——— ТЕОРЕТИЧЕСКАЯ НЕОРГАНИЧЕСКАЯ ХИМИЯ ——

УДК 541.66+541.67

ВОЗМОЖНОСТИ УПРОЩЕННЫХ СХЕМ ИЗУЧЕНИЯ ОСОБЕННОСТЕЙ СТРУКТУРНЫХ ФАЗОВЫХ ПЕРЕХОДОВ В Н-СВЯЗАННЫХ СЕГНЕТОЭЛЕКТРИКАХ С ПОМОЩЬЮ КВАНТОВО-ХИМИЧЕСКИХ РАСЧЕТОВ

© 2021 г. С. П. Долин^{а, *}, Т. Ю. Михайлова^а, Н. Н. Бреславская^а

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия

**e-mail: dolin@igic.ras.ru* Поступила в редакцию 10.12.2020 г. После доработки 16.12.2020 г. Принята к публикации 17.12.2020 г.

На примере сегнетоэлектриков $K(H/D)_2PO_4$ предложен и обоснован упрощенный квантово-химический подход к описанию структурного фазового перехода при увеличении числа H/D-связей в модельных кластерах. В этом случае упрощенное описание включает в себя использование в статистике фазового перехода только псевдоспиновых конфигураций, подчиняющихся правилу льда. Расчетами разных модельных систем проверена эффективность применения экономичного способа определения изинговских и слейтеровских констант. Основные результаты получены в рамках стандартного кластерного приближения Бете на тримерных кластерах двух типов (линейного и углового), симметрия которых существенно отличается от симметрии решетки при различном моделировании терминальных H-связей. Проанализированы достоинства и недостатки предложенного подхода для описания термодинамики перехода и для возможности пробного моделирования структуры неоднородностей, связанных с доменными стенками и их границами.

Ключевые слова: Н-связанные сегнетоэлектрики, семейство KDP, структурный фазовый переход, квантово-химическое моделирование

DOI: 10.31857/S0044457X21050044

введение

Настоящая работа является продолжением исследований водородно-связанных сегнетоэлектрических (СЭ) материалов в рамках разрабатываемого нами теоретического подхода с применением различных квантово-химических (КХ) методов [1-7]. Здесь на примере СЭ-семейства КН₂РО₄ (КDР) [8] рассмотрены последствия усложнения структуры модельных кластеров (МК), поскольку их выбор является необходимой и во многом определяющей стадией предложенного алгоритма описания структурных фазовых переходов (СФП) с независимым КХ-определением всех параметров псевдоспинового гамильтониана (ПСГ). С учетом результатов работ в этом подходе по мономерным и димерным МК (модели Н4 и Н7) [4-7] были рассмотрены различные тримерные MK (H10), а также ряд более сложных систем, включая пентамеры (Н16). Здесь и далее HN обозначает модельный кластер с N псевдоспинами, т.е. с N подвижными протонами на Нсвязях. Последовательное рассмотрение расширяющихся кластеров помогает, в частности, при

анализе изменений энергетических и статистических характеристик при учете второй координационной сферы. Получение конкретных численных результатов с помощью КХ-методов естественно продолжить следующими в ряду простыми МК типа H10 в виде тримерных H-связанных кластеров (**THK**).

Отметим, что количество информации, необходимой для реализации нашего подхода в рамках модели Изинга и статистического приближения кластеров Бете (**ПКБ**), растет, как известно, по закону N^2 , где N — число псевдоспинов. Поэтому крайне желательна разработка разумной упрощенной схемы анализа. Ее обоснование и анализ соответствующих последствий составили вторую задачу этой работы.

Проверке также подлежит полученный ранее с помощью расчетов разными КХ-методами для ряда димерных МК вывод о наличии существенных различий в спектре Н-связанной подсистемы в тех случаях, когда более сложные МК обладают пониженной симметрией по сравнению с симметрией параэлектрической фазы [4–6]. Это позволи-

Рис. 1. Строение модельных кластеров на основе трех тетраэдров PO₄. Линейный кластер.

ло продолжить поиск более реалистичных представлений о возможных молекулярных структурах доменных стенок и их границ с последующим анализом влияния этих и иных неоднородностей на наблюдаемые свойства рассматриваемых систем. Задача неэмпирического моделирования доменной структуры и ее динамики в сегнетоэлектриках типа порядок—беспорядок представляется особенно актуальной, так как (в отличие от сегнетоэлектриков типа смещения [9–14]) она пока мало исследована в литературе [15–18] (см. также цитируемую в [18] литературу].

