СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 546.41.185

ОРГАНОМИНЕРАЛЬНЫЕ КОМПОЗИТЫ ГИДРОКСИАПАТИТ КАЛЬЦИЯ/АЛЬГИНАТ КАЛИЯ: СИНТЕЗ, СВОЙСТВА

© 2021 г. Н. А. Захаров^{а,} *, Е. М. Коваль^{*a*}, А. Д. Алиев^{*b*}, Е. В. Шелехов^{*c*}, М. Р. Киселёв^{*b*}, В. В. Матвеев^{*b*}, М. А. Орлов^{*a*}, Л. И. Дёмина^{*a*, *b*}, Т. В. Захарова^{*d*}, Н. Т. Кузнецов^{*a*}

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия

^bИнститут физической химии и электрохимии им. А.Н. Фрумкина РАН, Ленинский пр-т, 31, Москва, 119071 Россия

^сНациональный исследовательский технологический университет "МИСИС".

Ленинский пр-т, 4, Москва, 119049 Россия

^dРоссийский университет транспорта "МИИТ", ул. Образцова, 9, Москва, 127994 Россия

*e-mail: zakharov@igic.ras.ru

Поступила в редакцию 21.08.2020 г. После доработки 14.09.2020 г. Принята к публикации 18.09.2020 г.

В ходе совместного осаждения гидроксиапатита кальция $Ca_{10}(PO_4)_6(OH)_2$ (ГА) и природного биополимера альгината калия (АК) $[C_6H_7KO_6]_n$ из водного раствора в системе $CaCl_2-(NH_4)_2HPO_4 NH_3-[C_6H_7KO_6]_n-H_2O$ (25°C) синтезированы органоминеральные композиты ГА/АК на основе нанокристаллического ГА с содержанием 0.1, 0.2, 0.3, 0.4 мас. % АК. Продукты синтеза идентифицированы методами рентгенофазового и термического анализа, инфракрасной спектроскопии, сканирующей и просвечивающей электронной микроскопии, электронной спектроскопии для химического анализа.

Ключевые слова: гидроксиапатит, альгинат, композиты, синтез, свойства **DOI:** 10.31857/S0044457X21030211

ВВЕДЕНИЕ

Создание органоминеральных композитов (ОМК) на основе биосовместимых фосфатов кальция и биополимеров является актуальным направлением разработки перспективных материалов для костных имплантатов с улучшенными характеристиками [1]. Гидроксиапатит кальция $Ca_{10}(PO_4)_6(OH)_2$ (ГА) – кристаллохимический аналог неорганической компоненты костной ткани млекопитающих [2]. Он обладает характеристиками биосовместимости и биоактивности. Костная ткань, являясь природным наноразмерным ОМК, включает в свой состав биополимеры (в основном коллаген), клетки и другие нативные ткани [3]. Моделирование состава природного ОМК – костной ткани – достигается с использованием биополимеров, позволяющих имитировать наиболее характерные свойства нативной костной ткани [4-6].

Одним из перспективных представителей подобных биополимеров является гетерополимер альгиновая кислота $(C_6H_8O_6)_n$ и ее соли [7–10]. Крупномасштабное производство альгиновой кислоты основано на извлечении ее из красных, бурых и некоторых зеленых водорослей. Широкое использование альгиновой кислоты и ее производных в промышленности обусловлено их способностью к набуханию, вязкостью их растворов и высокой способностью взаимодействать с различными структурами [11–13]. В настоящее время альгиновая кислота и соединения на ее основе используются в текстильной (50%) и пищевой (30%) промышленности, медицине, косметике, фармакологии (20%) [14].

Особенно перспективной для использования в фармакологии является соль альгиновой кислоты — альгинат калия $[C_6H_7KO_6]_n$ (**AK**). Он отличается рядом уникальных свойств [15, 16], таких как биосовместимость, биоактивность, иммуномодулирующее действие, способность к обволакивающему воздействию и др. [17, 18].

