= ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ =

УДК 539.183.3:546.23.815.654.656

РЕНТГЕНОВСКАЯ ФОТОЭЛЕКТРОННАЯ СПЕКТРОСКОПИЯ СЕЛЕНАТОВ La₂O₂SeO₄ И Pr₂O₂SeO₄

© 2021 г. Ю. А. Тетерин^{*a*, *b*, *, К. И. Маслаков^{*a*}, Д. О. Чаркин^{*a*}, А. Ю. Тетерин^{*b*}, С. Н. Калмыков^{*a*, *b*}, К. Е. Иванов^{*b*}, В. Г. Петров^{*a*}, О. И. Сийдра^{*c*, *d*}}

^а Московский государственный университет им. М.В. Ломоносова, Химический факультет, Ленинские горы, 1, Москва, 119991 Россия

^bНИЦ "Курчатовский институт", пл. Академика Курчатова, 1, Москва, 123182 Россия

^сСанкт-Петербургский государственный университет, пер. Декабристов, 16, Санкт-Петербург, 199155 Россия

^d Центр наноматериаловедения Федерального исследовательского иентра "Кольский научный иентр РАН",

ул. Ферсмана, 14, Апатиты, 184209 Россия

*e-mail: Teterin_YA@nrcki.ru Поступила в редакцию 21.10.2020 г. После доработки 18.11.2020 г. Принята к публикации 20.11.2020 г.

Методом рентгеновской фотоэлектронной спектроскопии изучены новые селенаты $La_2O_2SeO_4$ и $Pr_2O_2SeO_4$, а также селенит $PbSe^{4+}O_3$ и селенат $PbSe^{6+}O_4$. На основании характеристик структуры спектров валентных и остовных электронов подтвержден элементный и ионный состав новых селенатов, содержащих ионы Se^{6+} , La^{3+} и Pr^{3+} . Изучено восстановление ионов Se^{6+} на поверхности образцов селенатов до ионов Se^{4+} под действием рентгеновского излучения в вакууме спектрометра. Установлено, что в отличие от селената $PbSe^{6+}O_4$ селенит $PbSe^{4+}O_3$ устойчив по отношению к действию рентгеновского излучения. Показано, что $La_2O_2SeO_4$ более устойчив на воздухе, чем $Pr_2O_2SeO_4$.

Ключевые слова: электронное строение, РФЭС-спектры, селенаты **DOI:** 10.31857/S0044457X21040231

ВВЕДЕНИЕ

В отличие от хорошо охарактеризованных редкоземельных оксидных сульфатов, аналогичные оксидные селенаты практически неизвестны. В работе [1] на основании результатов термогравиметрического анализа гидратов селената La и Nd обнаружено образование Ln₂O₂SeO₄. Образование этих соединений при разложении на воздухе отражается изломом при 600-650°С; они легко превращаются в более стабильный Ln₂O₂SeO₃. Между тем авторы [2] в несколько иных условиях не наблюдали образование оксидных селенатов и предположили, что их образование маловероятно. В работе [3] при термическом разложении редкоземельных селенатов также не наблюдали образование Ln₂O₂SeO₄. Однако в работе [4] с помощью реакций двойного обмена [5-7] удалось синтезировать три соединения $Ln_2O_2SeO_4$ (Ln = La, Pr и Nd) и изучить их кристаллическую структуру.

При изучении степени окисления селена и других элементов в соединениях используют метод рентгеновской фотоэлектронной спектроскопии (**РФЭС**) [8–10]. Поскольку валентная электронная конфигурация селена $4s^24p^4$, в соедине-

ниях селен может находиться в различных степенях окисления: Se⁶⁺, Se⁴⁺ и Se²⁻ [11–13]. За счет малой термической устойчивости селенаты РЗЭ, содержащие Se⁶⁺, могут переходить в селениты, содержащие Se⁴⁺ [1]. Степень окисления селена в соединениях может быть определена методом РФЭС на основании величин энергий связи остовных электронов [14].