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

На рис. 1 и 2 показаны пространственные структуры указанных выше тримерных изолированных Н-связанных кластеров обоих типов (линейного и углового) состава (X₃PO...H...OPX₂O...H...OPX₃), где $X = OH_2$ и H (модели H10 и H10^{*}, см. ниже). Причины использования искусственного моделирования с X = H будут подробно рассмотрены ниже. Анализ последствий расширения размеров указанных МК до ТНК, как и ранее, проводился в несколько стадий. На первой из них аналитически рассмотрена статистика структурного перехода порядок-беспорядок в рамках модели Изинга в варианте ПКБ. Вторая посвящена поиску упрощенного варианта КХ-анализа СФП и его обоснованию. Здесь с этой целью на примере КDP/DKDP проверен другой гораздо более экономичный по сравнению с применявшимся ранее [7] способ определения изинговских констант *J*_⊥ и *J*_⊥ [19–22].

На последнем этапе кратко затронут вопрос о возможности применения результатов, полученных для ТНК, для изучения влияния доменных неоднородностей на различные свойства рассматриваемых систем.

Конкретная методика численных КХ-расчетов, как и ранее, включала применение почти всех КХ-методов программного комплекса Gaussian-09 вплоть до MP4/sdtq преимуществен-

Рис. 2. Строение модельных кластеров на основе трех тетраэдров PO₄. Угловой кластер.

но с базисным набором 6-311+G(d,p). Для всех МК проведены также расчеты методом DFT в варианте B3LYP с этим же базисным набором. Помимо указанных выше THK обоих типов с целью максимального упрощения методики расчетов энергетики водородной подсистемы в решетке была проверена возможность применения MK с моделированием в них только H-связей с исполь-

зованием для этой цели ионов типа $X_3O_2^-$, где X = H, Li, Na [7].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Изменения в статистике СФП

В табл. 1 представлен набор наиболее важных для анализа СФП слейтеровских псевдоспиновых конфигураций (ПСК) в ТНК и некоторых более сложных Н-связанных системах, определяюших наблюдаемые на опыте свойства указанных СЭ-материалов. Из сопоставления ПСК в модели Н10 с таковыми в Н4 и Н7 отметим основные свойства протонных спектров в указанных случаях. Прежде всего очевидно полное генетическое соответствие между ПСК, иллюстрирующее аддитивный характер модели Изинга, независимо от конкретной кластерной модели. Это позволяет в каждом случае применять простой способ нахождения основного уравнения для определения критической температуры перехода *Т_с* (см. ниже). Последняя, как неоднократно отмечалось, явля-

Таблица 1. Генетическое соответствие между слейтеровскими (псевдоспиновыми) конфигурациями, подчиняющимися правилу льда, в модельных кластерах H4–H16 для KDP/ DKDP

р	1	2	3	4	5
h	4 (4)	7 (6)	10 (8)	13 (10)	16 (12)
CK	2 ⁴	2^{7}	2 ¹⁰	2 ¹³	2 ¹⁶
СКПЛ	2×3^1	2×3^2	2×3^3	2×3^4	2×3^{5}

p – число РО₄-тетраэдров в МК, *h* – общее число Н-связей, включая терминальные (в скобках), СК – общее число слейтеровских конфигураций, СКПЛ – число конфигураций, подчиняющихся правилу льда.

Строение энергетического спектра слейтеровских конфигураций								
N _{en}								
2	3	4	5	6				
				aaaaa [64] $5^{16}e_1$				
			aaaa [32] $4^{13}e_1$	faaaa [160] $4^{16}e_1$				
		aaa [16] 3 ${}^{10}e_1$	faaa [64] $3^{13}e_1$	ffaaa [160] $3^{16}e_1$				
	aa [8] 2 $^{7}e_{1}$	faa [24] 2 $^{10}e_1$	ffaa [48] $2^{13}e_1$	fffaa [80] 2 $^{16}e_1$				
a [4] 4e_1	fa [8] 7e_1	ffa [12] ${}^{10}e_1$	fffa [16] ${}^{13}e_1$	ffffa [20] $^{16}e_1$				
f [2] 0	ff [2] 0	fff [2] 0	ffff [2] 0	fffff [2] 0				

 $N_{\rm en}$ — число подуровней в спектре H-подсистемы, типы подуровней (f отвечает ферроэлектрическому упорядочению в единичном тетраэдре, а — антисегнетоэлектрическому упорядочению), кратность и изинговские энергии подуровней.

