 29.12.2020 г. Принята к публикации 30.12.2020 г.

Нанокристаллы фаз Ауривиллиуса $\operatorname{Bi}_{m+1}\operatorname{Fe}_{m-3}\operatorname{Ti}_3\operatorname{O}_{3m+3}$ (m=4-9) синтезированы термическим разложением соосажденной смеси гидроксидов висмута, железа и титана. Средний размер кристаллитов в нанопорошках зависит от m и составляет 50–100 нм. Образцы охарактеризованы с помощью синхронного термического и элементного анализа, рентгенодифракционного и мессбауэровского исследований. Установлено, что начало кристаллизации $\operatorname{Bi}_{m+1}\operatorname{Fe}_{m-3}\operatorname{Ti}_3\operatorname{O}_{3m+3}$ находится вблизи температуры плавления неавтономной (поверхностной) фазы на основе оксида висмута (450°С). Показано, что соединения $\operatorname{Bi}_{m+1}\operatorname{Fe}_{m-3}\operatorname{Ti}_3\operatorname{O}_{3m+3}$ с $m \le 5$ кристаллизуются в одну стадию. На первом этапе образования соединений с m > 5 формируется фаза Ауривиллиуса с $m \approx 5$ и аморфная фаза. На втором этапе компоненты аморфной фазы встраиваются в перовскитоподобные блоки фазы Ауривиллиуса с $m \approx 5$, скорее всего, через их наружные перовскитоподобные слои. После дальнейшей термообработки происходит перераспределение компонентов между наружными и внутренними слоями перовскитоподобных блоков. Обнаруженная зависимость механизма формирования нано-кристаллов $\operatorname{Bi}_{m+1}\operatorname{Fe}_{m-3}\operatorname{Ti}_3\operatorname{O}_{3m+3}$ от их состава может быть использована в технологии направленного синтеза нанокристаллических мультиферроиков.

Ключевые слова: перовскитоподобные оксиды, фазы Ауривиллиуса, BiFeO₃, нанокристаллы, термическое поведение, мессбауэровская спектроскопия **DOI:** 10.31857/S0044457X21050093

введение

Сложные перовскитоподобные оксиды семейства фаз Ауривиллиуса $\operatorname{Bi}_{m+1}\operatorname{Fe}_{m-3}\operatorname{Ti}_3\operatorname{O}_{3m+3}$ вызывают большой интерес как потенциальные материалы для магнитоэлектроники, фотовольтаики, катализа и т.д. [1–7]. Элементарная ячейка структуры этих соединений состоит из чередующихся висмут-кислородных слоев ($\operatorname{Bi}_2\operatorname{O}_2$)²⁺ и перовскитоподобных блоков ($\operatorname{Bi}_{m+1}\operatorname{Fe}_{m-3}\operatorname{Ti}_3\operatorname{O}_{3m+1}$)²⁻, состоящих из *m* монослоев. Среди известных фаз Ауривиллиуса гомологический ряд $\operatorname{Bi}_{m+1}\operatorname{Fe}_{m-3}\operatorname{Ti}_3\operatorname{O}_{3m+3}$ обладает наибольшей вариабельностью состава, так как *m* может изменяться от 3 до 9, принимая в том числе и дробные значения [5].

В работе [8] указывается на близость структурных параметров перовскитоподобного блока многослойных фаз Ауривиллиуса (m > 7) и перовскитоподобного BiFeO₃. Последний поэтому может рассматриваться как некоторый предел, к которому приближается гомологический ряд Bi_{m+1}Fe_{m-3}Ti₃O_{3m+3} при $m \to \infty$. В работах [8, 9] понижение термической устойчивости фаз Bi_{m+1}Fe_{m-3}Ti₃O_{3m+3} при увеличении m связывается с метастабильным характером BiFeO₃ [10–13]. Сложность синтеза многослойных фаз Ауривиллиуса (m > 5) обусловлена большим содержанием BiFeO₃ в перовскитоподобном блоке их структуры [14].

Особенности формирования нанокристаллов $Bi_{m+1}Fe_{m-3}Ti_3O_{3m+3}$ с m < 5 в условиях методов "мягкой химии" описаны во многих работах [15–25]. В работе [24] описан механизм формирования $Bi_7Fe_3Ti_3O_{21}$ (m = 6) в гидротермальных

условиях через серию промежуточных продуктов c m < 6, имеющих существенные различия в морфологии частиц. Следует отметить, что такая этапность характерна и для синтеза фаз Ауривиллиуса $Bi_{m+1}Fe_{m-3}Ti_{3}O_{3m+3}$ с большим числом слоев в перовскитоподобном блоке методом твердофазных химических реакций [14, 26]. Однофазный продукт на основе многослойных фаз Ауривиллиуса сложно получить как высокотемпературным методом твердофазного синтеза [8, 26, 27], так и при применении низкотемпературных методов [25]. По-видимому, это связано с потенциальной возможностью формирования при их синтезе многокомпонентной смеси на основе фаз, реализующихся в системе $Bi_2O_3 - Fe_2O_3 - TiO_2$. К ним относятся, например, соединения Bi₁₂TiO₂₀/Bi₂₅FeO₃₉, Bi₂Ti₂O₇, BiFeO₃, Bi₂Fe₄O₉ и др. [2, 9, 10, 13, 25]. Изучение особенностей формирования слоистой перовскитоподобной структуры в условиях "мягкой химии" является важной задачей для развития технологии материалов на основе фаз Ауривиллиуса.

