____ ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ __ НЕОРГАНИЧЕСКИХ СИСТЕМ

УДК 541.12.012

БИФУРКАЦИИ *Т*-*x*-ФАЗОВЫХ ДИАГРАММ КОНДЕНСИРОВАННОГО СОСТОЯНИЯ БИНАРНЫХ СИСТЕМ. ФАЗОВЫЕ ДИАГРАММЫ С УПОРЯДОЧЕННЫМИ ФАЗАМИ

© 2021 г. П. П. Федоров*

Институт общей физики им. А.М. Прохорова РАН, ул. Вавилова, 38, Москва, 119991 Россия

**e-mail: ppfedorov@yandex.ru* Поступила в редакцию 26.10.2020 г. После доработки 18.11.2020 г. Принята к публикации 20.11.2020 г.

С использованием методологии последовательных трансформаций фазовых диаграмм, сопровождающихся изменением их топологической структуры (бифуркациями), рассмотрены возможные варианты T—x- и p—T—x-фазовых диаграмм бинарных систем, содержащих твердые растворы, претерпевающие процессы упорядочения при повышении устойчивости упорядоченных фаз. Рассмотрено соответствие построенных схем реальным рядам фазовых диаграмм, таким как системы MF₂—RF₃ (M = = Ca, Sr, Ba, Pb; R – редкоземельные элементы), NaF—RF₃, Bi₂O₃—MO, (Zr,Hf)O₂—R₂O₃.

Ключевые слова: топологические трансформации фазовых диаграмм, твердые растворы, третий закон термодинамики, фториды редкоземельных элементов

DOI: 10.31857/S0044457X21040103

ВВЕДЕНИЕ

В данной статье в продолжение работ [1–8] используется методология последовательных трансформаций фазовых диаграмм, сопровождающихся изменением их топологической структуры – бифуркациями. Такие трансформации могут происходить при изменении действующих на систему обобщенных сил (в первую очередь давления), при математическом моделировании, а также при рассмотрении ряда фазовых диаграмм с одним постоянным компонентом, в то время как вторым компонентом являются аналоги по Периодической системе, в первую очередь соединения редкоземельных элементов.

В соответствии с третьим законом термодинамики (энтропия системы, находящейся в равновесии, стремится к нулю при стремлении температуры к абсолютному нулю [9]), все фазы переменного состава (твердые растворы, нестехиометрические фазы) должны или распасться (на компоненты или другие фазы постоянного состава), или перейти в строго упорядоченное состояние [10–12]. Упорядочение твердых растворов с образованием новых фаз происходит в системах различного химического состава [13]: металлов [14, 15], оксидов [16–22], в том числе силикатов [23–26] и боратов [13], а также фторидов [27–34], карбидов, нитридов [35] и т.д. Упорядочение может происходить по механизмам первого или второго рода, а также через температурную область существования несоразмерных фаз [10]. В упорядоченных фазах в пределе различные атомы занимают строго определенные кристаллографические позиции с коэффициентами заполнения, равными единице [14]. Как правило, упорядочение носит последовательный характер, начинаясь с частичной дифференциации атомов по кристаллографическим позициям. Кристаллографическая группа симметрии упорядоченной фазы является подгруппой симметрии разупорядоченной фазы [36-38]. Упорядочение и изменение симметрии также могут быть связаны с изменением колебательных мод и заключаются в фиксации определенных кристаллографических ориентаций асимметричных фрагментов (тетраэдрических, треугольных группировок и т.д.).

Процессы распада и упорядочения твердых растворов, происходящие при низких температурах, часто сопровождаются образованием метастабильных фаз и затруднены для экспериментального изучения из-за медленной кинетики [10]. В справочниках по диаграммам состояния металлических систем эти области (начиная с некоторой критической температуры) изображены, как правило, в неравновесном состоянии, так как не экстраполируется стягивание однофазных полей в точки при $T \rightarrow 0$ K.