ется наиболее сложной для теоретического определения характеристикой СФП, поскольку именно в ней сильнее всего отражается конкурирующий характер влияния различных параметров ПСГ [19, 20]. Взаимодействия псевдоспинов в любых H-связанных СЭ-системах ведут к стабилизации активной асимметричной фазы, тогда как эффекты туннелирования, а по нашим данным [7], и эффекты дальнодействия работают в обратном направлении.

Для ТНК и более сложных кластеров получены следующие уравнения, которые для наглядности сопоставлены ниже между собой:

(1) H4: $1 = 2^4 B_1 + \dots$,

(2) H7: 1 = 1/3 [4 $^{7}B_{1}$ + 4 $^{7}B_{2}$ + 16 $^{7}B_{4}$ + 12 $^{7}B_{5}$ +...], (3a) H10: 1 = 1/3 [2 $^{10}B_{1}$ + 4 $^{10}B_{2}$ + 8 $^{10}B_{3}$ + ...] (линейный),

(3в) H10*: 1 = 1/3 [1 ${}^{10}B_1 + 8 {}^{10}B_2 + 4 {}^{10}B_3) +...]$ (угловой),

(4a) H13: 1 = 1/5 [($32^{13}B_3 + 16^{13}B_4$) + ...] (линейный),

(4в) H13*: = 1 + 1/5 [$-4^{13}B_1 + 14^{13}B_2 + 24^{13}B_3 + 8^{13}B_4$) + ...] (двухугловой),

(5a) H16: $1 = 1/15 [-34 \ {}^{16}B_1 + 40 \ {}^{16}B_2 + 112 \ {}^{16}B_3 + 80 \ {}^{16}B_4 + 96 \ {}^{16}B_5].$

Приведенные формулы, где через ${}^{p}B_{n} = \exp(-n \times {}^{p}e_{1}/k_{B}T)$ обозначены больцмановские константы, были получены с использованием характери-

стик ПСК, приведенных в табл. 1. В этих статистических соотношениях параметры, описывающие эффекты туннелирования и дальнодействия, умышленно опущены (см. ниже). Кроме того, здесь также умышленно приведены только слагаемые, которые получены с ПСК, соответствующими правилу льда [23-25], и полностью опущены слагаемые, отвечающие так называемым заряженным ПСК. Причины этого легко понять, поскольку во всех случаях справедливой оказывается слейтеровская формула $T_c = {}^p e_1 / \ln 2$. Хотя в случае Н4 и Н7 она и завышает Т_с примерно вдвое, этот дефект, как было показано ранее, устраняется учетом и вкладов от однозарядных ПСК (но не двухзарядных, вклады от которых во всех случаях пренебрежимо малы) с последующим учетом эффектов туннелирования и дальнодействия [20]. Это позволяет предположить сохранение аналогичной ситуации в случае ТНК, а также в более сложных МК. Проведенный анализ влияния неучтенных однозарядных ПСК типа

[K]HPO₄⁻ и [K]H₃PO₄⁺ в указанных МК показал, что оно невелико (не более 13%), и с ростом числа H-связей в МК их учет в рамках ПКБ приводит к довольно медленному уменьшению T_c [20]. Однако при изучении доменных неоднородностей их роль может оказаться более значительной [26–29], что требует отдельного рассмотрения.

Расчеты изинговских констант J_{\perp} и J_{\parallel} с ТНК

Отметим, что ТНК являются наиболее простыми подходящими объектами для определения изинговских параметров другим способом, отличным от применявшегося ранее, в том числе и с помощью КХ-расчетов [1–7]. Он применим для любых систем и был апробирован нами при изучении СФП в материалах со сложной структурой неводородного каркаса диэлектрика, в частности для хромистой кислоты (α -HCrO₂), где выбор МК даже с простейшим представлением каркаса для КХ-расчетов необходимых параметров ПСГ, прежде всего констант взаимодействия, практически невозможен [7].

Этот метод определения изинговских констант подробно изложен в [20], поэтому здесь приведены только основные формулы для облегчения понимания его особенностей. В основе метода лежит предположение о возможности представления решеточных взаимодействий в любой фазе, прежде всего между протонами, в виде суммы парных взаимодействий.

