– ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ

УДК 544.31:546.6'24

КВАЗИТРОЙНАЯ СИСТЕМА Ві2S3-Ві2Те3-ВіІ3

© 2021 г. Э. Дж. Ахмедов^{*a*}, З. С. Алиев^{*b*}, Д. М. Бабанлы^{*b*, *c*}, С. З. Имамалиева^{*a*}, В. А. Гасымов^{*a*}, М. Б. Бабанлы^{*a*}, *

^аИнститут катализа и неорганической химии НАН Азербайджана, пр-т Г. Джавида, 113, Баку, Аz-1143 Азербайджан ^bАзербайджанский государственный университет нефти и промышленности,

пр-т Азадлыг, 16/21, Баку, Аz-1010 Азербайджан ^cАзербайджано-французский университет, ул. Низами 183, Баку, Az-1010 Азербайджан *e-mail: babanlymb@gmail.com Поступила в редакцию 09.10.2020 г. После доработки 24.11.2020 г.

Принята к публикации 30.11.2020 г.

Методами дифференциального термического и рентгенофазового анализа, а также сканирующей электронной микроскопии изучены фазовые равновесия в квазитройной системе $Bi_2S_3-Bi_2Te_3-Bi_3$. Построены изотермические сечения при 300, 750, 800 и 850 К, некоторые политермические разрезы, а также проекция поверхности ликвидуса. Определены поля первичной кристаллизации и области гомогенности фаз, а также типы и координаты нон- и моновариантных равновесий. Показано, что система характеризуется образованием ограниченных областей твердых растворов на основе сульфида и теллурида висмута, а также тройных соединений Bi_2Te_2S , BiSI и BiTeI.

Ключевые слова: халькогениды висмута, халькоиодиды висмута, фазовая диаграмма, твердые растворы, поверхность ликвидуса

DOI: 10.31857/S0044457X21040024

введение

Халькогалогениды элементов подгруппы мышьяка находятся в центре внимания исследователей с середины прошлого века как ценные сегнетоэлектрические, термоэлектрические, фотовольтаические, магнитные и оптические материалы [1–8]. В последние годы установлено, что теллурогалогениды висмута и фазы на их основе проявляют также свойства топологического изолятора и демонстрируют 3D спиновое расщепление Рашбы, что открывает возможности их использования при разработке спиновых электронных устройств [9–15].

Разработка физико-химических основ направленного синтеза новых многокомпонентных соединений и фаз переменного состава связана с фундаментальными исследованиями в области фазовых равновесий и термодинамических свойств соответствующих систем [16–19].

В работах [20–24] нами проведены подобные комплексные исследования тройных систем типа $B^V - X - I$ ($B^V = As$, Sb, Bi; X = S, Se, Te), построены их полные фазовые диаграммы, определены термодинамические функции промежуточных фаз. Для получения твердых растворов на основе соединений типа $B^V XI$ целесообразно изучить фазовые рав-

новесия в квазитройных $B_2^V X_3 - B_2^V X_3 - B^V I_3$ (X и X' – два разных халькогена) и взаимных $Sb_2X_3 + 2BiI_3 \leftrightarrow Bi_2X_3 + 2SbI_3$ системах. В [25] нами приведены данные по фазовым равновесиям в системе $Bi_2Se_3-Bi_2Te_3-BiI_3$. В работе [26] представлен политермический разрез BiSI-BiTeI фазовой диаграммы системы $Bi_2S_3-Bi_2Te_3-BiI_3$ (рис. 1). Установлено, что этот разрез в целом неквазибинарный в силу инконгруэнтного характера плавления BiSI, но стабильный ниже солидуса и характеризуется образованием ограниченных областей гомогенности на основе исходных соединений.

В настоящей работе представлена полная фазовая диаграмма квазитройной системы Bi_2S_3 — Bi_2Te_3 — BiI_3 (A).

Исходные бинарные соединения системы A являются ценными функциональными материалами, как и вышеуказанные тройные. Соединения Bi_2S_3 и BiI_3 , благодаря уникальным оптическим свойствам, могут быть использованы в оптических транзисторах, широкополосных фотодетекторах и других фотоэлектрических приложениях [27–31], а известный термоэлектрик Bi_2Te_3 проявляет также свойства топологического изолятора [32–35] и

Рис. 1. Фазовая диаграмма системы BiTeI-BiSI [30].

чрезвычайно перспективен для разнообразных приложений, начиная от спинтроники и квантовых расчетов и кончая медициной и системами безопасности [36–38].

