___ ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ _ НЕОРГАНИЧЕСКИХ СИСТЕМ

УЛК 541.123.3

ОСОБЕННОСТИ ТРАНСФОРМАЦИИ ФАЗОВОЙ ДИАГРАММЫ ТРЕХКОМПОНЕНТНОЙ СИСТЕМЫ СО СТЕХИОМЕТРИЧЕСКИМИ СОЕДИНЕНИЯМИ ПРИ ИЗМЕНЕНИИ ПАРАМЕТРОВ ЕЕ СОСТОЯНИЯ

© 2021 г. В. А. Шестаков^{а, *}, В. И. Косяков^а

^aИнститут неорганической химии им. А.В. Николаева СО РАН, пр-т Академика Лаврентьева, 3, Новосибирск, 630090 Россия *e-mail: vsh@niic.nsc.ru
Поступила в редакцию 19.08.2020 г.

Поступила в редакцию 19.08.2020 г. После доработки 09.09.2020 г. Принята к публикации 12.09.2020 г.

Изучены закономерности изменения вида субсолидусной фазовой диаграммы при изменении температуры или давления в трехкомпонентной системе со стехиометрическими соединениями на основании топологического подхода. Введено понятие сопряженных фазовых диаграмм в p-T-пространстве. Определены пять типов фазовых реакций, приводящих к таким диаграммам. Установлены топологические особенности сопряженных диаграмм. Полученные закономерности могут быть использованы для перечисления сопряженных фазовых диаграмм в субсолидусной области, которая имеет особое значение для решения прикладных задач материаловедения.

Ключевые слова: трехкомпонентные системы, фазовые диаграммы, топология фазовых диаграмм, фазы постоянного состава

DOI: 10.31857/S0044457X21030168

ВВЕДЕНИЕ

Образование минералов, получение материалов и композиций, химическая деградация твердотельных устройств - это процессы, протекающие в гетерогенных многокомпонентных системах. Поэтому исследование таких процессов, на раннем этапе представленное, например, работами [1-3], активно продолжается и в настоящее время. Прогресс в исследовании и использовании этих процессов для создания новых технологий в существенной степени основан на результатах теоретических и экспериментальных исследований фазовых диаграмм многокомпонентных систем. Изучению общих закономерностей таких диаграмм посвящено множество работ. К настоящему времени достаточно хорошо развита теория дифференциации многокомпонентных систем, т.е. разбиения исходного фазового комплекса на составляющие с учетом особенностей взаимодействия компонентов в элементах огранения и числа компонентов в системе [4, 5]. С использованием теории графов изучена топология фазовых диаграмм многокомпонентных систем, позволившая разработать их классификацию и оптимизировать процесс экспериментального исследования [6–10]. Для прогнозирования и построения фазовых диаграмм многокомпонентных систем на основе принципа совместимости элементов строения диаграмм, частных составляющих (n-компонентных) и общей ((n+1)-компонентной) систем с учетом требования правила фаз Гиббса разработан и успешно используется метод трансляции [11-13]. При решении различных научных и прикладных задач, например для выбора оптимальных составов образцов с целью синтеза соединений или композиций, активно проводятся экспериментальные исследования и 3D-моделирование фазовых диаграмм или их фрагментов [14-19].

ТЕОРЕТИЧЕСКИЙ АНАЛИЗ

Фазовые диаграммы конденсированных трехкомпонентных систем являются геометрическими конструкциями в пространстве состояний. Обычно это 0-мерные (p, T = const), 1-мерные (p или T = const) и двумерные $(p, T \neq \text{const})$ пространства. Чаще всего в статьях, монографиях, справочниках и базах данных представляют конкретные диаграммы тройных систем или их фрагменты. Подобное представление тройных систем имеет размерность от 2 до 4 в объединенном (p, T, x_1, x_2) пространстве состава и параметров состояния. Отметим, что координаты p, T, x_1 , x_2 являются независимыми переменными.