Если обозначить через $R_r^{0i} = r_i \pm b_i \sigma_{ri}^z$ два возможных равновесных положения протона, где r_i – средняя координата иона в парафазе, а σ_{ri}^z – оператор Паули с собственными значениями +1 и –1, то для конфигурации, определяемой совокупностью значений σ_{ri}^z , потенциальная часть гамильтониана сегнетоэлектрика имеет вид:

$$V(R_{r}^{0i}) = \frac{1}{2} \sum_{rr'ij} V^{ij} \left(r_{i} - r_{j}' + b_{i} \sigma_{ri}^{z} - b_{j} \sigma_{r'j}^{z} \right).$$

Далее вводятся проекционные операторы вида $\sigma^{\pm} = (1 \pm \sigma^z)/2$, каждый из которых равен 1 и отличен от нуля лишь для одного состояния – состояния с $\sigma^z = +1$ для σ^+ и состояния с $\sigma^z = -1$ для σ^- . С использованием очевидного тождества для любой функции *f* от двух операторов σ_1^z и σ_2^z :

$$f(x\sigma_{1}^{z} + y\sigma_{2}^{z}) = (\sigma_{1}^{+} + \sigma_{1}^{-})(\sigma_{2}^{+} + \sigma_{2}^{-}) \times$$

× $f(x\sigma_{1}^{z} + y\sigma_{2}^{z}) = \sigma_{1}^{+}\sigma_{2}^{+}f(x + y) +$
+ $\sigma_{1}^{+}\sigma_{2}^{-}f(x - y) + \sigma_{1}^{-}\sigma_{2}^{+}f(-x + y) +$
+ $\sigma_{1}^{-}\sigma_{2}^{-}f(-x - y)$

можно получить ожидаемое представление потенциала взаимодействия в виде:

$$V(R_{r}^{0i}) = A + \sum_{ri} \sigma_{ri}^{z} B^{i} - \frac{1}{2} \sum_{rr'ij} J^{ij}(r-r') \sigma_{ri}^{z} \sigma_{r'j}^{z},$$

где введенные константы *A*, *B* и *J* выражаются в данном случае через потенциальные члены $V_{\alpha\alpha'}^{ij} = V^{ij}(r_i - r_i + \alpha b + \alpha' b')$ с $\alpha, \alpha' = \pm 1$ следующим образом:

ГИ
К
$$J^{ij}(r-r') = \frac{1}{4} \left(-V^{ij}_{++} + V^{ij}_{-+} - V^{ij}_{--}\right).$$

При практическом использовании этих формул
необходимо помнить, что зависящая от спиновых
переменных вторая сумма в последней тройке
уравнений с константами B^{ij} , определяющая ве-
личину продольного электрического поля для
любой фазы, должна быть тождественно равна

уравнений с константами B^{ij} , определяющая величину продольного электрического поля для любой фазы, должна быть тождественно равна нулю. Этот момент детально обсуждался в [20], где показано, что нарушение такого соотношения способствует появлению ошибок качественного характера, приводя к ненулевой поляризации при любых температурах, нарушая тем самым сам факт существования СФП. Эта особенность указанного способа представления потенциала была нами "устранена" простым путем с использованием усредненных величин $(V_{+-}^{ij} + V_{-+}^{ij})/2$ и $(V_{++}^{ij} + V_{--}^{ij})/2$. По нашим оценкам, связанные с этим погрешности завышают величину параметра e_1 не более чем на 20–30 К.

 $A = \frac{1}{2} \sum_{rr'ii} A^{ij} (r - r'), \quad B = \sum_{r'i} B^{ij} (r - r'),$

 $A^{ij}(r-r') = \frac{1}{4} \left(V^{ij}_{++} + V^{ij}_{+-} + V^{ij}_{-+} + V^{ij}_{--} \right),$

 $B^{ij}(r-r') = \frac{1}{4} \left(V^{ij}_{++} + V^{ij}_{+-} - V^{ij}_{-+} - V^{ij}_{--} \right),$