При изменении обобщенных сил, действующих на систему, или при замене атомов (ионов)

Рис. 1. Последовательность участков T—x-фазовых диаграмм, отвечающих образованию и повышению устойчивости упорядоченной γ -фазы (а—е) в случае, когда состав упорядоченной фазы лежит вне концентрационной области устойчивости неупорядоченного твердого раствора α , и соответствующая p—T-проекция (ж). Пунктир — метастабильные равновесия, штрих-пунктир — равенство составов сосуществующих фаз, кружки — точки бифуркации.

на их аналоги по Периодической системе может происходить повышение устойчивости упорядоченных фаз, в том числе выход их на равновесие с расплавом. Этот случай имеет принципиальное значение, поскольку позволяет получать (выращивать) монокристаллы упорядоченных фаз из рассматриваемой системы без добавления постороннего растворителя. При инконгруэнтном плавлении рост кристаллов проводится из нестехиометрического расплава с использованием техники выращивания из раствора в расплаве. При дальнейшем повышении устойчивости упорядоченных фаз может происходить их переход к конгруэнтному плавлению, что позволяет выбирать из всех известных методов выращивания кристаллов (методы Бриджмена, Чохральского и др.). Возможность выращивания монокристаллов важна как для проведения структурных исследований, так и для создания нового материала.

Обычно один неупорядоченный твердый раствор порождает несколько упорядоченных фаз (в случае несоразмерных фаз — бесконечно много). Для простоты рассмотрим образование только одной упорядоченной фазы. Будем рассматривать только фазовые переходы первого рода, хотя в процессах упорядочения фазовые переходы часто идут как переходы второго рода или близкие к ним.

Рассмотрим сначала процессы возникновения упорядоченной γ -фазы при низких температурах. Возможные сценарии представлены на рис. 1–4. На всех рисунках L – расплав, α , β , γ – твердые фазы (α – неупорядоченный твердый раствор), пунктир – метастабильные равновесия, штрих-пунктир – двухфазные равновесия при равенстве составов сосуществующих фаз. Упорядоченная γ -фаза всегда имеет узкую область гомогенности, быстро сходящую на нет при понижении температуры.

Возникновение упорядоченной фазы происходит при некотором критическом значении ионного радиуса переменного катиона, совместимом с соответствующим координационным полиэдром в структуре упорядоченной фазы, или при некотором критическом давлении, при котором соотношение размеров катиона и аниона достигает соответствующего значения. Возникновение фазы (или ее исчезновение, если рассматривать обратное направление изменения управляющего параметра) может происходить как бифуркация снижения температуры трехфазного равновесия ФЕДОРОВ

Рис. 2. Последовательность участков T-x-фазовых диаграмм, отвечающих образованию и повышению устойчивости упорядоченной γ -фазы (а—е) в случае, когда состав упорядоченной фазы лежит в пределах концентрационной области устойчивости неупорядоченного твердого раствора α , и соответствующая p-T-проекция (ж). Обозначения те же, что и на рис. 1.

до абсолютного нуля (рис. 1, 2) [4]. При этом зависимость соответствующей температуры T(p) на T-p-проекции монотонна (рис. 1ж, 2ж) и имеет вертикальную касательную при $T \rightarrow 0$. Это следует из обобщенного уравнения Клаузиуса–Клапейрона для равновесия (k + 1)-фаз в k-компонентной системе:

$$dT/dp = \Delta V / \Delta S \tag{1}$$

с учетом того, что $\Delta S \rightarrow 0$ при $T \rightarrow 0$. Условие вертикальной касательной справедливо и для зависимостей T(r), если термодинамические функции сосуществующих фаз являются гладкими функциями r [39].

Возрастание устойчивости упорядоченной фазы проявляется в повышении верхней температуры ее существования. Возможны варианты этого процесса. В первом из них она достигает области существования жидкого состояния (рис. 1), переходя через бифуркацию равновесия четырех фаз A₁II (три твердые фазы и расплав, рис. 1в) к инконгруэнтному, а затем (через бифуркацию, рис. 1д) к конгруэнтному плавлению. Всего на рис. 1 имеют место три бифуркации, отвечающие видам Б₃, A₁II, Б₁II по классификации [5, 6]. Во втором варианте (рис. 2) упорядоченная фаза "втыкается" и "врастает" в область неупорядоченного твердого раствора. Для корректного описания точки контакта (рис. 2б) необходимо учитывать, что, согласно уравнению Ван-дер-Ваальса, для каждой из сосуществующих фаз в бинарных системах [40] в случае постоянства давления справедливо уравнение:

$$\left(\frac{\partial T}{\partial x}\right)_{p} = \frac{\Delta x \left(\frac{\partial^{2} G}{\partial x^{2}}\right)_{p,T}}{\Delta x \left(\frac{\partial S}{\partial x}\right)_{p,T} - \Delta S}.$$
(2)