В настоящей работе методом РФЭС изучены новые селенаты $Ln_2O_2SeO_4$ (Ln = La, Pr) с целью определения их ионного состава, в частности степени окисления селена, для подтверждения образования этих соединений. Исследованы также селенит PbSeO₃ и селенат PbSeO₄, содержащие Se⁴⁺ и Se⁶⁺ соответственно, РФЭС-спектры которых, насколько нам известно, не изучены [14, 15].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Селенаты оксидов редкоземельных металлов $La_2O_2SeO_4$ и $Pr_2O_2SeO_4$ впервые были получены с помощью двухвалентных твердофазных реакций между соответствующими оксигалогенидами LnOCl и селенатом калия. Более подробно мето-

Рис. 1. Обзорный РФЭС-спектр поликристалла PbSeO₄.

дика получения этих селенатов описана в работе [4], где также приведены данные дифракционных исследований кристаллической структуры этих веществ и их термической стабильности до 800° С. Селенит PbSe⁴⁺O₃ и селенат PbSe⁶⁺O₄ были получены осаждением из водных растворов, содержащих Pb(NO₃)₂ и Na₂SeO₃ или (NH₄)₂SeO₄ соответственно в мольном соотношении 1 : 1. Образовавшийся таким образом белый осадок промывали несколько раз дистиллированной водой и сушили на воздухе. Оба образца, согласно данным рентгенофазового анализа [4], были однофазными.

Рентгеновская фотоэлектронная спектроскопия. Спектры изученных образцов $Ln_2O_2SeO_4$ (La и Pr), PbSeO₄ и PbSeO₃ были получены на электростатическом спектрометре Axis Ultra DLD (Kratos Analytical UK) с использованием монохроматического Al K_{α} (1486.7 эВ) возбуждающего рентгеновского излучения в вакууме (5 × 10⁻⁷ Па) при комнатной температуре. Образцы рассматриваемых соединений были приготовлены в виде порошков на непроводящем скотче. Спектры получены при I = 12 мкА, U = 15 кВ и P = 180 Вт на рентгеновской трубке.

Информационная поверхность представляла собой эллипс 300×700 мкм². Разрешение прибора, измеренное как полная ширина на полувысоте (Г, полуширина) линии Au4 $f_{7/2}$ -электронов, составляло 0.7 эВ. Энергию связи E_b (эВ) измеряли относительно C1s-электронов углеводородов, адсорбированных на поверхности образца, энергия связи которых была принята равной 285.0 эВ. Спектр C1s-электронов на поверхности образцов наблюдался как линия слабой интенсивности. На поверхности пластины из золота

 E_b (Au4 $f_{7/2}$) = 84.0 эВ, энергия связи C1*s*-электронов насыщенных углеводородов E_b (C1*s*) = 284.1 эВ. Погрешность при определении энергии связи и ширины пиков не превышала ±0.05 эВ, а относительной пиковой интенсивности – ±5%. Полуширина линии C1*s*-электронов насыщенных углеводородов на поверхности образца Г(C1*s*) = 1.3 эВ [16]. Фон, связанный с вторично рассеянными электронами, вычитали по методу Ширли [17].

Проведен количественный элементный анализ поверхности толщиной несколько нанометров (~3–5 нм [18]). Он основан на том, что интенсивность линий пропорциональна числу соответствующих атомов в исследуемом образце. Использовали следующее соотношение: $n_i/n_j = (S_iS_j) (k_jk_i)$, где n_in_j – относительная концентрация изученных атомов, S_iS_j – относительная интенсивность линий, k_jk_i – относительный экспериментальный коэффициент чувствительности. Использовали следующие коэффициенты чувствительности. Использовали следующие коэффициенты чувствительности. Использовали следующие коэффициенты чувствительности относительно С1s: 1.00 (C1s), 2.81 (O1s), 3.07 (Se3 $d_{5/2}$), 4.58 (Se3 $p_{3/2}$), 1.17 (Se3s), 29.96 (Pb4 $f_{7/2}$), 19.69 (La3 $d_{5/2}$), 16.46 (Pr3 $d_{5/2}$).