В литературе (см., например, работы [20–25]) описано множество реальных и виртуальных диа-

грамм трехкомпонентных систем. Ограничимся рассмотрением простейших диаграмм с твердыми фазами постоянного состава и непрерывным жидким раствором. Предполагается, что область гомогенности этих твердых фаз невелика (менее 0.1 ат. %), поэтому мы их рассматриваем как стехиометрические. Их удобно разделить на две части: диаграммы плавкости и субсолидусные диаграммы. Они отделены друг от друга дискретной поверхностью солидуса, состоящей из треугольных граней, расположенных в параллельных плоскостях. Рассмотрим изобарную фазовую диаграмму тройной системы, состоящей из конденсированных фаз. Ее поверхность ликвидуса изоморфна графу многогранника с трехвалентными вершинами [6], а проблему построения множества схем поверхности ликвидуса в системах с заданным количеством бинарных и тройных соединений легко свести к генерации множества графов с заданным числом таких вершин [7]. Менее подробно изучено строение субсолидусных диаграмм тройных систем. Если в рассматриваемых системах содержатся только фазы постоянного состава, то такие диаграммы при p, T = const являются разбиениями концентрационного треугольника с заданными количествами бинарных и тройных соединений на элементарные треугольники [8, 9]. Пусть состояние тройной системы указано точкой на p-T-диаграмме системы, а ее строение описывается определенным графом триангуляции. Под триангуляцией фазовой диаграммы будем понимать разбиение концентрационного треугольника на элементарные треугольники, вершины которых помечены индексами компонентов, бинарных и тройных соединений. Будем считать две триангуляции одинаковыми, если они построены из одного и того же набора помеченных треугольников. Пусть состояние равновесной субсолидусной системы изменяется вдоль заданной p-T-траектории. Изменение δp и δT вдоль траектории не влияет на топологию триангуляции до тех пор, пока траектория не пересечет моновариантную линию на p-T-диаграмме. Точка пересечения показывает состояние системы в момент протекания в ней фазовой реакции, приводящей к появлению диаграммы с другой топологией (сопряженной диаграммы). Таким образом, последовательное протекание фазовых реакций при изменении состояния системы А-В-С приводит к "многоэтажному" строению фазовых диаграмм вдоль заданной траектории в p, T-пространстве. Триангуляция треугольника АВС неизменна внутри этажа, но изменяется при переходе на следующий этаж диаграммы. Поэтому для построения субсолидусного фрагмента диаграммы необходимо задать изобарно-изотермические сечения во всех областях p-T-диаграммы. Альтернативным представлением является описание одного изобарно-изотермического сечения и

список фазовых реакций вдоль всех моновариантных линий фазовой диаграммы. В настоящей работе рассмотрено построение таких фрагментов и определены закономерности, необходимые для перечисления сопряженных фазовых диаграмм в субсолидусной области, которая имеет особое значение для решения прикладных задач.

Построение сопряженных фазовых диаграмм

Возможные схемы реакций с участием фаз постоянного состава при монотонном изменении Т или р в тройной системе показаны на рис. 1. Отметим, что фазовые реакции протекают при постоянных интенсивных параметрах, но при изменении T (или p) массы одних фаз уменьшаются, а других — увеличиваются. Состояние системы до, во время и после инвариантного равновесия отмечено цифрами I, II и III. Эвтектоидная реакция между фазами α, β и γ приводит к образованию фазы δ. При этом образуются три новые коноды и появляются три новые грани фазового комплекса. При дальнейшем изменении состояния комплекс αβγδ не изменяется. При перитектической реакции происходит замена ребра αβ на ребро γδ. Последняя реакция иллюстрирует распад комплекса $\alpha\beta\gamma\delta$ на комплекс $\alpha\beta\gamma$.

Рассмотрим изобарно-изотермическую субсолидусную фазовую диаграмму системы, включающую M бинарных и N тройных соединений. Топологическую схему диаграммы удобно представить в виде концентрационного треугольника $K_1K_2K_3$, разделенного на элементарные треугольники. В их вершинах расположены компоненты и соединения. Такая триангуляция содержит v = 3 + M + N вершин, e = 2M + 3N + 3 ребер и f = M + 2N + 2 граней (не считая внешнюю грань) [8]. Пример триангуляции с v = 6, e = 11, f = 6 из работы [9], обозначенный как D_0 , показан на рис. 2а. Система содержит бинарное (c_1) и два тройных $(t_1$ и t_2) соединения.