Левая часть уравнения (2) отвечает тангенсу наклона граничных кривых, Δx и ΔS равны разностям концентраций и энтропий сосуществующих фаз, производные изобарно-изотермического потенциала *G* и энтропии *S* взяты по концентрации *x* в одной и той же фазе. Из этого уравнения следует, что равенство составов сосуществующих фаз $\Delta x = 0$ влечет за собой существование горизонтальной касательной к кривым равновесия двух фаз ($\partial T/\partial x = 0$).

Рис. 3. Последовательность участков T—x-фазовых диаграмм, отвечающих образованию и повышению устойчивости упорядоченной γ -фазы (a—e) в случае, когда образование происходит в двухфазной области $\alpha + \beta$ при температуре $T \neq 0$ K, и соответствующая p—T-проекция (ж). Обозначения те же, что и на рис. 1.

Схема трансформаций, изображенная на рис. 2, включает четыре бифуркации (рис. 2ж), отвечающие видам $Б_3$, $Б_1II$, A_1II , $Б_1II$ по классификации [5, 6].

Возможно также возникновение фазы в двухфазной области при некоторой $T \neq 0$ (рис. 3). γ -Фаза первоначально ограничена двумя трехфазными равновесиями одинакового типа, лежащими на одной кривой на T-p-проекции (рис. 3ж). Нижняя граница устойчивости упорядоченной фазы быстро достигает абсолютного нуля (бифуркация Б₃). Возрастание верхней температуры устойчивости может идти по сценарию рис. 16—1е или по сценарию рис. 26—2е. Процесс, представленный на рис. 3, включает четыре бифуркации, соответствующие видам Б₄, Б₃, Б₁II, Б₁II по классификации [5, 6].

Еще один вариант возникновения упорядоченной фазы — это ее образование на краю неупорядоченного твердого раствора (рис. 4). Поскольку граница области гомогенности твердого раствора α определяется, помимо его собственной устойчивости, наличием сосуществующей β -фазы, необходимо учитывать предварительное зарождение упорядоченной фазы в пределах метастабильного твердого раствора (при T = 0 или на

границе спинодальной устойчивости) с последующим выходом равновесий в стабильную область. Соответствующая критическая точка (рис. 4в) отвечает бифуркации нового вида, не рассмотренного в [6]. Ей можно присвоить наименование Б₁IX. Поскольку в момент касания имеет место равенство составов α- и γ-фаз, кривая растворимости α-фазы имеет горизонтальную касательную, следовательно, предварительно на ней должен был появиться перегиб. Эта бифуркация порождает два трехфазных равновесия одного типа (αβγ), являющихся двумя ветвями одной кривой на p-T-проекции (рис. 4е, 4ж). Для решения вопроса о том, имеется ли на этой кривой точка возврата (рис. 4е) или она является гладкой в окрестности точки бифуркации (рис. 4ж), необходимо рассматривать конкретные модели упорядочения.

Еще один вариант возникновения упорядоченной фазы — ее образование внутри области гомогенности неупорядоченного твердого раствора α (рис. 5). При этом возникает замкнутая область существования γ -фазы с точками максимума и минимума равновесий $\gamma \leftrightarrow \alpha$. Такая бифуркация также ранее не рассматривалась, ей можно присвоить наименование B₂. При расширении поля устойчивости γ -фазы происходит низкотемпера-

ФЕДОРОВ

Рис. 4. Последовательность участков T—x-фазовых диаграмм, отвечающих образованию и повышению устойчивости упорядоченной γ -фазы (а— α) в случае, когда образование происходит на краю области существования неупорядоченного твердого раствора α , и соответствующие p—T-проекции (е, ж). Обозначения те же, что и на рис. 1.