Как показано в ряде работ [28-37], для определения механизма химических превращений в сложных железосодержащих перовскитоподобных оксидах полезную информацию дает мессбауэровское исследование состояния железа. В работах [3, 6, 27, 29, 31] установлено, что важным фактором, влияющим на устойчивость фаз Ауривиллиуса, является распределение катионов Fe³⁺ и Ti⁴⁺ по внутренним и внешним позициям перовскитоподобного блока, в частности, показано, что характер распределения ионов Fe³⁺ в структуре резко изменяется при $m \approx 5$, а при $m \rightarrow 9$ их распределение по структурно-неэквивалентным позициям приближается к чисто случайному, при этом устойчивость фаз Ауривиллиуса понижается. Связь между процессом образования нанокристаллов $Bi_{m+1}Fe_{m-3}Ti_{3}O_{3m+3}$ и распределением катионов в структуре ранее не исследовалась.

Целью работы являлось определение механизмов формирования нанокристаллических фаз Ауривиллиуса состава $\text{Bi}_{m+1}\text{Fe}_{m-3}\text{Ti}_3\text{O}_{3m+3}$ (m = 4-9) при термическом разложении соосажденной смеси гидроксидов висмута, железа и титана.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез образцов проводили в несколько этапов. На первом этапе готовили растворы исходных компонентов. В качестве исходных веществ использовали пятиводный нитрат висмута $Bi(NO_3)_3 \cdot 5H_2O$ квалификации "ч.", девятиводный нитрат железа(III) Fe(NO_3)_3 · 9H_2O квалификации "ч." и тетраизопропоксид титана Ti[OCH(CH_3)_2] (97%). Нитраты растворяли в разбавленной азотной кислоте с концентрацией 0.1 моль/л (pH < 2), тетраизопропоксид титана для предотвращения гидролиза растворяли в этиловом спирте. Полученные исходные растворы смешивали в пропорциях, обеспечивающих соотношение катионов железа, висмута и титана, отвечающее формулам соединений $Bi_{m+1}Fe_{m-3}Ti_{3}O_{3m+3}$ (m = 4, 5, 6, 7, 8, 9). Далее растворы медленно вливали в раствор аммиака с постоянным перемешиванием и контролем значения pH > 8. Полученные осадки промывали на фильтре дистиллированной водой и высушивали. Полученные таким образом порошки подвергали термообработке в режиме нагрев-изотермическая выдержка-охлаждение в диапазоне температур 450-890°C в зависимости от степени завершенности процесса образования целевого продукта. Изотермическая выдержка составляла 1 ч при каждой температуре.

Элементный состав образцов определяли методом энергодисперсионного микроанализа (сканирующий электронный микроскоп FEI Quanta 200 с приставкой EDAX).

По данным рентгеновской дифракции (дифрактометр Shimadzu XRD-7000, Cu K_{α} -излучение, $\lambda = 15.401$ нм) определяли фазовое состояние образцов и рассчитывали параметры элементарных ячеек с использованием программного комплекса PDWin 4.0. Размеры кристаллитов определяли по формуле Шеррера на основании данных об уширении линий рентгеновской дифракции.

Термическое поведение соосажденных гидроксидов исследовали методом дифференциальной сканирующей калориметрии (ДСК) совместно с термогравиметрией (ТГ) в диапазоне температур 25–1250°С в воздушной среде со скоростью нагрева 10 град/мин (анализатор Netzsch STA 429). Анализ проводили в режиме термопрограммируемого нагрева и охлаждения образцов.

Мессбауэровское исследование выполняли на спектрометре Wissel в геометрии на поглощение при комнатной температуре (источник ⁵⁷Со в матрице родия, величины изомерных сдвигов (*IS*) определены относительно *IS* α -Fe).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Нанокристаллические порошки фаз Ауривиллиуса, номинальное соотношение элементов в которых задавалось по стехиометрии соединений $Bi_{m+1}Fe_{m-3}Ti_3O_{3m+3}$ с m = 4, 5, 6, 7, 8 и 9 (табл. 1, образцы 1, 2, 3, 4, 5 и 6 соответственно), получали разложением соосажденых гидроксидов.

Термограммы (ДСК/ТГ) высушенных осадков показаны на рис. 1, из которого видно, что до 450°С на кривых ТГ фиксируются два накладывающихся эффекта потери массы, связанные, повидимому, с потерей адсорбированной воды и разложением гидроксидов. На кривых ДСК при ~450°С фиксируется начало хорошо выраженно-го экзотермического эффекта с экстремумом око-