Установлено, что в пределах ошибки измерений элементный состав, полученный на основании РФЭС-спектров, не отличается от стехиометрического состава изученных соединений.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Обзорные РФЭС-спектры $Ln_2O_2SeO_4$ (Ln = La, Pr), PbSeO₄ и PbSeO₃, кроме линий элементов этих соединений и C1*s*-электронов насыщенных углеводородов, адсорбированных на поверхности образцов, содержат С KLL, O KLL и Se LMM Оже-спектры (рис. 1). Значительное усложнение спектров наблюдается в области энергий связи 130–470 эВ, где наблюдается структура, связанная с Se LMM Оже-спектром.

Было замечено, что под действием AlK_{α} -рентгеновского излучения происходит восстановление ионов Se⁶⁺ на поверхности образцов селенатов до ионов Se⁶⁺. Это приводит к появлению плеча у линий РФЭС-спектров остовных электронов ионов Se⁶⁺ со стороны меньших энергий связи (рис. 2). Поэтому на первом этапе было изучено восстановление ионов Se⁶⁺. Для этого был выбран спектр Se3*d*-электронов, линии которого являются относительно узкими и не перекрываются с линиями других элементов (рис. 2). Величина спин-орбитального расщепления ΔE_{sl} (Se3*d*) = = 0.9 эВ, энергии связи E_b (Se3*d*_{5/2}) = 58.5 и 59.8 эВ для эталонных селенита PbSe⁴⁺O₄ и селената PbSe⁶⁺O₄ соответственно (табл. 1).

Восстановление ионов Se⁶⁺ до Se⁴⁺. При изучении восстановления под действием рентгеновского излучения в вакууме спектрометра ионов Se⁶⁺ до Se⁴⁺ на поверхности образцов селенатов $(La_2O_2SeO_4, Pr_2O_2SeO_4, PbSe^{6+}O_4)$ был получен 21 $P\Phi \Theta C$ -спектр Se3d-электронов, спектры записывали последовательно через ~1 мин. При этом спектр Se3d-электронов PbSeO₃ не изменялся в течение 120 мин. Спектры PbSeO₄, полученные в течение 1 мин для первого и 21-го скана, показаны на рис. 2. Полученные результаты приведены в табл. 2. Из этих данных следует, что PbSeO₃ является устойчивым соединением и содержит только ионы Se⁴⁺. На него практически не влияет рентгеновское излучение. Образец PbSeO₄ менее устойчив по отношению к такому излучению. Через 1 мин на его поверхности наблюдался 1 ат. % ионов Se⁴⁺, через 21 мин – 13 ат. %, а через 120 мин – 31 ат. % ионов Se⁴⁺. Образец La₂O₂SeO₄ также оказался неустойчивым. Через 1 мин на его поверхности наблюдалось 6 ат. % ионов Se⁴⁺, через 21 мин – 17 ат. %, а через 120 мин – 30 ат. % ионов Se⁴⁺. Аналогично на поверхности образца Pr₂O₂SeO₄ через 120 мин наблюдалось 33 ат. % ионов Se⁴⁺. Из этих данных следует, что примерно через 120 мин образуются фазы с одинаковым относительным составом ионов селена. Устойчивость селенатов уменьшается в ряду PbSeO₄, La₂O₂SeO₄, Pr₂O₂SeO₄, а исходные новые селенаты $(La_2O_2SeO_4, Pr_2O_2SeO_4)$ в пределах погрешности измерения (±5%) содержат в основном ионы Se⁶⁺. На поверхности образца Pr₂O₂SeO₄ после 1 мин облучения наблюдалось 19 ат. % ионов Se^{4+} , по-видимому, перед облучением на его поверхности уже присутствовали ионы Se⁴⁺. Это характеризует образец как наименее устойчивый селенат.

С учетом данных о частичном изменении ионного состава поверхности изученных веществ под действием рентгеновского излучения в настоящей работе была проведена идентификация структуры полученных РФЭС-спектров валент-

Рис. 2. РФЭС-спектры Se3*d*-электронов, записанные в течение 1 мин, для $PbSeO_4$: а – в течение 1 мин; б – в течение 21 мин.