турный выход ее за область гомогенности α -фазы с появлением двух трехфазных горизонталей α + + β + γ , которые на *T*-*p*-проекции объединяются в одну кривую. На рис. 5в изображено касание точкой минимума кривой растворимости неупорядоченного твердого раствора α , что соответствует горизонтальной касательной к кривой насыщения α -фазы (рис. 5в) и бифуркации Б₁VIII. Таким образом, в процессе, изображенном на рис. 5, имеют место три бифуркации: В₂, Б₁VIII и Б₃.

В процессе повышения термической устойчивости упорядоченной фазы, находящейся в области концентрационной и температурной устойчивости неупорядоченного твердого раствора, возможны два варианта. В первом случае она переходит на край устойчивости твердого раствора, что может происходить как в твердом состоянии (рис. 3r-3e), так и в контакте с расплавом (рис. 2д-2e). Дальнейшая эволюция с повышением устойчивости упорядоченной фазы протекает по схеме, представленной на рис. 1.

Второй весьма интересный вариант - это выход упорядоченной фазы на равновесие с расплавом за счет прорыва поля неупорядоченного твердого раствора и разрезания его на две части. Соответствующий сценарий представлен на рис. 6. При этом имеют место три бифуркации: контакт упорядоченной фазы с кривой солидуса (рис. 6б, бифуркация B_1 VII) с образованием двух трехфазных равновесий $\alpha + \gamma + L$ (объединенных на p-T-проекции в одну кривую), разрезанием поля неупорядоченного твердого раствора α на два с образованием изолированной бертоллидной фазы α'; переход от инконгруэнтного к конгруэнтному плавлению ү-фазы (рис. 6в-6г, бифуркация Б₁II) и исчезновение α'-фазы за счет стягивания верхней и нижней температурных границ ее устойчивости (рис. 6г-6д, бифуркация А₂).

На рис. 6б изображено касание кривой ликвидуса верхней точкой устойчивости γ -фазы (бифуркация Б₁VII). Поскольку в этой точке из-за равенства составов граничные кривые α - и γ -фаз

Рис. 5. Последовательность участков T—x-фазовых диаграмм, отвечающих образованию и повышению устойчивости упорядоченной γ -фазы (а— α) в случае, когда образование происходит внутри области существования неупорядоченного твердого раствора α , и соответствующая p—T-проекция (е). Обозначения те же, что и на рис. 1.

имеют общую горизонтальную касательную, геометрически и солидус также должен в точке касания становиться "горизонтальным". В общем случае этого не происходит. На рис. 7 изображена более детальная последовательность общего случая касания солидуса с у-фазой без точки с горизонтальной касательной. Сначала имеет место боковое касание двухфазных областей $\alpha + \gamma u \gamma + L$, которое образует две трехфазные горизонтали, отвечающие равновесиям $\alpha + \gamma + L$ (бифуркация Б₄ по классификации [6]). В дальнейшем происходит еще одна бифуркация, отвечающая переходу ү-фазы к инконгруэнтному плавлению (бифуркация $\mathbf{5}_1$ II [6]). На p-T-проекции рис. 7, в отличие от рис. 6, линия максимумов равновесия $\alpha + \gamma$ пересекается с кривой $\alpha\gamma L$ не в точке минимального значения р.

Таким образом, предложенная в [6] бифуркация B_1 VII образуется при слиянии двух бифуркаций — $B_4 + B_1$ II. Чтобы определить, в каких случаях осуществляется такое слияние, рассмотрим уравнение Ван-дер-Ваальса (2). Поскольку равенство составов жидкой и твердых фаз исключается, единственной возможностью реализации горизонтального солидуса является равенство нулю второй производной изобарно-изотермического потенциала по концентрации. Такое равенство соответствует границе устойчивости фазы по отношению к диффузии [41] и выполняется для множества точек, принадлежащих спинодалям или фазовым переходам второго рода. Таким образом, этот вариант бифуркации с горизонтальным солидусом имеет место, если упорядочение протекает как фазовый переход второго рода или как граничное состояние, переходное от фазового перехода первого рода к фазовому переходу второго рода (трикритическая точка [42, 43]).