Габли	ua 1. CocraB, ycn	овия си	интеза, размерные пај	раметры нанокрист	чллов фаз Ауривил	шуса Ві _{<i>m</i> -}	$+ {}_{1}{\rm Fe}_{m-3}{\rm Ti}_{3}{\rm O}_{3m+1}$	3	
Ž	Номинальный состав	ш	Состав по данным ЕDX*	Примесные и промежуточные фазы	Метод синтеза	$T_{s0}^{**, \circ C}$	$T_{\text{cnhr}}^{***, \circ}$ C; t, t	d (D)****, нм	Источник
1	${\rm Bi_4Ti_3O_{12}}$	3	I	I	Соосаждение	450	450; 10/800; 1	50/124	[25]
				Bi_2O_3	Соосаждение	600	750; 2	20	[15]
				I	Гидротермальный	100	180; 48	>100	[16]
				$Bi_2Ti_2O_7$	Соосаждение	470	650; 1	~ 100	[18]
-	$Bi_5FeTi_3O_{15}$	4	${\rm Bi}_{4.9}{\rm Fe}_{1.1}{\rm Ti}_{3.0}{\rm O}_{15}$	Ι	Соосаждение	450	890; 1	>100	Ι
				Ι	Гидротермальный	180	006	>100	[20]
				$Bi_2O_2CO_3$	Золь-гель	500	180; 72	>100 (микроцветы)	[22]
							160; 15	>100 (наноцветы)	
							160; 15	20-40 (наночастицы) 100 (наностержни наностои)	[22]
2	${ m Bi_6Fe_2Ti_3O_{18}}$	S	Bi _{5.6} Fe _{1.4} Ti _{3.0} O _{16.6}	I	Соосаждение	450	890; 1	>100	I
"	Ri_Fe,Ti,O	9	Ri, Fe, Ti, O.	Φ Avnus $c m < 6$	Соосажление	460	850-1	86	I
ς Γ	12/13/13/21		D _{16.8} 1 C _{2.6} 1 _{13.0} C _{20.1}	u. Aypub. C m > 0 Bi ₂ Fe ₄ O ₉			1,000	00	
				Bi ₄ Ti ₃ O ₁₂ Bi ₅ FeTi ₃ O ₁₅ Bi ₂₅ FeO ₄₀	Гидротермальный	200	200; 48	>100 (наношельф)	[15]
4	${\rm Bi_8Fe_4Ti_3O_{24}}$	٢	$Bi_{7.6}Fe_{3.9}Ti_{3.0}O_{23.3}$	ф. Аурив. с <i>m</i> < 6 Bi ₂ Fe ₄ O ₉	Соосаждение	460	850; 1	80	I
5	Bi ₉ Fe ₅ Ti ₃ O ₂₇	∞	$Bi_{9.7}Fe_{5.5}Ti_{3.0}O_{29.0}$	ф. Аурив. с <i>m</i> < 6 Bi ₂ Fe ₄ O ₉	Соосаждение	460	850; 1	75	I
9	$Bi_{10}Fe_6Ti_3O_{30}$	6	$Bi_{10.8}Fe_{7.3}Ti_{3.0}O_{33.2}$	ф. Аурив. с <i>m</i> < 6 Bi ₂ Fe ₄ O ₉	Соосаждение	460	850; 1	53	I
	BiFeO ₃	8	I	$\mathrm{Bi}_{25}\mathrm{FeO}_{39}$ $\mathrm{Bi}_{2}\mathrm{Fe}_4\mathrm{O}_9$	Соосаждение	600	600; 0.1–0.15	<50	[46]
				Bi ₂₅ FeO ₃₉ Bi ₂ O ₂ CO ₃	Раств. горен.	450	550; 0.2 420	70 20	[42]
				Ι	Гидротерм.	420		20	[36]
				${ m Bi}_{25}{ m FeO}_{39}$	у3-распыление	500	750	>100 (полые сферы)	[45]
* C * T T *** T *** *	редний элементнь 60 – температура н: 2011 – температура 2011 – размер крист	ый соста ачала к синтеза галлито	ив образца с расчетом с ристаллизации. а. в или частиц целевого	одержания кислоро. продукта.	ца по зарядовой комп	іенсации.			

660

ЛОМАНОВА и др.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 5

²⁰²¹

ло 500°С, относящегося к процессу формирования кристаллических фаз Ауривиллиуса в системе Bi_2O_3 — Fe_2O_3 — TiO_2 из продуктов дегидратации соосажденных гидроксидов. Это подтверждает анализ приведенных на рис. 2а рентгеновских дифрактограмм, на которых после термообработки соосажденной смеси при 450°С (1 ч) наблюдаются хорошо выраженные рефлексы соединений со структурой фаз Ауривиллиуса. Характер фоновой кривой на дифрактограммах указывает на присутствие в образцах также и аморфной фазы.

Следует отметить, что несмотря на то, что максимум тепловыделения на термограммах всех образцов находится в одной температурной области, вид зависимости экзотермического эффекта от температуры на термограммах различается (рис. 1). В образце 1, состав которого, как следует из данных элементного анализа (табл. 1), близок к составу четырехслойной фазы Ауривиллиуса, данный эффект размыт и плохо определяется. В образце 2 с номинальным составом, отвечающим m = 5, этот пик достаточно узкий.

Для образцов 3-6 (m > 5) на кривой ДСК наблюдается уширенный пик, растянутый в высокотемпературную область, который можно рассматривать, как наложение двух или большего числа экзотермических эффектов. В высокотемпературной области на термограммах наблюдаются интенсивные эндотермические эффекты с началом около 940-1040°С в зависимости от состава образцов. В соответствии с данными о квазибинарном разрезе BiFeO₃-Bi₄Ti₃O₁₂ [9] диаграммы состояния системы Ві₂O₃-Fe₂O₃-TiO₂, они отвечают началу перитектического плавления фаз Ауривиллиуса. При этом на термограммах образцов, состав которых соответствует многослойным фазам, можно выделить серию эндотермических эффектов, связанных с последовательным перитектическим плавлением фаз Ауривиллиуса, протекающим с образованием фаз Ауривиллиуса с меньшим числом слоев в перовскитоподобном блоке.

После окончательного расплавления образцов наблюдается небольшая потеря массы на кривых $T\Gamma$, связанная с испарением компонентов расплава, главным образом оксида висмута [38–40]. При охлаждении образовавшегося расплава ниже точки его равновесной кристаллизации в образцах наблюдаются экзотермические пики, отвечающие кристаллизации фаз Ауривиллиуса. В соответствии с диаграммой состояния системы $Bi_4Ti_3O_{12}$ — $BiFeO_3$ [9], эти пики соответствуют кристаллизации соединений с меньшими значениями *m*. В качестве примера данный процесс показан для образца 6 на вкладке к рис. 1.