Перспективным подходом для решения задачи создания ОМК на основе ГА и биополимеров является совместное осаждение солей кальция, фосфора и биополимеров из растворов различного состава. Это позволяет в ходе решения задачи синтеза ОМК найти подходы к моделированию процессов биоминерализации в ходе остеогенеза. Такие методы направленного синтеза будут способствовать созданию новых материалов с регулируемыми в ходе синтеза и последующей обработки свойствами (размер и морфология кристаллов фосфатов кальция, их растворимость, пористость, биосовместимость и др.).

Ниже описан синтез из водных растворов в системах $CaCl_2-(NH_4)_2HPO_4-NH_3-[C_6H_7KO_6]_n-H_2O$ (25°C) ОМК ГА/АК, содержащих 0.1, 0.2, 0.3, 0.4 мас. % АК, и проанализированы с помощью методов физико-химического анализа взаимосвязи состав-условия синтеза-структура-дисперсность-свойства.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Материалы. В качестве исходных реактивов для синтеза ОМК ГА/АК использовали водные растворы $CaCl_2$ (ч. д. а.), $(NH_4)_2HPO_4$ (ч.), аммиака и дистиллированную воду.

Источником АК служил водный раствор калиевой соли альгиновой кислоты водоросли ламинарии производства АО "Архангельский опытный водорослевый комбинат" ТУ 10.89. 19-047-00462769-2016. Такой АК соответствует индексу европейской кодификации Е402 для пищевых добавок, допущенных к применению в пищевой промышленности Российской Федерации в качестве вспомогательного средства для производства пищевых продуктов (загустители, стабилизаторы, средства желеобразования), в фармакологии и косметологии. Использованный для синтеза АК являлся волокнистым, с мелкими гранулами и пластинами порошок без запаха бледно-желтого цвета. Содержание основного вещества в использованном АК было не менее 90%, плотность составляла 1.60 г/см³. Исходный АК был образован полисахаридными цепями мануроновой и гиалуроновой кислот и калием, эмпирическая формула $[C_6H_7KO_6]_n$. В качестве исходного реактива использовали 1%-ный водный раствор АК.

Синтез объектов исследования. Процедура синтеза ОМК ГА/АК в системах $CaCl_2 - (NH_4)_2 HPO_4 -$ NH₃-[C₆H₇KO₆]_n-H₂O (25°C), выбранные значения pH и соотношений CaCl₂/(NH₄)₂HPO₄ в исходных смесях соответствовали установленным ранее [19] оптимальным условиям образования ГА. ходе изучения водных систем CaCl₂- $(NH_4)_2HPO_4 - NH_3 - [C_6H_7KO_6]_n - H_2O$ соблюдались условия, при которых содержание $(NH_4)_2$ HPO₄ во всех пробах составляло 0.05 моль/л; отношение компонентов в исходных смесях выдерживали равным $n_1 = \text{CaCl}_2/(\text{NH}_4)_2\text{HPO}_4 =$ = 1.67; значение рН поддерживали в пределах 10-10.5; концентрация [С₆H₇KO₆]_n составляла 0.001-0.004 моль/л, что соответствует отношению $n_2 = [C_6H_7KO_6]_n/(NH_4)_2HPO_4 = 0.1-0.4$. Добавление раствора АК в состав реагирующих смесей (200 мл) проводили в последнюю очередь, после чего следовало перемешивание реагирующих растворов в течение 14 сут магнитной мешалкой при комнатной температуре.

Химический анализ продуктов синтеза. По окончании реакции синтеза в равновесных жидких фазах проводили измерение pH (прибор pH121) и определение содержания ионов Ca²⁺ (комплексонометрический метод вытеснения в комбинации с комплексонатом цинка с эриохромом черным T в качестве индикатора [20]) и PO₄³⁻ (весовой хинолинмолибдатный метод) с целью установления соотношения $n_3 = Ca^{2+}/PO_4^{3-}$ в образовавшихся твердых фазах. После декантации жидкой фазы образовавшийся осадок отфильтровывали, промывали дистиллированной водой до полного удаления ионов хлора и сушили на воздухе при комнатной температуре с целью получения образцов для физико-химического анализа.