Таблица 1. Кристаллографические данные бинарных и тройных соединений системы Bi₂Te₃-BiI₃-Bi₂S₃

Соединение	Сингония, пр. гр., параметры, Å	Источник
Bi ₂ S ₃	Орторомбическая, <i>Pbnm</i> , <i>a</i> = 11.150, <i>b</i> = 11.300, <i>c</i> = 3.981	[49]
Bi ₂ Te ₃	Гексагональная, <i>R</i> 3 <i>m</i> , <i>a</i> = 4.3849, <i>c</i> = 30.4971	[48]
BiI ₃	Тригональная, <i>R</i> 3, <i>a</i> = 7.535, <i>c</i> = 20.703	[47]
BiSI	Орторомбическая, <i>Pnma</i> , <i>a</i> = 8.529, <i>b</i> = 4.172, <i>c</i> = 10.177	[46]
$Bi_{19}S_{27}I_3$	Гексагональная, $6_3/m$, a = 15.640, c = 4.029(2)	[50]
BiTeI	Тригональная, <i>Р</i> 3 <i>m</i> 1, <i>a</i> = 4.3392(1), <i>c</i> = 6.854(1)	[45]
Bi ₂ Te ₂ S	Гексагональная, <i>R</i> 3 <i>m</i> , <i>a</i> = 4.326, <i>c</i> = 30.07	[44, 51]

Соединения BiI_3 , Bi_2Te_3 и Bi_2S_3 плавятся конгруэнтно при 681, 859 и 1048 К соответственно [39]. Их кристаллографические свойства приведены в работах [40–47] (табл. 1).

Граничные квазибинарные составляющие системы А подробно изучены. Согласно [47, 48], в системе Bi₂Te₃-Bi₂S₃ образуется фаза переменного состава, область гомогенности которой включает минерал тетрадимит Bi₂Te₂S. Это соединение плавится конгруэнтно при 898 К и имеет ромбоэдрическую структуру. Фазовая диаграмма системы Bi₂Te₃-BiI₃ характеризуется образованием тройного соединения BiTeI с конгрузнтным плавлением при 828 К [24, 49, 50] и тригональной структурой. По данным [24, 51], существуют также теллуроиодиды висмута состава Bi₂TeI и $Bi_4TeI_{1.25}$. В системе Bi_2S_3 - BiI_3 образуются два тройных соединения: BiSI и Bi₁₉S₂₇I₃, которые плавятся с разложением по перитектическим реакциям при 808 и 990 К соответственно [22, 52]. Соединение BiSI кристаллизуется в орторомбической структуре, а Ві19S27I3 имеет гексагональную решетку. Типы и параметры кристаллических решеток всех указанных тройных соединений приведены в табл. 1.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез. Исходные соединения Bi₂S₃, Bi₂Te₃, Bil₃, Bi₂Te₂S, BiTeI и BiSI были синтезированы сплавлением высокочистых (не менее 99.999 ат. %) элементарных компонентов в условиях вакуума $(\sim 10^{-2} \Pi a)$ при температурах на 30-50 К выше их температур плавления. Учитывая высокое давление паров элементарного иода и серы, иод- и серосодержащие соединения синтезировали в двухзонной печи. Температура "горячей" зоны была на 30-50 К выше температуры плавления синтезируемого соединения, а температура "холодной" зоны составляла 400 и 650 К (соответственно ниже температуры кипения иода и серы [53, 54]). Учитывая инконгруэнтный характер плавления соединения BiSI, после сплавления для его полной гомогенизации литой сплав отжигали при 750 К в течение 300 ч.

Индивидуальность всех синтезированных соединений контролировали методами ДТА и РФА, результаты которых находились в соответствии с литературными данными [22, 24, 39, 47] (табл. 1).

Сплавлением синтезированных соединений в различных соотношениях в вакуумированных кварцевых ампулах были получены две серии образцов различного состава (каждый по 0.5 г). После сплавления образцы подсистемы Bi_2S_3 -BiSI-BiTeI- Bi_2Te_3 подвергали термообработке при 700 K, а образцы подсистемы BiSI-BiTeI- BiI_3 – при 650 K в течение 600 ч.

Анализ. Исследования проводили методами дифференциального термического (ДТА), рентгенфазового (РФА) анализа и сканирующей электронной микроскопии (СЭМ).

Кривые ДТА снимали на дифференциальном сканирующем калориметре Netzsch 404 F1 Pegasus system и на установке многоканального ДТА, собранной на основе электронного регистратора данных TC-08 Thermocouple Data Logger. Скорость нагрева составляла 7–10 град/мин. При этом образцы находились в откачанных до остаточного давления ~ 10^{-2} Па и запаянных кварцевых ампулах (внутренний диаметр 0.5 см, длина 2.5–3 см), свободные объемы которых не превышали 0.5 см². Поэтому, несмотря на летучесть BiI₃, изменение состава при снятии термограмм незначительно и им можно пренебречь.