Таким образом, в методе проекционных операторов удается представить потенциал взаимодействия псевдоспинов в изинговской форме, пригодной для применения КХ-расчетов. Такие расчеты были выполнены для ряда ТНК и привели к обнадеживающим результатам, имея в виду дальнейшее увеличение размеров МК для изучения влияния доменов и их границ. Было показано, что если ТНК с Х = ОН₂ в качестве терминальных Н-связей (рис. 1, 2) даже в точечном приближении (без оптимизации геометрии) требуют на расчет каждой ПСК (их число в разных ТНК равно 27 или 54) значительных временных затрат, то ТНК с X = Н обладают несопоставимой экономичностью. В этом случае для определения каждой из двух изинговских констант нужны четыре точки, что позволяет использовать методы более высокого уровня, даже MP4/sdtg. При этом полученные оценки обеих слейтеровских констант e_1 и е2 в случае Н10 (160-200 и 760-900 К соответственно) лежат в тех же пределах, что и полученные ранее в Н4 и Н7 (табл. 2) [5, 6]. Такое постоянство основных энергетических параметров взаимодействия позволяет использовать только параметр e_1 , а e_2 считать поправкой, которую нетрудно оценить с учетом полученных ранее значений методом масштабных множителей, поскольку, согласно нашим расчетам, отношение $e_2/e_1 =$ = 4.5-5.0. Это позволяет сохранить формулу

Таблица 2. Сопоставление результатов КХ-расчетов изинговских констант $(J_{\perp}, -J_{\parallel})$ в К и отношения слейтеровских параметров (e_1 и e_2) для KDP/DKDP, полученных методом операторов проектирования (МОП) и стандартным методом

Параметр	DFT	RHF	MP2	Μ	[P 4	L	Ι	DF	Т	RHF	7	MP2	M	P4	LI	
Парамстр	МОП						стандартный									
J_{\perp}	395	430	440	44	3	3 418		313		369		356	362		335	
$-J_{\parallel}$	352	382	386	39	4 369			274		331		312	319		293	
${}^{10}e_1$	171	193	215	19	5	193		157 152			175	174		166		
$^{10}e_2$	876	956	988	984		930	706			815		798	810		752	
$^{10}e_{3}$	3160	3435	3518	354	8	3337		2515	2957		2	844	2889		2680	
e_2/e_1	5.1	5.0	4.6		5.0	4	.8	4.	5	5.4		4.6	4	.7	4.5	
DKDP																
Параметр		DFT	DFT RH		MP2		-	LI	LI DI		RHF		MP	2	LI	
			МОП					стандартный								
J_{\perp}	569 61		612		631		59	9 44		16 5		1	504		475	
$-J_{\parallel}$	507 545			554		53	30 39) 7 4		4	444		421		
$^{10}e_1$		248	269	269		27		7	198		201		239		218	
$^{10}e_2$		1261	1357	57 14			133	7	991		1148		1127		1060	
$^{10}e_{3}$		4544	4885		5042		470	4703		3926		4184			3979	
e_2/e_1		5.1	5.0	5.0		.6	4.8			5.0		5.7	4.7	,	4.8	

Приведены результаты, полученные в Л-базисе 6/311+(d,p), во всех расчетах использована опытная геометрия [10] при 293 K, LI = (DFT + MP2)/2, MP4 с усреднением по четырем вариантам, включая MP4/sdtq, стандартный вариант – с терминальными тетраэдрами вида PO₄-4H-4(OPH₃).

Слейтера, но уже в виде $T_c = e_1^*/\ln 2$ с последующим учетом таким же способом, как и ранее, эффектов туннелирования и дальнодействия. Отметим также справедливость полученного ранее в расчетах мономеров и димеров деления спектра Н-подсистемы на четыре группы, определяемые слейтеровскими параметрами e_1 , e_2 , e_3 , с удивительно точным и в этом случае выполнением соотношения $4e_2 = 2e_1 + e_3$ (табл. 2) [5, 6]. Вместе с тем необходимо подчеркнуть, что в случае ТНК (как и в димерах) основной недостаток подхода связан с сильным нарушением аддитивности в спектре ПСК, показанном в табл. 3. Тем не менее средние значения обоих параметров e_1 и e_1^* при

средние значения обоих параметров e_1 и e_1 при этом сохраняют разумные значения.

В итоге все это приводит к возможности применения подхода правила льда (ППЛ) для более сложных кластерных систем как к самостоятельному способу описания многих СЭ-материалов, включая и семейство KDP [24].