Приборные методы физико-химического анализа

Рентгенофазовый анализ (РФА). Определение фазового состава, кристаллической структуры и морфологии нанокристаллов ГА (НКГА) порошкообразных образцов проводили с использованием автоматизированного рентгеновского дифрактометра ДРОН-4, сфокусированного по Бреггу–Брентано [21], с графитовым монохроматором на дифрагированном пучке, управляемым с помощью программы EXPRESS. Измерения проводили на Cu K_{α} -излучении в режиме пошагового сканирования с шагом 0.1°; время экспозиции на одну точку составляло 3 с.

Для качественного и количественного рентгенофазового анализа использовали программы PHAN и PHAN% (модифицированный полнопрофильный анализ, позволяющий оценить размер блоков и величину микродеформаций кристаллической решетки) с известным элементным составом образцов. Банк данных содержал более 110 тысяч карточек в формате картотеки JCPDS [22].

Инфракрасная (колебательная) спектроскопия (ИКС). ИК-спектры диффузного отражения продуктов синтеза регистрировали в диапазоне 4000–400 см⁻¹ с шагом сканирования 1 см⁻¹ с использованием ИК-фурье-спектрометра Nexus (фирмы Nicolet, США). Образцы для измерений были оформлены в виде спрессованных дисков смеси продуктов синтеза с КВг.

Термогравиметрический анализ (ТГА) образцов проводили с помощью термоанализатора NETZSCH Simultaneous Thermal Analyzer STA 409 на воздухе в интервале температур 20–1000°С. Скорость нагрева составляла 10 град/мин, масса навески 5–20 мг.

Сканирующая электронная микроскопия (СЭМ), электронная спектроскопия для химиче-

№ п/п	Содержание АК, мас. %	Остаточные концентрации, моль/л		pН	Са/Р (расчет)	Состав продуктов синтеза
		Ca ²⁺	PO_{4}^{3-}			
1	0.1	Следы		10.3	1.67	$Ca_{10}(PO_4)_6(OH)_2 \cdot 0.1AK \cdot 6.8H_2O$
2	0.2	»		10.5	1.67	$Ca_{10}(PO_4)_6(OH)_2 \cdot 0.2AK \cdot 8.3H_2O$
3	0.3	»		10.2	1.67	$Ca_{10}(PO_4)_6(OH)_2 \cdot 0.3AK \cdot 9.6H_2O$
4	0.4	»		10.3	1.67	$Ca_{10}(PO_4)_6(OH)_2 \cdot 0.4AK \cdot 10.8H_2O$

Таблица 1. Остаточные концентрации, состав продуктов синтеза и pH в системе $CaCl_2-(NH_4)_2HPO_4-NH_3-[C_6H_7KO_6]_n-H_2O$ (25°С)

ского анализа (ЭСХА). Морфологию поверхности образцов ОМК изучали с использованием микроскопа CamScanS4. Рентгеновский микроанализ (ЭСХА) изученных объектов был выполнен с помощью энергодисперсионного микроанализатора Link Analytical. Измерения проводили при токе пучка 10⁻¹⁰ А.

Просвечивающая электронная микроскопия (ПЭМ). Наблюдение наноструктуры образцов и НКГА в составе ОМК ГА/АК проводили методом ПЭМ с использованием электронного микроскопа JEOL JEM 1210.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Химический анализ. Результаты химического анализа методом остаточных концентраций и измерения pH свидетельствуют (табл. 1) о практически полном взаимодействии исходных прекурсоров на протяжении выбранного времени (14 сут) синтеза и незначительном (на уровне погрешности эксперимента) содержании ионов Ca^{2+} , PO_4^{3-} в образующейся после отстаивания продукта жидкой фазе.

Рассчитанные отношения $n_4 = \text{Ca}^{2+}/\text{PO}_4^{3-}$ в твердых фазах при выбранных условиях синтеза $(n_1 = 1.67, \text{ pH } 10-10.2, \text{ время перемешивания}$ 14 сут) во всех проанализированных случаях составляли 1.67, что соответствует образованию фосфатов кальция со структурой ГА и стехиометрическим отношением Ca/P. На основании результатов химического анализа можно сделать вывод об образовании в ходе синтеза ОМК ГА/АК состава Ca₁₀(PO₄)₆ · [C₆H₇KO₆]_x(OH)₂ · zH₂O, где x = 0.1-0.4; z = 6.8-10.8.