Порошковые рентгенограммы исходных соединений и промежуточных сплавов снимали на дифрактометре Bruker D8 с Cu $K_{\alpha 1}$ -излучением в интервале углов 20 5°–75° и индицировали с помощью программного обеспечения TopasV3.0.

СЭМ-картины снимали на растровом электронном микроскопе Tescan Vega 3 SBH.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Совместная обработка полученных экспериментальных результатов, а также литературных данных по граничным квазибинарным системам [22, 24, 47, 48] и внутреннему сечению BiSI–BiTeI [26] (рис. 1) позволила получить полную взаимосогласованную картину фазовых равновесий в системе A.

Твердофазные равновесия при 300 К

Изотермическое сечение фазовой диаграммы при 300 K (рис. 2) показывает, что в системе четверные соединения не образуются. Система характеризуется образованием ограниченных областей твердых растворов на основе бинарных Bi_2S_3 (β_1 -фаза), Bi_2Te_3 (β_2) и тройных соединений BiSI(γ_1), BiTeI (γ_2), Bi_2Te_2S (δ). Растворимость на основе соединений BiI_3 и $Bi_{19}S_{27}I_3$ (**C**) незначительна. Вышеуказанные фазы образуют ряд двухфазных ($\beta_1 + C$, $\beta_2 + \gamma_2$, $\delta + C$, $\beta_2 + \delta$, $\gamma_1 + \delta$ и $\gamma_2 + \delta$, $\gamma_1 + \gamma_2$, $\gamma_1 + BiI_3$, $\gamma_2 + BiI_3$) и трехфазных областей ($\beta_1 + C + \delta$, $C + \gamma_1 + \delta$, $\gamma_1 + \gamma_2 + \delta$, $\beta_2 + \gamma_2 + \delta$ и $\gamma_1 +$ + $\gamma_2 + BiI_3$).

Из рис. 2 видно, что в области концентраций Bi_2S_3 -BiSI-BiTeI-Bi_2Te_3 система **A** обратимо взаимна, т.е. не имеет стабильной диагонали. Определяющая роль в формировании фазовых полей в этой подсистеме принадлежит δ -фазе на основе тетрадимита, которая образует конноды со всеми фазами подсистемы.

Все фазовые области на рис. 2 подтверждены методами РФА и СЭМ. В качестве примера на рис. 3 представлены порошковые дифрактограммы ряда сплавов из двух- и трехфазных областей (рис. 2, красные кружки 1–5). Видно, что дифрактограмма образца 1 состоит из совокупности линий отражения γ_1 и δ , а образца 2 – линий отражения γ_2 и δ . Остальные три дифрактограммы четко отражают их трехфазность и составы сосуществующих фаз: $\gamma_1 + \gamma_2 + \text{BiI}_3$ (сплав 3), C + $\gamma_1 + \delta$ (сплав 4), $\gamma_1 + \gamma_2 + \delta$ (сплав 5).

СЭМ-картины (рис. 4) поверхностей образцов 1, 2 и 5 также находятся в полном соответствии с рис. 2: первые две состоят из двухфазных смесей $\gamma_1 + \delta$ и $\gamma_2 + \delta$, третья – из трехфазной смеси $\gamma_1 + \gamma_2 + \delta$.

Проекция поверхности ликвидуса

Ликвидус системы A (рис. 5) состоит из 7 полей, отвечающих первичной кристаллизации следующих фаз: C, β_1 , β_2 , γ_1 , γ_2 , δ , BiI₃. Наибольшей протяженностью обладают области 1–3, отражающие первичную кристаллизацию β_1 -, C- и δ -фаз.

Рис. 2. Диаграмма твердофазных равновесий системы А при 300 К.

Рис. 3. Порошковые рентгенограммы сплавов 1-5 на рис. 2.

Поверхность ликвидуса соединения BiI₃ практически вырождена.

Поля первичной кристаллизации фаз разграничены двумя перитектическими (P_1U_1, P_2U_2) и девятью эвтектическими $(e_1U_1, U_1U_2, e_2U_3, e_3U_3,$ U_2U_4 , U_3U_4 , U_4E , e_4E , e_5E) кривыми равновесия. Точки пересечения кривых моновариантных равновесий отвечают нонвариантным переходным $(U_1, U_2, U_3 \text{ и } U_4)$ и эвтектическому (*E*) равновесиям (табл. 2, 3).

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 4 2021

Политермические сечения

Для уточнения областей гомогенности, хода кривых моновариантных равновесий и координат нонвариантных точек нами построено несколько политермических разрезов (рис. 6–10), которые обсуждаются ниже, с поверхностью ликвидуса (рис. 5) и диаграммой твердофазных равновесий (рис. 2).