515

Заметим, что рис. 1—4 отображают действие правила Юм-Розери [10, 44]: появление фазы с узкой областью гомогенности резко ограничивает область существования соседней фазы переменного состава.

Рассмотрим реальное осуществление этих сценариев. Процесс повышения устойчивости упоФЕДОРОВ

Рис. 6. Последовательность участков T—x-фазовых диаграмм, отвечающих повышению устойчивости упорядоченной γ -фазы (а—д), находящейся внутри области неупорядоченного твердого раствора α , и соответствующая p—T-проекция (е). Обозначения те же, что и на рис. 1.

рядоченных фаз осуществляется в рядах систем MF_2-RF_3 , где M = Ca, Sr, Ba, Pb; R – редкоземельные элементы при уменьшении ионного радиуса R^{3+} (увеличение порядкого номера P3Э) [27, 29–31, 33]. В частности, переход от системы PbF_2-TmF_3 к системе PbF_2-YbF_3 соответствует переходу от схемы рис. 16 к рис. 1е: фаза $Pb_4R_3F_{17}$ выходит на инконгруэнтное плавление [33]. Вза-имоотношения неупорядоченного твердого раствора UO_{2+x} и упорядоченной фазы U_4O_9 в системе U-O [16] очень близки к переходной точке на рис. 26 (бифуркация F_1]

Со сценарием, изображенным на рис. 3, можно сопоставить соотношения упорядоченных флюоритоподобных фаз $Na_7R_{13}F_{46}$ (R = Ho-Lu, Y) и неупорядоченных твердых растворов $Na_{0.5-x}R_{0.5+x}F_{2+2x}$ флюоритовой структуры (R = Pr-Lu) в ряду систем $NaF-RF_3$ [45, 46]. Порождение фазы $Na_7R_{13}F_{46}$ происходит в системе с HoF₃, причем для R = Ho, Er, Y эти фазы существуют в узком температурном интервале (рис. 36). Нижняя граница устойчивости доходит до нуля температуры, начиная с R = Tm.

Прорыв упорядоченных фаз через область неупорядоченного твердого раствора имеет место в системах Bi_2O_3 —MO [22, 47], а также $ZrO_2-R_2O_3$ и HfO₂—R₂O₃ [18]. В частности, в системах (Zr,Hf)O₂—R₂O₃ устойчивость фаз со структурой пирохлора идеализированного состава (Zr,Hf)₂R₂O₇ повышается при увеличении ионного радиуса редкоземельного катиона. В системах HfO₂—R₂O₃ образование такой фазы в области флюоритового твердого раствора Hf_{1 – x}R_xO_{2 – 0.5x} отмечено для R = Tb (рис. 6а). Фаза выходит на инконгруэнтное плавление в системе с R = Sm (рис. 6в), разрезая область флюоритового твердого раствора на две части. Для R = Pr–La характер плавления таких фаз конгруэнтный (рис. 6д).

ЗАКЛЮЧЕНИЕ

Рассмотренные теоретические случаи повышения устойчивости упорядоченных фаз находят соответствие среди фазовых диаграмм реальных бинарных систем. Можно полагать, что дальнейшие исследования низкотемпературных фазовых равновесий расширят знания о соответствующих процессах и позволят расширить ассортимент

Рис. 7. Последовательность участков T—x-фазовых диаграмм, отвечающих повышению устойчивости упорядоченной γ -фазы (a—r), находящейся внутри области неупорядоченного твердого раствора α , в случае бокового касания кривой солидуса и соответствующая p—T-проекция (д). Обозначения те же, что и на рис. 1.