Перечислим варианты появления сопряженной фазовой диаграммы:

- а) в системе появляется новое двойное соединение (пример реакция $c_1 + k_1 = c_2$, рис. 26);
- б) в системе исчезает двойное соединение (пример реакция $c_1 = k_1 + k_2$, рис. 2в);
- в) в системе появляется новое тройное соединение (пример реакция $c_1 + k_1 + t_2 = t_3$, рис. 2г);
- г) в системе одно равновесие заменяется другим (пример реакция $c_1 + t_2 = t_1 + k_1$, рис. 2д);
- д) в системе исчезает тройное соединение (пример реакция $t_1 = c_1 + k_2 + k_3$, рис. 2e).

Очевидно, что число диаграмм, сопряженных с исходной диаграммой по реакции типа $\alpha + \beta = \gamma$ с возникновением бинарного соединения, всегда равно числу внешних ребер треугольника M+3.

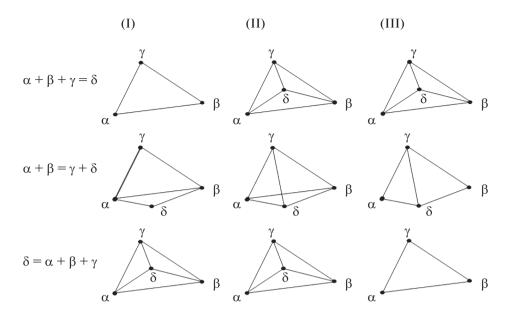
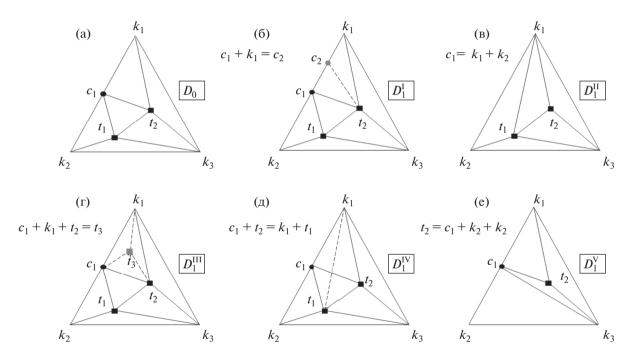



Рис. 1. Граф-схемы инвариантных реакций с фазами постоянного состава.

Рис. 2. Фазовая диаграмма системы в исходном состоянии (a) и сопряженные диаграммы, которые получаются после фазовой реакции в этой системе (б-е).

Число диаграмм, сопряженных по реакции типа $\alpha = \beta + \gamma c$ исчезновением бинарного соединения, равно М. Количество диаграмм, сопряженных по реакции $\alpha = \beta + \gamma + \delta$ с исчезновением тройного соединения, равно N. Количество диаграмм, сопряженных по реакции $\alpha + \beta + \gamma = \delta$ с возникновением тройного соединения, равно числу граней в разбиении исходного концентрационного треугольника — M + 2N + 1. Более сложная ситуация

возникает при сопряжении по перитектической реакции $\alpha + \beta = \gamma + \delta$ (рис. 1д). Она возможна, если в триангуляции два смежных треугольника образуют выпуклый четырехугольник. Число таких четырехугольников равно количеству возможных в системе перитектических реакций. Например, для диаграммы D_0 число сопряженных диаграмм равно 16, так как число подобных выпуклых че-

тырехугольников здесь равно трем $(c_1k_1t_2t_1, c_1k_2t_1t_2, c_1t_1k_3t_2)$.

Трехкомпонентная изобарная система изображена в виде призмы, в основании которой лежит концентрационный треугольник, разделенный на элементарные треугольники. Каждой точке температурной оси соответствует изобарно-изотермическая диаграмма. Диаграммы с одной и той же топологией расположены вдоль некоторого интервала этой оси. На соседнем интервале расположены диаграммы с сопряженной топологией. В рассмотренном выше примере существует 16 вариантов двухэтажных конструкций на основе диаграммы D_0 .