Как и в случае димеров [5, 6], была предпринята попытка еще в большей степени упростить наш подход и рассматривать только энергетику Нподсистемы. Для этого (кроме иона $(H_3O_2^-))$ при моделировании H-связей несегнетоэлектрические атомы H в модельном кластере заменяли на Li и Na. К сожалению, полученные оценки обеих изинговских и слейтеровских констант во многих случаях выходят за рамки приведенных выше значений этих параметров. Причина этого связана с тем, что "лишние" связи O–H и O–Li (Na)

Таблица 3. Спектры типа СКПЛ для ТНК (К)

Энергия	DFT	RHF	MP2	LI	DFT	RHF	MP2	LI
	угл	ювой і	класте	p	линейный кластер			
$3\varepsilon_1$	494	677	756	625	500	489	591	546
$2\varepsilon_1$	401	405	460	431	104	42	159	132
ϵ_1	219	233	247	233	270	292	320	295
$\langle \varepsilon_{l} \rangle$	195	221	243	219	163	159	199	181

Приведены результаты, полученные в базисе 6/311+(d,p), во всех расчетах использована опытная геометрия [10] при 293 K, LI = (DFT + MP2)/2.

KDP

Рис. 3. Схема строения СКПЛ основного состояния и состояния с другим типом упорядочения в ТНК. Линейный кластер.

оказывают довольно сильное влияние на энергетику Н-подсистемы, поскольку их вклады в разные ПСК не аддитивны. Это еще раз подтвердило возможность подобного упрощения лишь при изучении низкоразмерных систем Н-связанных (квази)нульмерных и (квази)одномерных [30– 32], но не трехмерных. Поэтому результаты полученных таким образом оценок параметров взаимодействия для описания чисто трехмерных КDP/DKDP в дальнейшем не использовались, хотя на качественном уровне они остаются разумными.

Расчеты с $X = OH_2$

Проверка возможностей упрощенного ППЛ для обеих форм ТНК с $X = OH_2$ проведена в основном тремя разными методами (MP2, RHF, DFT) и фактически привела к тем же выводам, что и расчеты димеров. Наиболее важным является вывод о возможности, как и в случае димеров, описания термодинамики СФП в рамках применяемого ПКБ, но при строго обязательном усреднении энергий СПК в каждой подгруппе спектра Н-подсистемы. При этом сохраняется не только основное СЭ-состояние, но и полученные из расчетов численные оценки наблюдаемых свойств, прежде всего критической температуры Т... Отказ от указанного усреднения еще в большей степени, чем в димерах, и по уже отмечавшейся причине понижения симметрии с потерей эквивалентности псевдоспинов приводит к существенным изменениям в описании СФП вплоть до потери

Рис. 4. Схема строения СКПЛ основного состояния и состояния с другим типом упорядочения в ТНК. Угловой кластер.

основного СЭ-состояния МК в структурах КDP и DKDP.

В этом случае основным состоянием (наши обозначения, рис. 3, 4 и табл. 1) становится полярная ПСК вида [YYY]. Она сохраняется в обеих формах ТНК, и ее относительная стабильность по сравнению с другими ПСК вида [ааа] (прежде всего упорядоченной, но неполярной – XXX) велика в обоих случаях. При этом, по данным всех указанных методов расчета, в линейном МК она составляет ~1000 К и оказывается втрое больше по сравнению с угловым. Отметим, что приведенные оценки хотя и были получены при двух разных способах моделирования терминальных H-связей, но в них не было учтено влияние катионов, поэтому они не могут считаться окончательными.

Поскольку интерес к низкосимметричным расширенным МК связан с возможностью моделирования молекулярного строения доменных стенок и их границ, проведенный анализ, на наш взгляд, позволяет перейти к этой задаче. Эти и смежные вопросы будут обсуждены в следующей публикации.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа поддержана РФФИ (№ 19-03-00443) и частично выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований (№ 44.2).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Levin A.A., Dolin S.P.* // J. Mol. Struct. 2000. V. 552. P. 39. https://doi.org/10.1016/S0022-2860(00)00457-9
- 2. Dolin S.P., Mikhailova T.Yu., Breslavskaya N.N. et al. // Int. J. Quant. Chem. 2016. V. 116. № 3. P. 202. https://doi.org/10.1002/qua.25037