В табл. 1 приведены данные об условиях формирования нанокристаллов фаз Ауривиллиуса при использовании разных методов "мягкой химии". Следует отметить, что температура начала формирования фаз Ауривиллиуса (Т_{s0}) коррелирует во всех рассмотренных случаях с температурой плавления поверхностной (двумерной неавтономной) фазы на основе оксила висмута (460 \pm 40°C [41]), при которой стартует процесс формирования сложных висмутсодержащих перовскитоподобных оксидов при использовании низкотемпературных методов синтеза [25, 36, 42-45]. Можно видеть, что, независимо от состава этих фаз, в большинстве систем наблюдаются близкие значения температуры начала их образования $T_{s0} =$ = 450-600°С (табл. 1). Некоторый разброс данных в значениях температуры T_{s0} , по-видимому, может быть связан с формированием примесных фаз в реакционной композиции.

Рентгеновские дифрактограммы образцов после завершающей стадии синтеза приведены на рис. 26. Анализ данных рентгеновской дифракции показывает, что наряду с целевым продуктом при образовании фаз Ауривиллиуса $Bi_{m+1}Fe_{m-3}Ti_{3}O_{3m+3}$ с m > 5 в некоторых образцах обнаруживаются небольшие количества примесной фазы Bi₂Fe₄O₉. Наличие примесной фазы потенциально может быть связано либо с нарушением заданной стехиометрии образцов на этапе синтеза, в частности, из-за высокой летучести оксида висмута [38], либо с кинетическими затруднениями образования фаз Ауривиллиуса с большим содержанием BiFeO₃ в перовскитоподобном блоке, что подробно анализировалось в работах [14, 26]. Варианты возможных примесных фаз при формировании соединений $Bi_{m+1}Fe_{m-3}Ti_{3}O_{3m+3}$ в различных условиях приведены в табл. 1.

Полученные в работе (рис. 2б) и литературные (табл. 1) данные показывают, что при синтезе соединений $\operatorname{Bi}_{m+1}\operatorname{Fe}_{m-3}\operatorname{Ti}_3\operatorname{O}_{3m+3}$ с $m \le 5$ примесные фазы образуются реже и в меньших количествах, чем при m > 5. Причем в случае синтеза фаз Ауривиллиуса с m < 5 после термообработки выше 700°С примесные компоненты расходуются на формирование основной фазы. При синтезе BiFeO₃ примесные фазы, как правило, образуются в большем количестве (табл. 1), что затрудняет формирование однофазного материала. Исключение составляет синтез этого соединения в гидротермальных условиях и при использовании методов высокоинтенсивного смешения реагентов при их соосаждении [46, 47].

На рис. 3 приведены зависимости V = V(m) объема элементарной ячейки V фаз Ауривиллиуса от *m* после низкотемпературной (*I*) и высокотемпературной (*2*) обработки образцов. Можно видеть, что обе зависимости совпадают до значения $m \approx 5$. При m > 5 значения V = V(m) зависимости *I* практически не меняются, а зависимость *2* имеет линейный вид на всем интервале изменения ве-

Рис. 1. Кривые ДСК/ТГ образцов исходной композиции в режиме нагрева. На вставке показан режим охлаждения для образца 6.

личины *m* и хорошо описывает как полученные в работе экспериментальные результаты, так и данные работ [27, 29, 45]. Из этого можно заключить, что после низкотемпературной обработки сооса-

жденных гидроксидов с соотношением катионов, отвечающим соединению $\text{Bi}_{m+1}\text{Fe}_{m-3}\text{Ti}_3\text{O}_{3m+3}$ с m > 5, формируются фазы Ауривиллиуса с $m \approx 5$ (рис. 3, кривая *I*).

Рис. 2. Рентгеновские дифрактограммы образцов после термообработки при 450°С (а) и 850-890°С (б).

Непрореагировавшие при данных температурах компоненты образуют аморфную фазу. Дальнейшая высокотемпературная обработка этих образцов приводит к образованию фаз Ауривиллиуса с объемом элементарной ячейки, соответствующим целевому продукту (рис. 3, кривая 2). Таким образом, полученные результаты показывают, что по характеру образования фаз Ауривиллиуса соединение $Bi_6Fe_2Ti_3O_{18}$ (m = 5) является граничным с точки зрения механизма формирования соедине-

Рис. 3. Зависимость объема элементарной ячейки V фаз Bi_{*m* + 1}Fe_{*m* - 3}Ti₃O_{3*m* + 3} от номинального значения *m* на разных этапах термообработки: 1 - 450; 2 - 850 - 890°C.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 5 2021

ний гомологического ряда $\operatorname{Bi}_{m+1}\operatorname{Fe}_{m-3}\operatorname{Ti}_3\operatorname{O}_{3m+3}$. При $m \leq 5$ эти соединения формируются сразу после дегидратации гидроксидов при ~450°С в один этап, а при m > 5 после дегидратации гидроксидов сначала образуется кристаллическая фаза, состав которой отвечает фазе Ауривиллиуса с $m \approx 5$, и аморфная фаза. И только последующая более длительная и высокотемпературная обработка приводит к формированию фазы Ауривиллиуса заданного состава вследствие встраивания в перовскитоподобный блок компонентов из аморфной фазы. Схематически данный процесс представлен на рис. 4.

Отметим, что полученный результат согласуется с данными работ [14, 26], в которых синтез фаз Ауривиллиуса проводили разными методами. Это показывает, что независимо от условий формирования многослойных соединений $Bi_{m+1}Fe_{m-3}Ti_{3}O_{3m+3}$ с m > 5 их синтез проходит через стадию образования фаз Ауривиллиуса с меньшим значением *m*. В частности, в работе [24] установлено, что формирование нанокристаллов $Bi_7Fe_3Ti_3O_{21}$ (*m* = 6) в гидротермальных условиях протекает через серию промежуточных продуктов, основными из которых являются Bi₄Ti₃O₁₂ (*m* = 3) и Bi₅FeTi₃O₁₅ (*m* = 4) (табл. 1). В работе [26] была описана аналогичная этапность формирования этого соединения при протекании твердофазной химической реакции в смеси оксидных реагентов - от формирования сначала соединений с меньшим числом слоев в перовскитоподобном блоке с последующим встраиванием в него компонентов исходных фаз. Так как этапный механизм форми-

Рис. 4. Схема процесса формирования соединений $Bi_{m+1}Fe_{m-3}Ti_3O_{3m+3}$.