ных и остовных электронов селенита $PbSeO_3$ и селенатов $PbSeO_4$, $La_2O_2SeO_4$, $Pr_2O_2SeO_4$ (табл. 1, 2).

Данные об электронной структуре и степени окисления ионов металлов в соединениях могут

Соединение	МО	Se 3s	Se 3 <i>p</i> _{3/2}	Se 3 <i>d</i> _{5.2}	Pb 4 <i>f</i> _{7/2}	Ln 3 <i>d</i> _{5/2}	O 1 <i>s</i>
La ₂ O ₂ SeO ₄	4.0, 9.8, 13.6 17.0, 34.5	234.9 (3.7)	166.3 (2.2)	60.2 (1.1)		834.1 (2.4) 3.7 (2.4) sat	528.7 (1.1) 531.3 (1.6)
$Pr_2O_2SeO_4$	2.4, 4.0, 9.7, 13.7 17.7, 37.5	234.8 (3.6)	166.3 (2.2)	60.2 (1.1)		928.5 (3.4) 4.4 (3.7) sat	528.7 (1.1) 531.2 (1.6)
PbSeO ₄	4.3, 8.5, 13.6 19.8, 22.4	235.0 (3.2)	166.0 (2.0)	59.8 (1.0)	138.9 (1.1)		531.0 (1.4) 533.1 (1.6)
PbSeO ₃	3.9, 8.3, 13.7 19.7, 22.3	233.7 (2.8)	164.7 (2.0)	58.5 (1.0)	138.7 (1.0)		530.5 (1.1) 531.8 (1.1)

Таблица 1. Энергии связи E_{b}^{a} (эВ) и полуширина линий Γ^{6} (эВ) электронов соединений селена

^аЭнергии связи электронов измерены относительно энергии $E_h(C1s) = 285.0$ эВ.

⁶Полуширина линий приведена в скобках после E_b относительно полуширины $\Gamma(C1s) = 1.3$ эВ.

Образец	Se ⁿ⁺	$E_b(\text{Se}3d_{5/2})$	Ионный состав при разных τ			
			1	21	120	
La ₂ O ₂ SeO ₄	Se ⁴⁺	58.5 (1.1)	6	17	30	
	Se ⁶⁺	60.2 (1.1)	94	83	70	
$Pr_2O_2SeO_4$	Se ⁴⁺	58.5 (1.1)	19	24	33	
	Se ⁶⁺	60.2 (1.1)	81	76	67	
PbSeO ₄	Se ⁴⁺	58.4 (1.1)	1	13	31	
	Se ⁶⁺	59.8 (1.1)	99	87	69	
PbSeO ₃	Se^{4+} Se^{6+}	58.5 (1.1)	100	100	100	

Таблица 2. Энергии связи E_b^{a} (эВ) и полуширина линий Γ^6 (эВ) Se $3d_{5/2}$ -электронов, а также ионный состав^в (Se^{*n*+}) поверхности образцов (%) соединений селена в зависимости от времени τ (мин) пребывания под пучком Al K_{α} -рентгеновского излучения

^аЭнергии связи электронов измерены относительно энергии $E_b(C1s) = 285.0$ эВ, $E_b(Se3d_{5/2}) = 55.9$ эВ для Se.

⁶Полуширина линий приведена в скобках после E_b относительно полуширины $\Gamma(C1s) = 1.3$ эB, а $\Delta E_{sl}(\text{Se}3d) = 0.9$ эB. ^вПогрешность определения ионного состава ±5%.

быть получены на основании параметров РФЭСспектров валентных и остовных электронов [16]. При обсуждении структуры спектров удобно использовать атомные и молекулярные спектральные обозначения.

Структура РФЭС-спектров валентных электронов. РФЭС-спектры валентных электронов (от 0 до ~45 эВ) с учетом сечений фотоионизации отражают полную плотность состояний таких электронов и служат критерием правильности результатов расчетов электронной структуры веществ [16]. Эти спектры полезны и тем, что в них проявляются линии большинства атомов изучаемых веществ, включая примеси.