ИК-спектры отражения. ИК-спектры продуктов синтеза (рис. 1) характеризуются типичными для ГА полосами валентных (1093, 1038 и 963 см⁻¹) и деформационных (603, 567 см⁻¹) колебаний группировок PO_4^{3-} в составе ГА. Деформационные колебания PO_4^{3-} проявляются в колебательном

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 3 2021

спектре поглощения при 604, 566 и 470 см⁻¹. Полоса v(OH) при 3570 см⁻¹, как и в спектрах нативных апатитов [2], характеризуется незначительной интенсивностью, относительная величина которой возрастает после термической обработки синтезированных образцов.

Значительный фон в области $3500-2900 \text{ см}^{-1}$ и полоса деформационных колебаний H–O–H при ~1671 см⁻¹ (рис. 1) обусловлены высокой адсорбционной способностью развитой поверхности НКГА в составе ОМК. Полосы поглощения карбоната в составе синтезированных ОМК фиксировали приблизительно при 1500, 1458, 1420 и 875 см⁻¹. Сравнение полос поглощения для ОМК, полученных в настоящей работе, с литературными данными для иных типов апатитов [2] позволяет сделать вывод о преимущественном замещении OH⁻-групп апатита ионами карбоната и свидетельствует об образовании в ходе синтеза НКГА

Рис. 1. ИК-спектры отражения: a – альгината калия ([C₆H₇KO₆]_{*n*}); δ – композита состава Ca₁(PO₄)₆(OH)₂ · · [C₆H₇KO₆]_{*x*}(OH)₂ · *z*H₂O, x = 0.3, z = 6.8-10.8; e – композита, соответствующего случаю δ , подвергнутого термическому воздействию (1000°С, 1 ч).

ЗАХАРОВ и др.

Мо н /н	Параметры ячейки, Å		Размер блока К	оши, нм (1)	Engra donugra	
JN≌ 11/11	а	с	<i>c</i>	$\perp c$	врупо-формула	
1	9.4236	6.8786	6.87	8.2	$Ca_{10}(PO_4)_6 \cdot 0.1[C_6H_7KO_6] \cdot (OH)_2 \cdot 6.8H_2O$	
2	9.4247	6.8794	11.5	7.4	$Ca_{10}(PO_4)_6 \cdot 0.2[C_6H_7KO_6] \cdot (OH)_2 \cdot 8.3H_2O$	
3	9.4242	6.8782	15.4	8.0	$Ca_{10}(PO_4)_6 \cdot 0.3[C_6H_7KO_6] \cdot (OH)_2 \cdot 9.6H_2O$	
4	9.4264	6.8747	12.2	7.2	$Ca_{10}(PO_4)_6 \cdot 0.4[C_6H_7KO_6] \cdot (OH)_2 \cdot 10.8H_2O$	
5	9.48	6.884	_	—	$Ca_{10}(PO_4)_6(OH)_2(2)$	

Таблица 2. Кристаллографические и морфологические характеристики ГА в составе ОМК ГА/АК

(1) Размер блока Коши параллельно ($\|c$) и перпендикулярно ($\perp c$) гексагональной оси c.

(2) Параметры элементарной ячейки ГА в соответствии с JCPDS (№ 9-432) [22].

преимущественно с А-типом замещения (замещение ОН-групп). Ввиду незначительного содержания АК в составе ОМК ГА/АК его спектральные характеристики не сказывались существенным образом на колебательных спектрах ОМК. Это, как правило, характерно и для ОМК на основе ГА и биополимеров иного состава при сопоставимом содержании последнего в составе ОМК.

Рентгенофазовый анализ. Синтезированные в составе ОМК ГА/АК апатиты, по данным РФА (табл. 2), характеризовались как однородные твердые фазы на основе ГА (пр. гр. $P6_3/m$). Условия синтеза обеспечивали отсутствие в продуктах

Рис. 2. Дифрактограммы: $a - Ca_{10}(PO_4)_6(OH)_2 \cdot [C_6H_7KO_6]_x(OH)_2 \cdot zH_2O$, где x = 0.3; z = 9.6; δ – того же образца, подвергнутого термической обработке (1000°C, 1 ч).