рования соединений $Bi_{m+1}Fe_{m-3}Ti_3O_{3m+3}$ с большими значениями *m* характерен для различных методов синтеза, можно сделать заключение, что особенности фазообразования в данном случае зависят главным образом от особенностей строения самих фаз Ауривиллиуса в рассматриваемой системе.

Для уточнения связи между особенностями формирования фаз Ауривиллиуса с большим числом слоев в перовскитоподобном блоке (m > 5) и параметрами их строения был проведен мессбауэровский анализ образцов 2 (m = 5) и 4 (m = 7) после их термообработки при 450°С и после высокотемпературной обработки (890°С – образец 2, 850°С – образец 4). Такой выбор связан с тем, что, как показано выше, характер фазообразования при синтезе фаз Ауривиллиуса кардинально изменяется при $m \approx 5$. Приведенные на рис. 5 мессбауэровские спектры представлены дублетными линиями, которые в зависимости от состава и температуры обработки образца могут быть разложены на два или три дублета. Параметры мессбауэровских спектров образцов 2 и 4 и размеры кристаллитов соответствующих фаз Ауривиллиуса приведены в табл. 2 в сопоставлении с литературными данными. Сравнение параметров дублетов D1 и D2 (изомерного сдвига IS, квадрупольного расщепления QS) образцов, термообработанных при 450°C, с литературными данными показывает, что состояние ионов Fe^{3+} в них соответствует состоянию в соединении Bi₆Fe₂Ti₃O₁₈ со структурой фазы Ауривиллиуса (m = 5), т.е. близкие значения параметров имеют оба рассматриваемых образца, хотя их номинальный состав сильно отличается. Этот результат согласуется с описанными выше данными рентгенодифракционного исследования, показывающими, что на начальной стадии синтеза независимо от номинального со-

става в этих образцах формируется фаза Ауривиллиуса со значением $m \approx 5$. Следует отметить, что отличие значений параметров дублетов D1 и D2 от литературных данных состоит только в соотношении долей дублетов, соответствующих ионам Fe³⁺ на внутренних (B1) и внешних (B2) позициях перовскитоподобных блоков (табл. 2). Параметры (IS и OS) третьего дублета (D3) у образца 4, как следует из их сравнения с литературными данными [36], близки по своим значениям к соответствующим параметрам аморфного BiFeO₃. Учитывая, что дублет D2 соединения $Bi_6Fe_2Ti_3O_{18}$ (*m* = 5) близок по значению параметров *IS* и *QS* к параметрам одного из дублетов аморфного BiFeO₃, этот дублет можно рассматривать как наложение соответствующих дублетов фазы Ауривиллиуса и аморфной фазы на основе ортоферрита висмута. Используя данные о соотношении долей дублетов аморфного BiFeO₃ [36], можно уточнить соотношение долей дублетов фазы Ауривиллиуса в образце 4 после термообработки при 450°С. После такой корректировки соотношение долей дублетов в образцах 2 и 4 становится приблизительно одинаковым D1 : D2 = 69 : 31. Это соотношение лежит между значениями, характерными для чисто случайного распределения железа по внутренним и наружным слоям перовскитоподобного блока (60:40), и случаем, описанным в [29] для фазы Ауривиллиуса состава Bi₆Fe₂Ti₃O₁₈ (m = 5) после ее длительной термообработки, т.е. после установления близкого к равновесному распределению компонентов между структурнонеэквивалентными позициями – 78 : 22 (табл. 2). Следует отметить, что дальнейшая термообработка образцов 2 и 4 при более высокой температуре приводит к уменьшению отношения D1 : D2 в обоих образцах до значений 56 : 44 и 51 : 49 соответственно. Причем в образце 4 это уменьшение вы-

Рис. 5. Мессбауэровские спектры образцов с номинальным значением m = 5 и 7 после разных стадий термообработки (в скобках указано реальное значение *m*, соответствующее параметрам спектров).

ражено больше, чем в образце 2 (табл. 2). Учитывая наличие некоторого количества аморфной фазы в образцах после термообработки при 450°C, которое, как следует из данных рентгенодифракционного и мессбауэровского исследований, невелико при синтезе соединений $Bi_{m+1}Fe_{m-3}Ti_{3}O_{3m+3}c$ $m \leq 5$, но резко возрастает при синтезе фаз Ауривиллиуса с m > 5, указанное выше изменение в распределении ионов железа по позициям можно объяснить следующим образом. При высокотемпературной обработке (850, 890°С) в перовскитоподобные блоки фаз Ауривиллиуса ($m \approx 5$), сформировавшихся при 450°С, встраиваются компоненты из аморфной фазы на основе BiFeO₃. Причем, как можно заключить на основе данных мессбауэровской спектроскопии, встраивание BiFeO₃ происходит, по-видимому, в основном через наружные (В2) слои перовскитоподобных блоков (рис. 5). Более длительная термическая обработка, приводящая к установлению более равновесного распределения компонентов по подрешеткам в фазах Ауривиллиуса, является причиной перераспределения ионов железа и титана между внутренними и внешними слоями в перовскитоподобном блоке. В соответствии с этим ионы железа, как было показано в работе [29], будут иначе распределены по структурнонеэквивалентным позициям. Данный результат показывает, что в зависимости от способа, условий и этапа (продолжительности процесса) синтеза фаз Ауривиллиуса может наблюдаться различное распределение ионов железа и титана между внутренними и наружными слоями перовскитоподобного блока. Это объясняет, по-видимому, наблюдающееся в работах [6, 27, 29] разли-

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ

том 66

№ 5

2021

чие в соотношениях компонентов, занимающих позиции В1 и В2.