Рис. 3. РФЭС-спектр валентных электронов PbSeO₃.

Для PbSeO₃ спектр валентных электронов приведен на рис. 3. Структура этого спектра качественно сравнима со структурой соответствующего спектра PbSeO₄ (табл. 1). Этот спектр можно условно разделить на две части. В первой части спектра PbSeO₃ (от 0 до ~15 эВ) наблюдается структура, связанная с электронами внешних валентных молекулярных орбиталей (ВМО), которые частично образованы из Se4s, Se4p, Pb6s, Pb6p и О2р атомных орбиталей (рис. 3). Интенсивность этой части спектра увеличена в четыре раза из-за малой величины. Она отражает зонную структуру валентных электронов. Из-за отсутствия результатов расчета электронной структуры PbSeO₃ можно только на качественном уровне отметить, что в полосу при 3.9 эВ вносят вклад Рb6*p*-, Se4*p*- и O2*p*-электроны, а в полосу при 8.3 эВ – Pb6s-, Se4s- и O2p-электроны.

В области спектров от ~15 до ~35 эВ наблюдается структура, связанная с электронами внутренних валентных молекулярных орбиталей (**BBMO**). Такие MO образуются в основном из полностью заполненных атомных орбиталей (**AO**) Pb5*d* и O2*s*. Поэтому эти спектры не имеют атомного характера и не могут быть использованы при корректном количественном элементном анализе. Поскольку спектры Pb5*d*-электронов имеют черты атомной структуры, можно предположить, что степень участия этих AO в образовании BBMO не слишком велика.

Структура РФЭС-спектров остовных электронов. На РФЭС-спектр Se3*p*-электронов PbSeO₃, состоящий из спин-дублета с $\Delta E_{\rm sl}({\rm Se3}p) = 5.8$ эВ и $\Gamma({\rm Se3}p_{1/2}) = 2.0$ эВ, которая обычно используется при изучении соединений селена [14], накладывается структура, связанная с характеристически-

Рис. 4. РФЭС-спектр Se3*p*-электронов PbSeO₃.

ми потерями Pb4*f*-электронов, и структура Se LMM Оже-электронов (рис. 4). Это затрудняет корректное использование спектра Se3*p*-электронов для определения ионного состава селена (Se⁶⁺ и Se⁴⁺) в образце. Линия Se3*s*-электронов в спектре PbSeO₃ имеет относительно большую полуширину Γ (Se3*s*) = 2.8 эВ (рис. 5), в отличие от величины Γ (Se3*d*) = 1.0 эВ (табл. 1), что также затрудняет ее использование при определении степени окисления селена в соединениях. Спектр Pb4*f*-электронов этого селенита содержит узкие линии дублета с величиной спин-орбитального расщепления ΔE_{sl} (Pb4*f*) = 4.9 эВ и полушириной линий Γ (Pb4*f*_{7/2,5/2}) = 1.0 эВ, что отражает химическую эквивалентность ионов свинца (рис. 6).

Структура спектра La3*d*-электронов селената La₂O₂SeO₄ состоит из спин-дублета с $\Delta E_{\rm sl}$ (La3*d*) = = 16.8 эВ и полушириной линий Γ (La3*d*_{5/2,3/2}) = 2.4 эВ, shake up сателлитов, связанных с переносом заряда от лиганда к металлу (sat₁), и shake up сателлитов, обусловленных переходами электронов с занятых на свободные MO (sat₂) в процессе фотоэмиссии La3*d*-электронов (рис. 7а). Аналогичная структура наблюдается в спектре Pr3*d*-электронов (рис. 7б). Такая структура спектров Ln3*d*-электронов характерна для ионов Ln³⁺ (Ln = La, Pr).