Разрез Ві₂Те₂S–ВіТеІ (рис. 6) является неквазибинарным, несмотря на конгруэнтное плавление обоих исходных соединений и наличие коннод, соединяющих твердые растворы (γ_2 - и δ -фазы) на их основе. Более того, он нестабилен в субсолидусе: линия, соединяющая стехиометрические составы соединений, проходит через трехфазную область $\beta_2 + \gamma_2 + \delta$.

В области >20 мол. % Bi₂Te₂S из расплава первично кристаллизуется δ -фаза, а в области <15 мол. % Bi₂Te₂S – γ_2 -фаза. Первичная кристаллизация β_2 -фазы на основе Bi₂Te₃ происходит в очень узкой области (~15–20 мол. % Bi₂Te₂S). Эвтектические кривые, исходящие из точек e_2 и e_3 , пересекаются в точке U_3 , и в системе устанавливается нонвариантное переходное равновесие L + + $\beta_2 \leftrightarrow \gamma_2 + \delta$.

Ниже ликвидуса кристаллизация продолжается моновариантно по эвтектическим реакциям e_2U_3 (20–95 мол. % Bi₂Te₂S) и e_3U_3 (5–15 мол. % Bi₂Te₂S). Горизонталь при 807 К отвечает нонвариантному переходному равновесию U_1 (табл. 2, рис. 5). В области 10–80 мол. % Bi₂Te₂S кристаллизация завершается этой реакцией и в субсолидусе образуется трехфазная область $\beta_2 + \gamma_2 + \delta$. В области 80–97 мол. % Bi₂Te₂S кристаллизация продолжается моновариантно по эвтектической реакции (U_2U_4) и завершается образованием двухфазной области $\gamma_2 + \delta$.

Разрез BiSI—Bi₂Te₃ (рис. 7) проходит через поля первичной кристаллизации соединения $Bi_{19}S_{27}I_3$, а также δ - и β_2 -фаз. Точки пересечения кривых ликвидуса (25 и 85 мол. % Bi_2Te_3) соответствуют моновариантным эвтектическим равновесиям (рис. 5, кривые U_1U_2 и e_2U_3), которые охватывают области концентраций 8–33 и 55–86 мол. % Bi_2Te_3 соответственно. В интервале составов 0–8 мол. % Bi_2Te_3 протекает моновариантная перитектическая реакция (рис. 5), а в интервалах составов 33–45, 45–55 и 85–97 мол. % Bi_2Te_3 — эвтектические реакции (кривые U_2U_4 , U_3U_4 и e_3U_3).

Горизонтальные линии при 807, 775 и 753 К относятся к нонвариантным переходным реакциям U_3 , U_2 и U_4 соответственно. После этих реакций в системе образуются трехфазные поля $\beta_2 + \gamma_2 + \delta$, L + $\gamma_1 + \delta$ и $\gamma_1 + \gamma_2 + \delta$. При завершении кристаллизации по различным моновариантным реакци-

Рис. 4. СЭМ-картины сплавов 1 (а), 2 (б) и 5 (в) на рис. 2.

ям формируются двухфазные области $\gamma_1 + \delta$, $\gamma_2 + \delta$ и $\beta_2 + \gamma_2$ (рис. 7).

Разрез Ві₂S₃–ВіТеІ (рис. 8) в субсолидусе проходит через трехфазные поля $\beta_1 + C + \delta$, $\gamma_1 + C + \delta$, $\gamma_1 + \gamma_2 + \delta$, пересекает области первичной кристаллизации четырех фаз (β_1 , C, δ и γ_2) и отражает

Рис. 5. Проекция поверхности ликвидуса системы **A**. Поля первичной кристаллизации: $1 - \beta_1$; 2 - C; $3 - \delta$; $4 - \beta_2$; $5 - \gamma_1$; $6 - \gamma_2$; $7 - BiI_3$. Пунктирная прямая – разрез BiTeI–BiSI.