Важной составляющей исследования процессов формирования нанокристаллических фаз является анализ изменения размеров кристаллитов в ходе фазообразования. Построенная по экспериментальным данным зависимость размеров кристаллитов (d) от температуры (рис. 6) типична для поведения нанокристаллов, размер которых, как правило, увеличивается с повышением температуры синтеза. Для малослойных соединений $(m \le 5)$ с d > 100 нм зависимость d(m) носит оценочный характер, но позволяет охарактеризовать общую тенденцию увеличения размера кристаллитов при нагревании. На рис. 6 можно выделить два вида зависимости *d*(*T*) для соединений Ві_{*m*+1}Fe_{*m*-3}Ti₃O_{3*m*+3} с 3 ≤ *m* ≤ 5 и для фаз Ауривиллиуса с номинальными значениями m > 5. В первом случае наблюдается хорошо заметная тенденция к росту размеров кристаллитов с повышением температуры. Это связано, по-видимому, с увеличением скорости массопереноса между нанокристаллами образовавшейся фазы с ростом температуры синтеза. Во втором случае при *m* > 5 тенденция к росту кристаллитов с повышением температуры менее выражена.

Объяснение подобных различий может быть связано как с затрудненностью процесса перекристаллизации многослойных фаз Ауривиллиуса из-за уменьшения скорости диффузии (так как в сложных оксидных фазах для роста частиц требуется сопряженный массоперенос многих компонентов, чтобы обеспечить постоянство состава кристаллической фазы в процессе диффузии), так и с особенностями описанного выше механизма формирования фаз Ауривиллиуса с

ЛОМАНОВА и др.

Вещество	$m/(m_0)$	<i>Т</i> , °С	Компонент	$IS \pm 0.02,$ MM/c	<i>QS</i> ±0.03, мм/с	A, %	Структурная позиция	Фазовое состояние	<i>d</i> , нм	Источник
Образец 2	5/(5)	450	Дуплет 1	0.410	0.574	69	B(1)	Кристаллическое	39	_
			Дуплет 2	0.280	0.604	31	B(2)			
		890	Дуплет 1	0.406	0.603	56	B(1)	Кристаллическое	116	_
			Дуплет 2	0.314	0.615	44	B(2)			
Bi ₆ Fe ₂ Ti ₃ O ₁₈	5	_	Дуплет 1	0.36	0.56	78	B(1)	Кристаллическое	>100	[29]
			Дуплет 2	0.27	0.63	22	B(2)			
Образец 4	7/(5)	450	Дуплет 1	0.412	0.573	54	B(1)	Кристаллическое +	39	_
			Дуплет 2	0.268	0.571	35	B(2)	+ аморфное		
			Дуплет 3	0.318	1.258	11	—		_	
	7/(7)	850	Дуплет 1	0.406	0.560	51	B(1)	Кристаллическое	80	_
			Дуплет 2	0.322	0.588	49	B(2)			
Bi ₈ Fe ₄ Ti ₃ O ₂₄	7	—	Дуплет 1	0.38	0.57	73	B(1)	Кристаллическое	>100	[29]
			Дуплет 2	0.31	0.61	27	B(2)			
BiFeO ₃	∞	—	Дуплет 1	0.30	1.06	50.9	—	Аморфное	—	[36]
			Дуплет 2	0.32	0.65	49.1	—			

Таблица 2. Параметры разложения мессбауэровских спектров, фазовое состояние и размер кристаллитов веществ

большим числом слоев в перовскитоподобном пакете (m > 5). Поскольку при температуре ~450°С, как было показано выше, формируются нанокристаллы $\text{Bi}_{m+1}\text{Fe}_{m-3}\text{Ti}_3\text{O}_{3m+3}$ с $m \approx 5$ в тех случаях, когда образцы по своему составу соответствуют фазам Ауривиллиуса со значениями m > 5, можно сделать вывод, что рост кристаллитов

Рис. 6. Зависимость размера кристаллитов *d* от температуры синтеза и номинального значения *m* (голубая область – для $m \le 5$, оранжевая область – для m > 5).

в большой степени определяется изменением состава образовавшихся на начальном этапе синтеза соединений путем встраивания в их перовскитоподобные блоки компонентов аморфной фазы.

Таким образом, проведенное исследование процесса синтеза фаз Ауривиллиуса при термообработке соосажденных гидроксидов висмута железа и титана позволило предложить и с помощью синхронного термического анализа, рентгенодифракционного и мессбауэровского исследований обосновать механизм их формирования, схематически представленный на рис. 4.