РФЭС-спектр O1*s*-электронов PbSeO₃ наблюдается в виде линии с $E_b(O1s) = 530.5$ эВ и полушириной $\Gamma(O1s) = 1.1$ эВ (табл. 1, рис. 8а). Со стороны бо́льших энергий связи от линии O1*s*-электронов в виде плеча наблюдается линия при $E_b(O1s) = 531.8$ эВ, связанная с гидроксильными группами. Соотношение площадей этих линий равно 87% (O²⁻) и 13% (OH⁻). Подобные результаты были получены для всех изученных образцов (табл. 1, рис. 8б).

Рис. 5. РФЭС-спектр Se3s-электронов PbSeO₃.

Поскольку, например, энергии связи O1*s*электронов в PbSeO₄ равны 531.0 эВ (92% – основная линия) и 533.1 эВ (8% – H₂O на поверхности), с учетом выражения (1) [19] для длины связей R_{3-O} (нм) элемент-кислород:

$$R_{\rm 3-O}(\rm HM) = 2.27 \left(E_{\rm b} - 519.4\right)^{-1}$$
(1)

можно оценить, что средние длины связей R_{9-O} для поверхности PbSeO₄ равны 0.196 и 0.166 нм. Экспериментально найденная длина связи для PbSeO₄ равна 0.163 нм для R_{Se-O} [20], что заметно отличается от величины 0.196 нм. Значение 0.166 нм характеризует длину связи кислорода воды с металлами на поверхности.

Рис. 6. РФЭС-спектры Pb4f-электронов PbSeO₃.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 4 2021

Рис. 7. РФЭС-спектры Ln3d-электронов Ln_2SeO_6 : a – La_2SeO_6 ; б – Pr_2SeO_6 .

Энергии связи O1s-электронов La₂O₂SeO₄ (Pr₂O₂SeO₄) равны 528.7 и 531.3 эВ (528.7 и 531.2 эВ) соответственно (табл. 1, рис. 8б). Этим величинам соответствуют длины связи $R_{2-0} = 0.244$ и 0.191 нм (0.244 и 0.192 нм). Экспериментально найденные длины связи для $La_2O_2SeO_4$ (Pr₂O₂SeO₄) равны 0.273 нм (0.268 нм) для R_{Ln-O} (по отношению к SeO₄); 0.242 нм (0.238 нм) для R_{Ln-O} (по отношению к тетраэдру OLn₄); 0.165 нм (0.166 нм) для *R*_{Se-O} [4]. Отметим, что длины связей, оцененные на основании уравнения (1), отражают средние величины. Например, величина 0.244 нм для La₂O₂SeO₄ является средней величиной длин связи La-O и согласуется с соответствующей величиной 0.242 нм, найденной из рентгеноструктурных данных. Следует отметить, что в области 531.5 эВ могут наблюдаться линии O1sэлектронов гидроксильных групп, адсорбированных на поверхности образцов, что может привести к ошибке. Поэтому можно заключить, что в

Рис. 8. РФЭС-спектры O 1*s*электронов: $a - PbSeO_3$; $6 - La_2SeO_6$.

результате оценки наиболее корректной средней величиной является $R_{\rm Ln-O} = 0.244$ нм.

ЗАКЛЮЧЕНИЕ

Методом РФЭС изучены селенаты $La_2O_2SeO_4$ и $Pr_2O_2SeO_4$, а также соединения PbSeO₃ и PbSeO₄, спектры которых ранее не изучали. На основании характеристик структуры спектров валентных и остовных электронов подтвержден стехиометрический и ионный состав (La^{3+} , Pr^{3+} , Se^{6+}) селенатов $La_2O_2SeO_4$ и $Pr_2O_2SeO_4$.

Установлено, что селенит PbSeO₃ устойчив по отношению к действию рентгеновского излучения мощностью 180 Ватт в течение 2 ч. Для селената PbSeO₄ наблюдается восстановление ионов Se⁶⁺ до Se⁴⁺ с первой минуты, и через 2 ч концентрация Se⁴⁺ достигает 31%. Найдено, что на поверхности образцов селенатов La₂O₂SeO₄ и Pr₂O₂SeO₄ в первый момент наблюдается 6 и 19% ионов Se⁴⁺, а после 2 ч выдержки под пучком рентгеновского излучения концентрация ионов Se⁴⁺ увеличивается до 30 и 33% соответственно. Предполагается, что эти селенаты содержали на поверхности примесь ионов Se^{4+} еще до облучения рентгеновским изучением, а селенат La_2SeO_6 более устойчив на воздухе, чем селенат Pr_2SeO_6 .