синтеза посторонних фаз (CaCO₃, CaO, Ca₃(PO₄)₃), свидетельствуя о полном прохождении реакции. Уширение дифракционных линий (рис. 2) свидетельствовало о нанокристаллическом состоянии ГА в составе ОМК ГА/АК. Термическая обработка также не вызывала образования посторонних фаз, увеличивая в то же время степень кристалличности ГА и улучшая разрешение его дифракционных линий (рис. 2).

Параметры элементарных ячеек ГА в составе ОМК ГА/АК находятся в удовлетворительном соответствии с данными JCPDS (№ 9-432) [22]. НКГА удлинены вдоль гексагональной оси *с* и имеют размеры и кристаллографические характеристики, близкие к таковым для НКГА нативной кости [23] (табл. 2).

Увеличение содержания АК в составе ОМК ГА/АК даже в незначительных количествах (0.1— 0.4 мас. %) сопровождалось ощутимым удлинением НКГА вдоль гексагональной оси c (рис. 3). При этом их толщина в направлении, перпендикулярном оси c, изменялась незначительным образом. Рост содержания АК сопровождался не-

Рис. 3. Морфологические характеристики НКГА в составе ОМК ГА/АК с содержанием 0.1 (1), 0.2 (2), 0.3 (3) и 0.4 (4) мас. % АК.

Рис. 4. Зависимости ТГА и ДСК АК $(C_6H_8O_6)_n$ (а) и образца ОМК ГА/АК состава $Ca_{10}(PO_4)_6(OH)_2 \cdot 0.2AK \cdot 8.3H_2O$ (6).

большим уменьшением параметра c и незначительным ростом параметра a элементарной ячейки НКГА (табл. 2).

Термогравиметрический анализ образцов ОМК ГА/АК. Кривые термического разложения исходного АК (рис. 4a) характеризуются на начальном этапе потерей веса в области 100°С (~14.5%), связанной с выделением адсорбированной воды (эндотермический эффект 227.7 Дж/г). В области более высоких температур (~260, 350°С) происходит выгорание органической компоненты с потерей веса (от начального его значения) при указанных температурах соответственно ~50 и 63% и интенсивным экзотермическим эффектом (~947 Дж/г) при 342°С. Нагревание выше 600°С сопровождается характерным для органических биополимеров процессом декарбонизиции [24], дальнейшей потерей веса (~75%) и значительным экзотермическим эффектом (1673 Дж/г).

321

Перечисленные особенности термических характеристик АК отражаются и на термическом поведении ОМК ГА/АК (рис. 46; образец состава $Ca_{10}(PO_4)_6(OH)_2 \cdot 0.2AK \cdot 8.3H_2O$). Незначительное содержание (0.2 мас. %) АК в образцах этого ОМК накладывает отпечаток на его термические характеристики. Характерные для индивидуального АК эффекты выделения адсорбированной воды (~100°С), выгорания органической компоненты (~260, 350°С) и декарбонизации (выше 600°С) явно не выражены. Термические эффекты агломерации НКГА при повышенных температу-

Рис. 5. Результат ЭСХА (а) и картины СЭМ (б, в, г) в прямом (б, в) и обратном (г) свете образца ОМК ГА/АК состава $Ca_{10}(PO_4)_6(OH)_2 \cdot 0.2AK \cdot 8.3H_2O$.

рах незначительны, что не позволяет выявить их на фоне других термических эффектов.

Результаты термического анализа позволяют сделать заключение о практическом отсутствии изменения характеристик АК в составе ОМК ГА/АК до температуры 200°С. По данным термического анализа, предельные температуры, при которых ОМК способны сохранять свои стабильные характеристики, не превышают 250°С.