Точка на рис. 5	Равновесие	Состав, мол. %		тк			
		BiI ₃	Bi ₂ Te ₃	1, К			
D_1	$L \leftrightarrow Bi_2Te_2S$	—	66.67	898			
D_2	$L \leftrightarrow BiTeI$	50	50	828			
P_1	$L+\beta_1 \mathop{\leftrightarrow} C$	20	—	990			
P_2	$L+C \leftrightarrow \gamma_1$	63	—	808			
U_1	$L+\beta_1 \mathop{\leftrightarrow} \delta + c$	13		880			
U_2	$L+C \leftrightarrow \gamma_1 + \delta$	64		775			
U_3	$L+\beta_2 \mathop{\leftrightarrow} \gamma_2 + \delta$	43		807			
U_4	$L + \delta \leftrightarrow \gamma_1 + \gamma_2$	74		753			
e_1	$L \leftrightarrow \beta_1 + \beta_2$	—	59	895			
<i>e</i> ₂	$L \leftrightarrow \beta_2 + \delta$	—	91	853			
<i>e</i> ₃	$L \leftrightarrow \beta_2 + \gamma_2$	43	57	823			
e_4	$L \leftrightarrow \gamma_1 + BiI_3$	97	—	670			
<i>e</i> ₅	$L \leftrightarrow \gamma_2 + BiI_3$	~99	~1	680			
Ε	$L \leftrightarrow \gamma_1 + \gamma_2 + BiI_3$	~99	1	668			

Таблица 2. Нонвариантные равновесия в системе $Bi_2S_3 - Bi_2Te_3 - BiI_3$

три переходные реакции (U_1 , U_2 , U_4). Ниже кривой ликвидуса в интервалах составов 66–97, 34–77, 25– 42 и 8–25 мол. % Bi₂S₃ протекают моновариантные реакции P_1U_1 , U_1U_2 , U_2U_1 и U_3U_4 . По завершении кристаллизации в указанных интервалах образуются двухфазные ($\beta_1 + C$, $C + \delta$, $\gamma_1 + \delta$ и $\gamma_2 + \delta$), а по завершении переходных реакций U_1 , U_2 и U_4 – трехфазные поля ($\beta_1 + C + \delta$, $\gamma_1 + \delta + C$ и $\gamma_1 + \gamma_2 + \delta$).

Разрез Bi₂Te₂S-BiI₃ (рис. 9). Кривая ликвидуса состоит из двух ветвей, отвечающих первичной кристаллизации δ- и γ2-фаз. В очень узком интервале составов из жидкости первично кристаллизуется соединение Bil₃. Ниже ликвидуса в интервалах составов 8-68 и 68-97 мол. % Bil₃ кристаллизация продолжается моновариантно по эвтектическим кривым e_2U_3 и U_3U_4 . В результате на *T*-*x*-диаграмме образуются области L + γ_2 + δ и $L + \gamma_1 + \gamma_2$ соответственно. В области составов 8-68 мол. % Bil₃ при 807 К протекает нонвариантная переходная реакция. В интервале 8-50 мол. % Bil₃ эта реакция заканчивается избытком у2-фазы и образованием трехфазной области $\gamma_1 + \gamma_2 + \delta$, а в интервале 50—65 мол. % BiI_3- избытком жидкой фазы и образованием поля $L + \gamma_1 + \gamma_2$. В области >50 мол. % ВіІ₃ кристаллизация завершается по эвтектической реакции Е (668 К) и формируется трехфазное поле $\gamma_1 + \gamma_2 + BiI_3$.

Рис. 6. Политермический разрез Bi₂Te₂S-BiTeI фазовой диаграммы системы А.

Разрез "Bi₂TeS₂"-BiI₃ (рис. 10) пересекает четыре из пяти трехфазных полей системы (рис. 2) и отражает четырехфазные равновесия U_1 , U_3 , U_4 и E. Данный разрез проходит вблизи кривых моновариантных равновесий U_1U_2 , U_2U_4 , U_4E и пересекает прилегающие окрестности поверхностей ликвидуса С-, δ - и γ_1 -фаз. Поэтому слабые термические эффекты, отвечающие их первичной кристаллизации, перекрываются более интенсивными пиками моновариантных реакций. В этих областях кривые ликвидуса указаны пунктирными линиями (рис. 10).

Сопоставление рис. 5 и 10 показывает, что по этому разрезу протекает ряд моновариантных реакций (кривые e_1U_1 , P_1U_1 , U_1U_2 , U_2U_4 , U_4E и e_4E). Процессы кристаллизации в различных областях составов заканчиваются нонвариантными реакциями U_1 , U_2 , U_4 и E, что приводит к образованию в системе трехфазных областей $\beta_1 + \delta + C$, $\gamma_1 + \delta +$ + C, $\gamma_1 + \gamma_2 + \delta$ и $\gamma_1 + \gamma_2 + BiI_3$.

Изотермические разрезы

Изотермический разрез при 850 К (рис. 11а) отражает наличие широкой жидкой области (L), а также двух- (L + C, L + δ и L + β_2) и трехфазных (C + β_1 , L + C + δ , L + C + δ и L + β_2 + δ) полей.