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 20-03-00333) и с использованием оборудования, приобретенного за счет средств Программы развития Московского университета.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Karvinen S., Lumme K., Niinistö L. // J. Therm. Anal. 1987. V. 32. P. 919. https://doi.org/10.1007/BF01913778
- Nabar M.A., Paralkar S.V. // Thermochim. Acta. 1976.
 V. 15. P. 390. https://doi.org/10.1016/0040-6031(76)85093-9
- Hajek B., Novotna N., Hradilova J. // J. Less-Common. Met. 1979. V. 66. P. 121.
- https://doi.org/10.1016/0022-5088(79)90222-4
- Charkin D.O., Karpov A.S., Kazakov S.M. et al. // J. Solid State Chem. 2019. V. 277. P. 163. https://doi.org/10.1016/j.issc.2019.06.007
- Schaak R.E., Mallouk T.E. // Chem. Mater. 2002. V. 14. P. 1455. https://doi.org/10.1021/cm010689m
- Charkin D.O. // Russ. J. Inorg. Chem. 2008. V. 53. Suppl. P. 1977. https://doi.org/10.1134/S0036023608130019

- Charkin D.O., Grischenko R.O., Sadybekov A.A. et al. // Inorg. Chem. 2008. V. 47. P. 3065. https://doi.org/10.1021/ic701558m
- Pawar S.T., Chavan G.T., Prakshale V.M. et al. // Mater. Sci. Semicond. Process. 2017. V. 61. P. 71. https://doi.org/10.1016/j.mssp.2016.12.042
- Kim Y.J., Yuan K., Ellis B.R., Becker U. // Geochim. Cosmochim. Acta. 2017. V. 199. P. 304. https://doi.org/10.1016/j.gca.2016.10.039
- Zhong W., Tu W., Xu Y. et al. // J. Env. Chem. Eng. 2017.
 V. 5. P. 4206. https://doi.org/10.1016/j.jece.2017.08.016
- Han D.S., Batchelor B., Abdel-Wahab A. // J. Colloid Interface Sci. 2012. V. 368. P. 496. https://doi.org/10.1016/j.jcis.2011.10.065
- Qi X., Wang J.-Y., Kuo J.-C. et al. // J. Alloys Compd. 2011. V. 509. P. 6350. https://doi.org/10.1016/j.jallcom.2011.03.054
- 13. *Chen T.-K., Luo J.-Y., Ke C.-T. et al.* // Thin Solid Films. 2010. V. 519. P. 1540. https://doi.org/10.1016/j.tsf.2010.06.002
- 14. Нефедов В.И. Рентгеноэлектронная спектроскопия химических соединений. М.: Химия, 1984. 256 с.
- NIST X-ray Photoelectron Spectroscopy Database, Version 4.1. Gaithersburg: National Institute of Standards and Technology, 2012. https://doi.org/10.18434/T4T88K
- 16. *Тетерин Ю.А., Тетерин А.Ю. //* Успехи химии. 2002. Т. 71. № 5. С. 403.
- 17. Shirley D.A. // Phys. Rev. B. 1972. V. 5. P. 4709.
- Немошкаленко В.В., Алешин В.Г. Электронная спектроскопия кристаллов. Киев: Наук. думка, 1976. 336 с.
- Sosulnikov M.I., Teterin Yu.A. // J. Electron. Spectrosc. Relat. Phenom. 1992. V. 59. P. 111. https://doi.org/10.1016/0368-2048(92)85002-O
- Effenberger H., Pertlik F. // Z. Kristallogr. 1986. V. 176. P. 75. https://doi.org/10.1524/zkri.1986.176.1-2.75