ЗАКЛЮЧЕНИЕ

Показано, что формирование фаз Ауривиллиуса при термообработке смеси соосажденных гидроксидов стартует при 450°С после дегидратации гидроксидов. Соединения $\text{Bi}_{m+1}\text{Fe}_{m-3}\text{Ti}_3\text{O}_{3m+3}$ с $m \le 5$ образуются в один этап. Синтез многослойных фаз Ауривиллиуса с m > 5 происходит в два этапа. На первом этапе после разложения соосажденных гидроксидов образуется фаза с $m \approx 5$ и аморфная фаза на основе BiFeO₃. Дальнейшая более высокотемпературная обработка приводит к встраиванию компонентов аморфной фазы в перовскитоподобный блок фазы Ауривиллиуса, что приводит к увеличению числа слоев *m* до получения заданного по синтезу соотношения элементов в соединении $Bi_{m+1}Fe_{m-3}Ti_{3}O_{3m+3}$. При этом встраивание компонентов происходит через наружные слои перовскитоподобного блока. Поскольку такое встраивание не отвечает равновесному распределению компонентов по структурнонеэквивалентным позициям в перовскитоподобных блоках фаз Ауривиллиуса, на следующем этапе идет процесс установления внутрикристаллического равновесия с перераспределением компонентов в решетке фаз Ауривиллиуса.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Keeney L., Smith R.J., Palizdar M. et al. // Adv. Electron. Mater. 2020. V. 6. № 3. P. 1901264. https://doi.org/10.1002/aelm.201901264
- Mitrofanova A.V., Fortal'nova E.A., Safronenko M.G. et al. // Russ. J. Inorg. Chem. 2020. V. 65. Р. 1654. [Митрофанова А.В., Фортальнова Е.А., Сафроненко М.Г. и др. // Журн. неорган. химии. 2020. T. 65. № 11. С. 1461.] https://doi.org/10.1134/S0036023620110133
- Pikul T., Dzik J., Guzdek P. et al. // Ceram. Int. 2017. V. 43. № 14. P. 11442. https://doi.org/10.1016/j.ceramint.2017.06.008
- 4. *Steciuk G., Boullay Ph., Pautrat A. et al.* // Inorg. Chem. 2016. V. 55. № 17. P. 8881.
- https://doi.org/10.1021/acs.inorgchem.6b01373
- Shujie Sun, Changhui Liu, Guopeng Wang et al. // J. Am. Ceram. Soc. 2016. V. 99. № 9. P. 3033. https://doi.org/10.1111/jace.14312
- Birenbaum A.Y., Ederer C. // Phys. Rev. B. 2014. V. 90. P. 214109.
- https://doi.org/10.1103/PhysRevB.90.21410
- Клуагеv А.V., Krasheninnikova O.V., Korokin V.Z. // Inorg. Mater. 2014. V. 50. Р. 170. [Князев А.В., Крашенинникова О.В., Корокин В.З. // Неорган. материалы. 2014. Т. 50. С. 188.] https://doi.org/10.1134/S0020168514020083
- Lomanova N.A., Morozov M.I., Ugolkov V.L. et al. // Inorg. Mater. 2006. V. 42. № 2. Р. 189. [Ломанова Н.А., Морозов М.И., Уголков В.Л. и др. // Неорган. материалы. 2006. Т. 42. № 2. С. 225.] https://doi.org/10.1134/S0020168506020142
- Lomanova N.A., Gusarov V.V. // Russ. J. Inorg. Chem. 2011. V. 56. Р. 616. [Ломанова Н.А., Гусаров В.В. // Журн. неорган. химии. 2011. Т. 56. С. 661.] https://doi.org/10.1134/S0036023611040188
- Meera A.V., Ganesan Rajesh, Gnanasekaran T. // J. Alloys Compd. 2019. V. 790. P. 1108. https://doi.org/10.1016/j.jallcom.2019.03.205
- 11. Selbach S.M., Einarsrud M.-A., Grande T. // Chem. Mater. 2009. V. 21. № 1. P. 169. https://doi.org/10.1021/cm802607p
- Akbashev A.R., Kaul A.R. // Russ. Chem. Rev. 2011.
 V. 80. Р. 1159. [Акбашев А.Р., Кауль А.Р. // Успехи химии. 2011. Т. 80. № 12. С. 1211.] https://doi.org/10.1070/RC2011v080n12ABEH004239
- Haumont R., Saint-Martin R., Byl C. // Phase Transitions. 2008. V. 81. P. 881. https://doi.org/10.1080/01411590802328642

- Morozov M.I., Gusarov V.V. // Inorg. Mater. 2002. V. 38. № 7. Р. 723. [Морозов М.И., Гусаров В.В. // Неорган. материалы. 2002. Т. 38. № 7. С. 867.] https://doi.org/10.1023/A:1016252727831
- Chen Zhi-hui, Qiu Jun-fu, Liu Cheng et al. // Ceram. Int. 2010. V. 36. P. 241. https://doi.org/10.1016/j.ceramint.2009.07.022
- Chen Zh., Yu Y., Hu J. et al. // J. Ceram. Soc. Jpn. 2009. V. 117. № 3. P. 264. https://doi.org/10.2109/jcersj2.117.264
- 17. *Kan Y., Wang P., Li Y. et al.* // Mater. Lett. 2002. V. 56. P. 910.