- Долин С.П., Михайлова Т.Ю., Бреславская Н.Н. // Журн. физ. химии. 2014. Т. 88. С. 1686. https://doi.org/10.7868/80044453714110065
- 4. Левин А.А., Долин С.П., Михайлова Т.Ю. // Журн. Рос. хим. об-ва. 2007. Т. 51. С. 139.
- Долин С.П., Михайлова Т.Ю., Бреславская Н.Н. // Журн. неорган. химии. 2020. Т. 65. № 4. С. 522.
- Долин С.П., Михайлова Т.Ю., Бреславская Н.Н. // Журн. неорган. химии. 2020. Т. 65. № 7. С. 931. https://doi.org/10.31857/S0044457X20070053
- Dolin S.P., Flyagina I.S. et al. // Int. J. Quant. Chem. 2007. V. 107. P. 2409. https://doi.org/10.1002/qua.21406
- Nelmes R.J., Tun Z., Kuhs W.F. // Ferroelectrics. 1987. V. 71. P. 125.
- https://doi.org/10.1080/00150198708224833
- 9. Shur V.Ya., Akhmatkhanov A.R., Lobov A.I., Turygin A.P. // J. Adv. Dielectr. 2015. V. 5. P. 1550015. https://doi.org/10.1142/S2010135X15500150
- 10. Ishibashi Y. // Ferroelectrics. 1989. V. 98. P. 193.
- 11. Bullbich A.A., Gufan Yu.M. // Ferroelectrics. 1989. V. 98. P. 277.
- Pertsev N.A., Arlt G. // Ferroelectrics. 1992. V. 132. № 1. P. 27.
- Shur V.Ya. // J. Mater. Sci. 2006. V. 41. P. 199. https://doi.org/10.1007/s10853-005-6065-7
- Shur V.Ya. // Handbook of advanced dielectric, piezoelectric and ferroelectric materials, chapter. 2008. P. 622. https://doi.org/10.1533/9781845694005.5.622
- Moore M.A., Willians H.C.W.L. // J. Phys. C. 1972. V. 5. P. 3168.
- Tentrup T., Weyrich K.H., Siems R. // Jpn. J. Appl. Phys. 1985. V. 24. P. 571.
- 17. Kamysheva L.N., Fedosov V.N., Sidorkin A.S. // Ferroelectrics. 1976. V. 13. P. 463.
- Стефанович Л.И., Мазур О.Ю. Формирование доменных структур в сегнетоэлектриках в сильноне-

равновесных условиях под влиянием внешних воздействий. Дніпро: Середняк Т.К., 2019. 100 с.

- 19. Лайнс М., Гласс А. Сегнетоэлектрики и родственные им материалы. М.: Мир, 1981.
- 20. Вакс В.Г. Введение в микроскопическую теорию сегнетоэлектриков. М.: Физматлит, 1973. 328 с.
- 21. Струков Б.А., Леванюк А.П. Физические основы сегнетоэлектрических явлений в кристаллах. М.: Наука, 1983. 241 с.
- 22. Блинц Р. Сегнетоэлектрики и антисегнетоэлектрики. Динамика решетки. М.: Мир, 1975. 398 с.
- 23. Маттис Д. Теория магнетизма. М.: Мир, 1967. 406 с.
- 24. Займан Дж. Модели беспорядка. М.: Мир, 1982. 592 с.
- 25. *Pauling L*. The nature of the chemical bond. N.Y.: Cornell University Press, 1960. 645 p.
- Сидоркин А.С. Доменная структура в сегнетоэлектриках и родственных материалах. М.: Физматлит, 2000. 240 с.
- Сидоркин А.С. // Физика твердого тела. 1989. Т. 31. № 9. С. 293.
- 28. Bornarel J. // Ferroelectrics. 1987. V. 71. P. 255.
- Meilikhov E.Z., Farzetdinova R.M. // Phys. Rew. E. 2005. V. 71. P. 046111. https://doi.org/10.1103/PhysRevE.71.046111
- Mikhaylova T.Yu., Breslavskaya N.N., Dolin S.P. // Russ. J. Inorg. Chem. 2017. V. 62. Р. 935. [Михайлова Т. Ю., Бреславская Н.Н., Долин С.П. // Журн. неорган. химии. 2017. Т. 62. С. 934.] https://doi.org/10.1134/S003602361707004X
- Mikhaylova T.Yu., Breslavskaya N.N., Dolin S.P.// Russ. J. Inorg. Chem. 2018. V. 63. P. 61. [Михайлова Т.Ю., Бреславская Н.Н., Долин С.П. // Журн. неорган. химии. 2018. Т. 63. С. 66.] https://doi.org/10.1134/S0036023618010060
- Михайлова Т.Ю., Бреславская Н.Н., Долин С.П. // Журн. неорган. химии. 2017. Т. 62. С. 1593. https://doi.org/10.7868/S0044457X17120066