Основными топологическими характеристиками диаграммы D_0 , используемыми для построения смежных триангуляций, являются величины M и N. В соответствии с рассмотренными выше вариантами появления сопряженных диаграмм они позволяют определить (без учета изоморфизма) количество возможных сопряженных диаграмм разного типа для вариантов (a), (б), (в), (д):

$$n_{\rm a} = M + 3, \tag{1}$$

$$n_6 = M, (2)$$

$$n_{\rm B} = f = M + 2N + 1,$$
 (3)

$$n_{\pi} = N, \tag{4}$$

где $n_{\rm a}$ соответствует общему количеству бинарных подсистем в ограняющих системах, $n_{\rm f}$ и $n_{\rm g}$ — числу двойных и тройных соединений, $n_{\rm g}$ — числу граней в этой диаграмме.

Аналогичные особенности наблюдаются в изотермических системах при росте давления, а также в системах, построенных вдоль монотонной кривой $\psi(p,T)=0$. Совокупность таких построений несложно применить для построения p-T-диаграмм трехкомпонентных систем.

ЗАКЛЮЧЕНИЕ

Приведенные примеры показывают большое разнообразие геометрических конструкций, отображающих строение фазовых диаграмм в пространстве термодинамических переменных и мольных долей компонентов. Ранее были рассмотрены изобарно-изотермические диаграммы в заданном концентрационном пространстве и диаграммы плавкости в T—x-пространстве [9, 10]. В сочетании с результатами настоящей работы эти данные позволяют решать задачу перечисления диаграмм в области от температур плавления компонентов до сосуществования только твердых фаз. Естественно, что количество изученных диаграмм невелико по сравнению с числом возможных вариантов. Тем не менее важно уметь строить эти диаграммы и располагать возможностью оценки их количества. Следует отметить, что при увеличении числа компонентов в системе увеличивается роль топологической информации. Чем больше такой информации, тем меньше число возможных вариантов. Поэтому знание закономерностей строения многоэтажных фазовых диаграмм облегчает задачу их экспериментального исследования.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Курнаков Н.С.* Введение в физико-химический анализ. М.–Л.: Изд-во АН СССР, 1940. 563 с.
- 2. *Палатник Л.С., Ландау А.И*. Фазовые равновесия в многокомпонентных системах. Харьков: Изд-во XГУ, 1961. 405 с.
- 3. *Радищев В.П.* Многокомпонентные системы. М.: ИОНХ АН СССР, 1963. 502 с.
- 4. *Трунин А.С.* Комплексная методология многокомпонентных систем. Самара: Самарск. гос. техн. ун-т, 1997. 308 с.
- Гасаналиев А.М., Ахмедова П.А., Гаматаева Б.Ю. // Вестн. Нижегородского ун-та им. Н.И. Лобачевского. 2014. № 1. С. 130.
- 6. Косяков В.И., Шестаков В.А. // ДАН. 2008. Т. 421. № 5. С. 646. [Kosyakov V.I., Shestakov V.A. // Dokl. Phys. Chem. 2008. V. 421. № 2. P. 220.]
- 7. *Косяков В.И., Шестаков В.А., Грачёв Е.В.* // Журн. неорган. химии. 2010. Т. 55. № 4. С. 662. [*Kosyakov V.I., Shestakov V.A., Grachev E.V.* // Russ. J. Inorg. Chem. 2010. V. 55. № 4. P. 611. https://doi.org/10.1134/S0036023610040194]
- 8. Косяков В.И., Шестаков В.А., Грачёв Е.В. // ДАН. 2012. Т. 443. № 2. С. 191. [Kosyakov V.I., Shestakov V.A., Grachev E.V. // Dokl. Phys. Chem. 2012. V. 443. № 1. P. 53. https://doi.org/10.1134/S0012501612030025]
- Kosyakov V.I., Shestakov V.A., Grachev E.V. // MATCH Commun. Math. Comput. Chem. 2013. V. 69. № 3. P. 795.
- 10. *Косяков В.И., Шестаков В.А., Грачёв Е.В.* // Журн. неорган. химии. 2010. Т. 55. № 5. С. 835. [*Kosyakov V.I., Shestakov V.A., Grachev E.V.* // Russ. J. Inorg. Chem. 2010. V. 55. № 5. Р. 780. https://doi.org/10.1134/S0036023610050190]
- Солиев Л. Прогнозирование строения диаграмм фазовых равновесий многокомпонентных водносолевых систем методом трансляции. М., 1987. 28 с. Деп. ВИНИТИ АН СССР 20.12.87 г. № 8990-В87.
- 12. *Солиев Л.* // Журн. неорган. химии. 2019. Т. 64. № 7. С. 741. [*Soliev L.* // Russ. J. Inorg. Chem. 2019. V. 64. № 7. P. 894. https://doi.org/10.1134/S0036023618070033]
- 13. *Солиев Л.* // Журн. неорган. химии. 2020. Т. 65. № 2. С. 212.
- Lutsyk V., Vorobjeva V., Parfenova M. // Adv. Mater. Res. 2013. V. 704. P. 55. https://doi.org/10.4028/www.scientific.net/AMR.704.55