Изотермический разрез при 800 К представлен на рис. 116, из которого видно, что по сравнению с рис. 11а площадь жидкости в системе значительно уменьшилась, в то время как площади двух-(L + C и L + δ) и трехфазных областей (L + C + δ) увеличились. Кроме того, исчезли гетерогенные области L + β_2 и L + β_2 + δ и сформировались новые двух- (L + γ_1 , L + γ_2 , γ_2 + δ , γ_2 + β_2) и трехфазные (L + C + γ_1 , L + γ_2 + δ и β_2 + γ_2 + δ) поля.

Таблица 3. Моновариантные равновесия в системе $Bi_2S_3 - Bi_2Te_3 - BiI_3$

Кривая на рис. 5	Равновесие	<i>Т</i> , К
e_1U_1	$L \leftrightarrow \beta_1 + \delta$	895-880
P_1U_1	$L+\beta_1 \leftrightarrow C$	990-880
$U_{1}U_{2}$	$L \mathop{\leftrightarrow} C + \delta$	880-775
P_2U_2	$L + C \leftrightarrow \gamma_1$	808-775
U_2U_4	$L \mathop{\leftrightarrow} \gamma_1 + \delta$	775-753
e_2U_3	$L {\leftrightarrow} \beta_2 + \delta$	853-807
e_3U_3	$L \leftrightarrow \beta_2 + \gamma_2$	823-807
U_3U_4	$L \leftrightarrow \gamma_2 + \delta$	807-753
U_4E	$L \leftrightarrow \gamma_1 + \gamma_2$	753–668
e_4E	$L \leftrightarrow \gamma_1 + BiI_3$	670–668
$e_5 E$	$L \leftrightarrow \gamma_2 + BiI_3$	680–668

Рис. 7. Политермический разрез BiSI-Bi₂Te₃ фазовой диаграммы системы А.

Рис. 8. Политермический разрез Bi_2S_3 -BiTeI фазовой диаграммы системы А.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 4 2021

Рис. 9. Политермический разрез Bi₂Te₂S-BiI₃ фазовой диаграммы системы А.

Изотермический разрез при 750 К (рис. 11в) имеет ряд характерных особенностей, а именно: дальнейшее уменьшение площади жидкой фазы и сдвиг ее к вершине BiI_3 концентрационного треугольника, а также образование ряда новых гетерогенных полей по сравнению с изотермическим разрезом при 800 К. Видно, что при 750 К в подсистеме Bi_2S_3 -BiSI-BiTeI- Bi_2Te_3 нет фазовых областей с участием жидкой фазы, и картина фазовых равновесий почти такая же, как на диаграмме твердофазных равновесий при комнатной температуре (рис. 2).

ЗАКЛЮЧЕНИЕ

На основании комплекса экспериментальных данных получена полная взаимосогласованная картина фазовых равновесий в системе Bi_2S_3 - Bi_2Te_3 - BiI_3 . Показано, что она является квазитройной плоскостью четверной системы Bi-Te-S-I. Построены некоторые поли- и изотермические сечения фазовой диаграммы, а также проекция поверхности ликвидуса. Определены поля первичной кристаллизации и области гомогенности фаз, а также типы и координаты нон-

Рис. 10. Политермический разрез "Bi₂Te₂S"-BiI₃ фазовой диаграммы системы А.

и моновариантных равновесий системы. В системе выявлены ограниченные области твердых растворов на основе сесквисульфида и сесквителлурида висмута, а также тройных соединений Bi_2Te_2S , BiSI и BiTeI. Установлено, что определяющая роль в формировании фазовых полей на диаграмме твердофазных равновесий принадлежит δ -фазе на основе Bi_2Te_2S , которая находится в коннодной связи со всеми фазами системы, за исключением BiI_3 . Полученные фазы переменного состава представляют интерес как потенциальные топологические изоляторы, полупроводники Рашбы, термоэлектрические и оптические материалы.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках научной программы международной лаборатории "Перспективные материалы для спинтроники и квантовых вычислений", созданной на базе Института катализа и неорганической химии НАН Азербайджана и Международного физического центра Доностиа (Испания) и при частичной финансовой поддержке Фонда развития науки при Президенте Азербайджанской Республики — грант EİF/MQM/Elm-Tehsil-1-2016-1(26)-71/01/4-M-33.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

Рис. 11. Изотермические разрезы фазовой диаграммы системы А при 850 (а), 800 (б) и 750 К (в).