Электронная микроскопия (СЭМ, ПЭМ) и ЭСХА продуктов синтеза. Результаты ЭСХА (рис. 5) свидетельствуют об однородности состава по всему объему синтезированных ОМК ГА/АК и находятся в удовлетворительном соответствии с данными химического анализа (табл. 1) по основным элементам ОМК (кальций, фосфор, кислород, углерод). Продукты синтеза после высыхания на воздухе представляют собой твердые черепки. Помол продуктов синтеза (ступка, шаровая мельница) приводит к образованию частиц с размером от единиц до десятков микрон (рис. 5), сохраняющих свою форму и не отличающихся друг от друга по химическому составу. Изменение состава ОМК ГА/АК не влияет на характер измельчения продуктов синтеза. Влияние увеличенной (за счет присутствия АК) вязкости раствора сказывается в определенной мере на образовании пористой структуры твердых образцов после высыхания ОМК (рис. 5в, 5г).

По-видимому, повышенная вязкость исходного раствора для синтеза сказывается и на росте НКГА, вызывая склонность к возникновению аморфной фазы образующегося апатита. О возможности подобного явления указывалось ранее [25] при рассмотрении влияния различных факторов на образование аморфного ГА в ходе его синтеза из водных растворов. В случае образования ОМК ГА/АК в описанной в настоящей работе системе результаты ПЭМ явно указывают (рис. 6) на присутствие аморфной составляющей в образующихся продуктах синтеза. Об этом свидетельствуют как неразвитые формы НКГА, так и нерельефная форма агломератов НКГА на картинах

Рис. 6. Картины ПЭМ различных участков (а, б, в) образца ОМК ГА/АК состава $Ca_{10}(PO_4)_6(OH)_2 \cdot 0.2AK \cdot 8.3H_2O$.

ПЭМ, отличающие их от НКГА композитов, включающих в свой состав менее вязкие биополимеры (фиброин шелка [26], метилцеллюлозу [27]) либо наноуглеродные материалы (многостенные углеродные нанотрубки [28], оксид графена [29]). По-видимому, вязкость растворов для синтеза сказывалась и на морфологии НКГА в ОМК ГА/АК. В отличие от упомянутых композитов на основе ГА [25-28], НКГА в ОМК ГА/АК не были вытянуты вдоль гексагональной оси с, а были склонны к росту в перпендикулярном направлении. Следует отметить, что присутствие доли метастабильной аморфной фракции в образующихся продуктах синтеза будет способствовать желательному увеличению растворимости апатита в составе ОМК ГА/АК, увеличивая степень перспективности его практического использования.

ЗАКЛЮЧЕНИЕ

В ходе совместного осаждения солей кальция, фосфора и биополимера альгината калия (АК) $[C_6H_7KO_6]_n$ определено влияние АК на осаждение из водных растворов состава CaCl₂–(NH₄)₂HPO₄– NH₃– $[C_6H_7KO_6]_n$ –H₂O (25°C) гидроксиапатита кальция (Ca₁₀(PO₄)₆(OH)₂).

Синтезированы органоминеральные нанокомпозиты на основе ГА и АК с содержанием 0.1, 0.2, 0.3, 0.4 мас. % АК, продукты синтеза иденти-

 У ИК-спектроскопии, сканирующей и просвечивающей электронной микроскопии и электронной спектроскопии для химического анализа.
На основе анализа физико-химических характеристик установлены взаимосвязи состав-условия

ристик установлены взаимосвязи состав—условия синтеза—структура—дисперсность—свойства, позволяющие осуществить подходы для направленного синтеза наноразмерных ОМК ГА/АК, моделирующих состав и свойства нативной костной ткани.

фицированы методами химического, рентгено-

фазового и термогравиметрического анализа,

Высказано предположение, что затруднение развития НКГА в направлении гексагональной оси *с* и возникновение аморфной фракции ГА на картинах ПЭМ может быть вызвано повышенной вязкостью водного раствора АК для синтеза ОМК.

Рассмотрены возможности применения синтезированных ОМК в качестве материалов для костных имплантатов с улучшенными характеристиками.

БЛАГОДАРНОСТЬ

Авторы признательны за содействие в выполнении работы доктору физ.-мат. наук, проф. А.Е. Чалых, А.С. Фролову.