- 15. Луцык В.И., Воробьева В.П. // Журн. неорган. химии. 2016. Т. 61. № 2. С. 200. [Lutsyk V.I., Vorob'eva V.P. // Russ. J. Inorg. Chem. 2016. V. 61. № 2. Р. 158. https://doi.org/10.1134/S0036023616020121]
- 16. *Луцык В.И.*, *Зеленая А.Э.* // Журн. неорган. химии. 2018. Т. 63. № 7. С. 925. [*Lutsyk V.I.*, *Zelenaya A.E.* // Russ. J. Inorg. Chem. 2018. V. 63. № 7. P. 966. https://doi.org/10.1134/S0036023618070148]
- 17. Бурчаков А.В., Егорова Е.М., Кондратюк И.М., Мощенский Ю.В. // Журн. неорган. химии. 2018. Т. 63. № 7. С. 909. [Burchakov A.V., Egorova E.M., Kondratyuk I.M., Moshchenskii Yu.V. // Russ. J. Inorg. Chem. 2018. V. 63. № 7. P. 950. https://doi.org/10.1134/S0036023618070033]
- 18. Бурчаков А.В., Дворянова Е.М., Кондратюк И.М., Мощенский Ю.В. // Журн. неорган. химии. 2017. Т. 62. № 5. С. 564. [Burchakov A.V., Dvoryanova E.M., Kondratyuk I.M., Moshchenskii Yu.V. // Russ. J. Inorg. Chem. 2017. V. 62. № 5. P. 563. https://doi.org/10.1134/S0036023617050047]

- Jinwu K., Baicheng L. // J. Alloys Compd. 2016. V. 673. P. 309. https://doi.org/10.1016/j.jallcom.2016.02.200
- 20. *Hillert M.* Phase equilibria, phase diagrams and phase transformation. Their thermodynamic basis. Cambridge University Press, 1998. 538 p.
- 21. Халдояниди К.А. Фазовые диаграммы гетерогенных систем с трансформациями. Новосибирск: ИНХ СО РАН, 2004. 382 с.
- 22. Луцык В.И. Анализ поверхности ликвидуса тройных систем. М.: Наука, 1987. 150 с.
- 23. Воскресенская Н.К., Евсеева Н.Н., Беруль С.И., Верещетина И.П. Справочник по плавкости солевых систем. М.—Л.: Изд-во АН СССР, 1961.
- 24. *Земсков В.С., Киселева Н.Н., Киселев Н.Н. и др. //* Неорган. материалы. 1995. Т. 31. № 9. С. 1198.
- Диаграммы плавкости солевых систем. Тройные системы / Под ред. Посыпайко В.И. и Алексеевой Е.А. М.: Химия, 1977. 328 с.