СПИСОК ЛИТЕРАТУРЫ

- Герзанич Е.И., Фридкин В.М. Сегнетоэлектрики типа А^VВ^{VI}С^{VII}. М.: Наука, 1982. 227 с.
- Koc H., Palaz S., Mamedov A.M. et al. // Ferroelectrics. 2017. V. 511. P. 22. https://doi.org/10.1080/00150193.2017.1332967
- Mistewicz K. // J. Nanomaterials. 2018. P. 2651056. https://doi.org/10.1155/2018/2651056
- 4. *Mistewicz K.* // Nanomaterials. 2019. V. 4. № 9. P. 580. https://doi.org/10.3390/nano9040580
- Hahn N.T., Rettie A.J.E., Beal S.K. et al. // J. Phys. Chem. C. 2012. V. 116. P. 24878. https://doi.org/10.1021/jp3088397
- Peng B., Xu K., Zhang H. et al. // Adv. Theory Simul. 2018. V. 1. № 1. P. 1700005. https://doi.org/10.1002/adts.201700005
- Khan W., Hussain S., Minar J. et al. // J. Electron. Mater. 2017. V. 47. № 2. P. 1131. https://doi.org/10.1007/s11664-017-5884-z
- 8. *Ganose A.M., Butler K.T., Walsh A. et al.* // J. Mater. Chem. 2016. V. 4. № 6. P. 2060. https://doi.org/10.1039/C5TA09612J
- 9. *Ishizaka K., Bahramy M.S., Murakawa H. et al.* // Nat. Mater. 2011. V. 10. № 7. P. 521. https://doi.org/10.1038/nmat3051
- Landolt G., Eremeev S.V., Koroteev Y.M. et al. // Phys. Rev. Lett. 2012. V. 109. № 11. P. 116403. https://doi.org/10.1103/PhysRevLett.109.116403
- Eremeev S.V., Nechaev I.A., Chulkov E.V. // Phys. Rev. B. 2017. V. 96. № 15. P. 155309. https://doi.org/10.1103/PhysRevB.96.155309
- Li X., Sheng Y., Wu L. et al. // Npj. Comput Mater. 2020. V. 6. № 1. P. 107. https://doi.org/10.1038/s41524-020-00378-4
- Wu L., Yang J., Zhang T. et al. // J. Phys.: Condens. Matter. 2016. V. 28. № 8. P. 085801. https://doi.org/10.1088/0953-8984/28/8/085801
- 14. Maa H., Bentmann H., Seibel C. et al. // Nat. Commun. 2016. V. 7. P. 11621. https://doi.org/10.1038/ncomms11621
- 15. Gennep D.V., Maiti S., Graf D. et al. // J. Phys.: Condens. Matter. 2014. V. 26. № 34. P. 342202. https://doi.org/10.1088/0953-8984/26/34/342202
- Villars P., Prince A. Okamoto H. Handbook of ternary alloy phase diagrams. Materials Park, OH: ASM International, 1995
- 17. Babanly M.B., Chulkov E.V., Aliev Z.S. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 13. P. 1703. https://doi.org/10.1134/S0036023617130034
- Babanly M.B., Mashadiyeva L.F., Babanly D.M. et al. // Russ. J. Inorg. Chem. 2019. № 13. P. 1649. https://doi.org/10.1134/S0036023619130035
- Zlomanov V.P., Khoviv A.M., Zavrazhnov A.Y. // InTech. Materials Science – Advanced Topics. 2013. 103 p.
- 20. *Aliev Z.S., Musayeva S.S., Babanlı M.B.* // J. Phase Equilib. Diffus. 2017. V. 38. № 6. P. 887. https://doi.org/10.1007/s11669-017-0601-4
- Aliev Z.S., Imamaliyeva S.Z., Babanlı M.B. et al. // J. Therm. Anal. Calorim. 2018. V. 133. № 2. P. 1115. https://doi.org/10.1007/s10973-017-6812-4