324

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы констатируют отсутствие конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Dorozhkin S.V. // BIO. 2011. V. 1. P. 1.
- 2. *Elliot J.C.* Structure, chemistry of apatites and other calcium orthophosphates. Amsterdam: Elsevier Science, 1994. 350 p.
- 3. *Касавина Б.С., Торбенко В.П.* Жизнь костной ткани. М.: Наука, 1979. 176 с.
- 4. *Sancilio S., Gallorini M., Di Nisio C. et al.* // Stem Cells Intern. 2018. V. 1. P. 1.
- 5. Kobayashi M., Sakane M., Abe T. et al. // Bioceram. Develop. Applic. 2012. V. 2. P. 1.
- Kamalaldina N.A., Yahya B.H., Nurazreenab A. // Proc. Chem. 2016. V. 19. P. 297.
- Титов А.М. Целительные свойства морских водорослей: повышение иммунитета, нормализация обмена веществ, защита от рака. СПб.: Нева, 2004. 125 с.
- Suarez-Gonzalez D., Barnhart K., Saito E. et al. // J. Biomed. Mater. Res. A. 2010. V. 95A. № 1. P. 221.
- 9. Rajesh R., Ravichandran Y.D. et al. // Int. J. Nanomedicine. 2015. V. 10. P. 7.
- 10. *Cardoso D.A., Ulset A.-S., Bender J. et al.* // Macrom. Biosc. 2014. V. 14. № 6. P. 872.
- Сарафанова Л.А. Пищевые добавки: энциклопедия. СПб.: ГИОРД, 2004. 809 с.
- 12. Onoyima C.C., Okibe F.G., Anweting I.B. et al. // Trends Sc. Technol. J. 2017. V. 2. № 1A. P. 261.

- 13. Obara S., Yamauchi T., Tsubokawa N. // Polym. J. 2010. V. 42. P. 161.
- Криштанова Н.А., Сафонова М.Ю., Болотова В.Ц. и др. // Вестник ВГУ. Серия: Химия. Биология. Фармация. Санкт-Петербургская гос. хим.-фармац. акад. 2005. № 1. С. 212.
- 15. Ботанико-фармакологический словарь. М.: Высшая школа, 1990. 314 с.
- 16. *Manatunga D.C., de Silva Rohini M., de Silva K.M.N. et al.* // Chem. Centr. J. 2018. V. 12. № 119. P. 1.
- Sellimi S., Younes I., Ayed H.B. et al. // Int. J. Biol. Macromol. 2015. V. 72. P. 1358.
- 18. Wang Y.-P., Liao Y.-T., Liu C.-H. et al. // Biointerphases. 2015. V. 10. № 2. P. 1.
- 19. *Чумаевский Н.А., Орловский В.П., Ежова Ж.А. и др. //* Журн. неорган. химии. 1992. Т. 37. № 7. С. 881.
- 20. Шварценбах Г., Флашка Г. Комплексонометрическое титрование. М.: Химия, 1970. С. 172.
- Горелик С.С., Скаков Ю.А., Расторгуев Л.Н. Рентгенографический и электронно-оптический анализ. М.: МИСиС, 2002. 360 с.
- Powder diffraction file (inorganic phases). Joint Committee on Powder Diffraction Standards (JCPDS) File № 9-432, International Centre of Diffraction Data, Newton Square, PA, 1980.
- 23. *Hench L.L.* // J. Am. Ceram. Soc. 1991. V. 74. № 7. P. 1487.
- 24. Zakharov N.A., Ezhova Zh.A., Koval E.M. et al. // Russ. J. Inorg. Chem. 2015. V. 60. № 12. P. 1460.
- 25. Rey C., Combes C., Drouet C. et al. // Mater. Sci. Eng. 2007. V. 27. P. 198.
- 26. Zakharov N.A., Demina L.I., Aliev A.D. et al. // Inorg. Mater. 2017. V. 53. № 3. P. 333.
- 27. Zakharov N.A., Sentsov M.Yu., Kiselev M.R. et al. // Protect. Met. Phys. Chem. Surf. 2016. V. 52. № 1. P. 89.
- Zakharov N.A., Sentsov M.Yu., Chalykh A.E. et al. // Protect. Met. Phys. Chem. Surf. 2013. V. 49. № 1. P. 80.
- 29. Zakharov N.A., Tkachev A.G., Demina L.I. et al. // Protect. Met. Phys. Chem. Surf. 2016. V. 52. № 4. P. 665.