функциональных материалов на основе упорядоченных фаз.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Федоров П.И., Федоров П.П.* // Журн. неорган. химии. 1972. Т. 17. № 5. С. 1486.
- 2. Федоров П.П., Федоров П.И., Соболев Б.П. // Журн. неорган. химии. 1973. Т. 18. № 12. С. 3319.
- 3. *Федоров П.П.* // Журн. неорган. химии. 1986. Т. 31. № 3. С. 759.
- Федоров П.П., Медведева Л.В., Соболев Б.П. // Журн. физ. химии. 1993. Т. 67. № 5. С. 1073.
- Федоров П.П. // Журн. физ. химии. 1999. Т. 73. № 9.
 С. 1545. [Fedorov P.P. // Russ. J. Phys. Chem. 1999.
 V. 73. № 9. Р. 1381.]
- Федоров П.П. // Журн. физ. химии. 1999. Т. 73. № 9.
 С. 1551. [Fedorov P.P. // Russ. J. Phys. Chem. 1999.
 V. 73. № 9. Р. 1387.]
- Федоров П.П. // Журн. неорган. химии. 2001. Т. 46. № 10. С. 1724. [Fedorov P.P. // Russ. J. Inorg. Chem. 2001. V. 46. № 10. Р. 1567.]
- 8. Федоров П.П., Медведева Л.В., Соболев Б.П. // Журн. физ. химии. 2002. Т. 76. № 3. С. 1410. [Fedorov P.P., Medvedeva L.V., Sobolev B.P. // Russ. J. Phys. Chem. 2002. V. 76. № 3. Р. 337.]

9. *Nernst W*. The new heat theorem. London: Methuen and Co, 1917.

517

- 10. *Федоров П.П.* // Журн. неорган. химии. 2010. Т. 55. № 11. С. 1825. [*Fedorov P.P.* // Russ. J. Inorg. Chem. 2010. V. 55. № 11. Р. 1722.] https://doi.org/10.1134/S0036023610110100
- Abriata J.P., Laughlin D.E. // Prog. Mat. Sci. 2004. V. 49. P. 367.
- 12. Laughlin D.E., Soffa W.A. // Acta Mater. 2018. V. 145. P. 49.

https://doi.org/10.1016/j.actamat.2017.11.037

- Филатов С.К., Шаблинский А.П., Волков С.Н., Бубнова З.С. // Журн. структур. химии. 2017. Т. 58. № 1. С. 142.
- 14. Смирнов А.А. Молекулярно-кинетическая теория металлов. М.: Наука, 1966. 488 с.
- 15. Федоров П.П., Волков С.Н. // Журн. неорган. химии. 2016. Т. 61. № 6. С. 809. [Fedorov P.P., Volkov S.N. // Russ. J. Inorg. Chem. 2016. V. 61. № 6. Р. 772. https://doi.org/10.1134/S0036023616060061]
- Hoekstra H.R., Siegel S., Gallagher F.X. // J. Inorg. Nucl. Chem. 1970. V. 32. P. 3237.
- 17. Zinkevich M., Djurovic D., Aldinger F. // Solid State Ionics. 2006. V. 177. P. 989.
- 18. Андриевская Е.З. Фазовые равновесия в системах оксидов гафния, циркония, иттрия с оксидами

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 4 2021

редкоземельных элементов. Киев: Наук. думка, 2010. 472 с.