- Aliev Z.S., Musayeva S.S., Jafarli F.Y. et al. // J. Alloys Compd. 2014. V. 610. P. 522. https://doi.org/10.1016/j.jallcom.2014.05.015
- 23. *Imamaliyeva S.Z., Musayeva S.S., Babanly D.M. et al.* // Thermochim. Acta. 2019. V. 679. P. 178319. https://doi.org/10.1016/j.tca.2019.178319
- 24. *Babanly M.B., Tedenac J.C., Aliev Z.S. et al.* // J. Alloys Compd. 2009. V. 481. № 1–2. P. 349. https://doi.org/10.1016/j.jallcom.2009.02.139
- Aliev Z.S., Ahmadov E.C., Babanly D.M. et al. // Calphad. 2019. V. 66. P. 101650. https://doi.org/10.1016/j.calphad.2019.101650
- 26. *Ahmadov E.J.* // Az. Chem. J. 2020. № 1. P. 36. https://doi.org/10.32737/0005-2531-2020-1-36-40
- Riahi M., Tomas C.M., Agouram S. et al. // Thin. Solid. Films. 2017. V. 626. P. 9. https://doi.org/10.1016/j.tsf.2017.02.022
- Guo J., Lou Q., Qiu Y. et al. // Appl. Surf. Sci. 2020. V. 520. P. 146341. https://doi.org/10.1016/j.apsusc.2020.146341
- 29. *Hamdeh U.H., Nelson R.D., Ryan B.J. et al.* // Chem. Mater. 2016. V. 28. P. 6567. https://doi.org/10.1021/acs.chemmater.6b02347
- Lehner A.J., Wang H., Fabini D.H. et al. // Appl. Phys. Lett. 2015. V. 107. P. 131109. https://doi.org/10.1063/1.4932129
- Coutinho N.F., Cucatti S., Merlo R.B. et al. // Sci. Rep. 2019. V. 9. P. 11785. https://doi.org/10.1038/s41598-019-48194-1
- Qiao J., Chuang M.-Y., Lan J.-C. et al. // J. Mater. Chem. C. 2019. V. 7. P. 7027. https://doi.org/10.1039/C9TC01885A
- 33. *Wang M., Fu Q., Yan L. et al.* // ACS Appl. Mater. Interfaces. 2019. V. 11. № 51. P. 47868. https://doi.org/10.1021/acsami.9b15320
- 34. Wang Z.H., Gao X.P.A., Zhang Z.D. // Chin. Phys. B. 2018. V. 27. № 10. P. 107901. https://doi.org/10.1088/1674-1056/27/10/107901
- Sultana R., Neha P., Goyal R. et al. // J. Magn. Magn. Mater. 2017. V. 428. P. 213. https://doi.org/10.1016/j.jmmm.2016.12.011
- Le P.H., Liu P.T., Luo C.W. et al. // J. Alloys Compd. 2017. V. 692. P. 972. https://doi.org/10.1016/j.jallcom.2016.09.109

- 37. Viti L., Aliev Z.S., Babanly M.B. et al. // Nano. Lett. 2016. V. 16. P. 80. https://doi.org/10.1021/acs.nanolett.5b02901
- Pesin D., MacDonald A.H. // Nature Mater. 2012. V. 11. P. 409. https://doi.org/10.1038/nmat3305
- Massalski T.B. Binary Alloy Phase Diagrams. ASM International, Materials Park, Ohio, USA. 1990. XXII. V. 3. 3589 p.
- 40. Voroshilov Yu.V., Evstigneeva T.L., Nekrasov I.Ya. Crystal Chemical Tables for Ternary Chalcogenides. M.: Nauka, 1989.
- Shevelkov A.V., Dikarev E.V., Shpanchenko R.V. et al. // J. Solid State Chem. 1995. V. 114. P. 379. https://doi.org/10.1006/jssc.1995.1058
- 42. *Haase-Wessel W.* // Naturwissenschaften. 1973. V. 60. № 10. P. 474.
- Ruck M. // Z. Kristallogr. Cryst. Mater. 1995. V. 210. P. 650.
- 44. *Adam A.* // Mater. Res. Bull. 2007. V. 42. P. 1986. https://doi.org/10.1016/j.materresbull.2007.02.027
- 45. Lukaszewicz K.J., Damm A.S., Pietraszko A. et al. // Polish J. Chem. 1999. V. 73. № 3. P. 541.
- 46. Miehe G., Kupcik V. // Naturwissenschaften. 1971.
 V. 58. № 4. P. 219.
- 47. *Yusa K., Sugaki A., Kitakaze A.* // J. Japan. Assoc. Min. 1979. V. 74. P. 162.
- 48. Бегларян М.Л., Абрикосов Н.Х. // Докл. АН СССР. 1959. Т. 129. № 1. С. 1529.
- 49. Valitova N.R., Aleshin V.A., Popovkin B.A., Novoselova A.V. // Inorg. Mater. 1976. V. 12. № 2. P. 225.
- 50. *Oppermann H., Petasch U. //* Z. Naturforsch. 2003. V. 58. № 8. P. 725.
- Savilov S.V., Khrustalev V.N., Kuznetsov A.N. et al. // Russ. Chem. Bull. 2005. V. 54. № 1. P. 87. https://doi.org/10.1007/s11172-005-0221-8
- 52. Ryazantsev T.A., Varekha L.M., Popovkin B.A., Novoselova A.V. // Inorg. Mater. 1970. V. 6. P. 1175.
- 53. *Leenson I.A.* // J. Chem. Edu. 2005. V. 82. № 2. P. 241. https://doi.org/10.1021/ed082p241
- 54. Emsley J. The Elements. Clarendon, 1998.