https://doi.org/10.1016/S0167-577X(02)00636-5

- Zhang F., Karaki T., Adachi M. // Jpn. J. Appl. Phys. 2006. V. 45. № 9B. P. 7385. https://doi.org/10.1143/JJAP.45.7385
- García-Guaderrama M., Fuentes-Cobas L., Montero-Cabrera M.E. et al. // Integrated Ferroelectrics. 2005. V. 71. № 1. P. 233. https://doi.org/10.1080/10584580590965401
- Sun S., Wang W., Xu H. et al. // J. Phys. Chem. C. 2008. V. 112. P. 17835. https://doi.org/10.1021/jp807379c
- Hailili R., Wang Zh.-Q., Xu M. et al. // J. Mater. Chem. A. 2017. V. 5. P. 21275. https://doi.org/10.1039/c7ta06618j
- Zhang H., Ke H., Ying P. et al. // J. Sol-Gel Sci. Technol. 2018. V. 85. P. 132. https://doi.org/10.1007/s10971-017-4530-9
- Thomazinia D., Gelfuso M.V., Eiras J.A. // Powder Technol. 2012. V. 222. P. 139. https://doi.org/10.1016/j.powtec.2012.02.021
- 24. Li X., Ju Zh., Li F. et al. // J. Mater.Chem. A. 2014. V. 2. P. 13366. https://doi.org/10.1039/c4ta01799d
- 25. Lomanova N.A., Tomkovich M.V., Ugolkov V.A. et al. // Russ. J. Appl. Chem. 2017. V. 90. № 6. Р. 831. [Ломанова Н.А., Томкович М.В., Уголков В.Л. и др. // Журн. прикл. химии. 2017. Т. 90. № 6. С. 673.] https://doi.org/10.1134/S1070427217060015
- Lomanova N.A., Gusarov V.V. // Russ. J. Inorg. Chem. 2010. V. 55. № 10. Р. 1541. [Ломанова Н.А., Гусаров В.В. // Журн. неорган. химии. 2010. Т. 55. № 10. С. 1634.] https://doi.org/10.1134/S0036023610100086
- Mazurek M., Jartych E. // Nukleonika. 2017. V. 62. № 2. P. 153. https://doi.org/10.1515/nuka-2017-0023
- Paneva D., Dimitrov M., Velinov N. et al. // J. Phys.: Conf. Ser. 2010. V. 217. P. 012043. https://doi.org/10.1088/1742-6596/217/1/012043
- Lomanova N.A., Semenov V.G., Panchuk V.V. et al. // J. Alloys Compd. 2012. V. 528. P. 103. https://doi.org/10.1016/j.jallcom.2012.03.040
- 30. *Prajapat D., Sagdeo A., Raghavendra Reddy V.* // Ceram. Int. 2019. V. 45. № 15. P. 19093. https://doi.org/10.1016/j.ceramint.2019.06.154
- Jartych E., Pikula T., Mazurek M. et al. // J. Magn. Magn. Mater. 2013. V. 342. P. 27. https://doi.org/10.1016/j.jmmm.2013.04.046

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 5 2021

- 32. *Saha J., Jana Y.M., Mukherjee G.D. et al.* // Mater. Chem. Phys. 2020. V. 240. № 15. P. 122286. https://doi.org/10.1016/j.matchemphys.2019.122286
- 33. Albadi Y., Sirotkin A.A., Semenov V.G. et al. // Russ. Chem. Bull. 2020. V. 69. P. 1290. https://doi.org/10.1007/s11172-020-2900-x
- Martinson K.D., Ivanov V.A., Chebanenko M.I. et al. // Nanosyst. Phys. Chem. Math. 2019. V. 10. № 6. P. 694. https://doi.org/10.17586/2220-8054-2019-10-6-694-700
- Pikula T., Malesa B., Oleszak D. et al. // Solid State Commun. 2016. V. 246. P. 47. https://doi.org/10.1016/j.ssc.2016.08.001
- 36. Proskurina O.V., Abiev R.S., Danilovich D.P. et al. // Chem. Eng. Process. – Process Intensif. 2019. V.143. P. 107598 https://doi.org/10.1016/j.cep.2019.107598
- 37. Koval V., Shi Y., Skorvanek I. et al. // J. Mater. Chem. C. 2020. V. 8. P. 8466. https://doi.org/10.1039/D0TC01443E
- Stolyarova V.L., Vorozhtcov V.A., Lopatin S.I. et al. // Thermochim. Acta. 2020. V. 685. P. 178531. https://doi.org/10.1016/j.tca.2020.178531
- 39. Kargin Yu.F, Ivicheva S.N., Volkov V.V. // Russ. J. Inorg. Chem. 2015. V. 60. № 5. Р. 619. [Каргин Ю.Ф., Ивичева С.Н., Волков В.В. // Журн. неорган. химии. 2015. Т. 60. № 5. С. 691.] https://doi.org/10.1134/S0036023615050083

- 40. Risold D., Hallstedt B., Gauckler L.J. et al. // JPE. 1995. V. 16. P. 223. https://doi.org/10.1007/BF02667306
- 41. *Gusarov V.V., Suvorov S.A.* // J. Appl. Chem. 1990. V. 63. № 8. P. 1560.
- Lomanova N.A., Tomkovich M.V., Sokolov V.V. et al. // J. Nanopart. Res. 2018. V. 20. № 17. https://doi.org/10.1007/s11051-018-4125-6
- 43. *Matin M.A., Rhaman M.M., Hossain M.N. et al.* // Trans. Electr. Electron. Mater. 2019. V. 20. P. 485. https://doi.org/10.1007/s42341-019-00140-8
- 44. Egorysheva A.V., Kuvshinova T.B., Volodin V.D. et al. // Inorg. Mater. 2013. V. 49. № 3. Р. 310. [Егорышева А.В., Кувшинова Т.В., Володин В.Д. и др. // Неорган. материалы. 2013. Т. 49. № 3. С. 316.] https://doi.org/10.1134/S0020168513030035
- 45. Dmitriev A.V., Vladimirova E.V., Kandaurov M.V. et al. // J. Alloys Compd. 2019. V. 777. № 10. P. 586. https://doi.org/10.1016/j.jallcom.2018.10.387
- 46. Proskurina O.V., Tomkovich M.V., Bachina A.K. et al. // Russ. J. Gen. Chem. 2017. V. 87. № 11. Р. 2507. [Проскурина О.В., Томкович М.В., Бачина А.К. и др. // Журн. общ. химии. 2017. Т. 87. № 11. Р. 1761.] https://doi.org/10.1134/S1070363217110019
- Proskurina O.V., Nogovitsin I.V., Il'ina T.S. et al. // Russ. J. Gen. Chem. 2018. V. 88. Р. 2139. [Проскурина О.В., Ноговицин И.В., Ильина Т.С. и др. // Журн. общ. химии. 2018. Т. 10. С. 1699.] https://doi.org/10.1134/S1070363218100183