- Spiridonov F.M., Popova L.N., Popilskii R.Ya. // Solid State Ionics. 1979. V. 2. P. 430.
- Веселова В.О., Юрлов И.А., Рябочкина П.А. и др. // Журн. неорган. химии. 2020. Т. 65. № 9. С. 1168. [Veselova V.O., Yurlov I.A., Ryabochkina P.A. et al. // Russ. J. Inorg. Chem. 2020. V. 65. Р. 1298. https://doi.org/10.31857/S0044457X20090214] https://doi.org/10.1134/S0036023620090211
- Hirotaka Fujimori, Masatomo Yashima, Masata Kakihana, Masahiro Yoshimura // J. Appl. Phys. 2002. V. 91. P. 6493.
- Boivin J.-C., Thomas D.J. // Solid State Ionics. 1981.
 V. 5. P. 523.
- Хисина Н.Р. Субсолидусные превращения твердых растворов породообразующих минералов. М.: Наука, 1987. 208 с.
- 24. Carpenter M.A. // Am. Mineral. 1981. V. 66. P. 553.
- 25. *Parsons I.* // Mineralogical Magazine. 2010. V. 74. P. 529.
- Shiyun Jin, Huifang Xu, Xiaoping Wang al. // Acta Crystallogr., Sect. B. 2020. V. 76. P. 93. https://doi.org/10.1107/S2052520619017128
- 27. *Sobolev B.P.* The Rare Earth Trifluorides. Part 1. The High Temperature Chemistry of the Rare Earth Trifluorides. Barcelona, 2000. 520 p.
- Fedorov P.P., Izotova O.E., Alexandrov V.B., Sobolev B.P. // J. Solid State Chem. 1974. V. 9. № 4. P. 368. https://doi.org/10.1016/0022-4596(74)90096-6
- 29. Sobolev B.P., Fedorov P.P. // J. Less-Common Met. 1978. V. 60. P. 33. https://doi.org/10.1016/0022-5088(78)90087-5
- 30. Sobolev B.P., Seiranian K.B.// J. Solid State Chem.
- 1981. V. 39. № 2. P. 17. 31. *Sobolev B.P., Tkachenko N.L.* // J. Less-Common Met.
- 1982. V. 85. P. 155.
- 32. *Максимов Б.А., Соланс Х., Дудка А.П. и др. //* Кристаллография. 1996. Т. 41. С. 51.
- Федоров П.П. // Журн. неорган. химии. 2021. Т. 66.
 № 2. С. 250. [Fedorov P.P. // Russ. J. Inorg. Chem.

2021. V. 66. № 2. P. 245. https://doi.org/10.1134/S0036023621020078] https://doi.org/10.31857/S0044457X21020070

- 34. Greis O., Haschke J.M. Rare earth fluorides. Handbook on the physics and chemistry of rare earth / Eds. Gscheidner K.A., Eyring L. Amsterdam, New York, Oxford. 1982. V. 5. Ch. 45. P. 387.
- Gusev A.I., Rempel A.A., Magerl A.J. Disorder and order in strongly nonstoichiometric compounds: transition metal carbides nitrides and oxides. Berlin: Springer, 2001.
- 36. Шувалов Л.А., Урусовская А.А., Желудев И.С. и др. Современная кристаллография. Т. 4. Физические свойства кристаллов. М.: Наука, 1981. 485 с.
- 37. Хачатурян Г.Б. Теория фазовых превращений и структура твердых растворов. М.: Наука, 1974.
- 38. Санников Д.Г. // ЖЭТФ 1989. Т. 96. № 6. С. 2198.
- Федоров П.П. // Кристаллография. 1995. Т. 40. № 2.
 С. 308. [Fedorov P.P. // Crystallography Rep. 1995.
 V. 40. № 2. Р. 278.]
- 40. Ван дер Ваальс И.Д., Констамм Ф. Курс термостатики. М.: ОНТИ, 1936. Ч. 1. 452 с. Ч. 2, 440 с.
- 41. Пригожин И., Дефей Р. Химическая термодинамика. Новосибирск: Наука, 1967.
- 42. *Стенли Г.* // Фазовые переходы и критические явления. М.: Мир, 1973. 420 с.
- 43. *Aharony A*. Multicritical points // Critical Phenomena / Ed. Hahne F.J.W. Berlin: Springer, 1982. P. 210.
- 44. *Юм-Розери В., Рейнор Г.В.* Структура металлов и сплавов. М.: Металлургия, 1959.
- 45. *Федоров П.П.* // Журн. неорган. химии. 1999. Т. 44. № 11. С. 1792. [*Fedorov P.P.* // Russ. J. Inorg. Chem. 1999. V. 44. № 11. Р. 1703.]
- 46. Fedorov P.P., Kuznetsov S.V., Osiko V.V. Elaboration of nanofluorides and ceramics for optical and laser applications // Photonic & Electronic Properties of Fluoride Materials / Eds. Tressaud A., Poeppelmeier K. Amsterdam: Elsevier, 2016. P. 7.

https://doi.org/10.1016/B978-0-12-801639-8.00002-7

 Каргин Ю.Ф., Бурков В.И., Марьин А.А. и др. Кристаллы Ві₁₂М_xO_{20 ± δ} со структурой силленита. Синтез, строение, свойства. М.: ИОНХ, 2004. 316 с.