_____ ФИЗИЧЕСКИЕ МЕТОДЫ ____ ИССЛЕДОВАНИЯ

УДК 544.332.031,546.02

ТЕРМОДИНАМИКА СОЕДИНЕНИЙ НА ОСНОВЕ ОКСИДОВ СВИНЦА(II) И ЦИНКА(II) В ГАЗОВОЙ ФАЗЕ

© 2021 г. Н. А. Грибченкова^{*a*}, К. Г. Сморчков^{*a*}, А. С. Смирнов^{*a*}, А. С. Алиханян^{*a*}, *

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия *e-mail: alikhan@igic.ras.ru

> Поступила в редакцию 10.08.2020 г. После доработки 09.09.2020 г. Принята к публикации 12.09.2020 г.

Эффузионным методом Кнудсена с масс-спектральным анализом газовой фазы исследованы процессы парообразования в системе PbO–ZnO в интервале температур 1010–1120 К. Установлено, что насыщенный пар над системой состоит из молекул монооксида свинца, его ассоциатов, атомов свинца, молекул кислорода и смешанных оксидов PbZnO₂, Pb₂ZnO₃, PbZn₂O₃, Pb₂Zn₂O₄, Pb₃ZnO₄. Определен мольный состав насыщенного пара и получены величины парциальных давлений всех компонентов газовой фазы при температуре 1110 К. Экспериментальные данные позволили по 2-му закону термодинамики рассчитать ряд стандартных энтальпий гетерофазных реакций и стандарт-

ные энтальпии образования смешанных оксидов $\Delta_f H_{298}^{\circ}(\text{PbZnO}_2) = -290.4 \pm 6.6 \text{ кДж/моль},$ $\Delta_f H_{298}^{\circ}(\text{Pb}_2\text{ZnO}_3) = -488.2 \pm 21.5 \text{ кДж/моль}, \Delta_f H_{298}^{\circ}(\text{PbZn}_2\text{O}_3) = -628.4 \pm 11.9 \text{ кДж/моль},$ $\Delta_f H_{298}^{\circ}(\text{Pb}_2\text{Zn}_2\text{O}_4) = -883.2 \pm 15.1 \text{ кДж/моль}, \Delta_f H_{298}^{\circ}(\text{Pb}_3\text{ZnO}_4) = -697.1 \pm 31.6 \text{ кДж/моль}.$

Ключевые слова: эффузионный метод, масс-спектрометрия, смешанные оксиды, энтальпия образования

DOI: 10.31857/S0044457X21030090

введение

Оксиды свинца и цинка — одни из основных компонентов многих стекол с различными свойствами и назначением, оптические, термические и механические характеристики которых существенно зависят от их состава [1–3]. В течение длительной высокотемпературной варки стекла состав шихты может неконтролируемо меняться не только за счет разной летучести компонентов, но и за счет образования сложных оксидов в газовой фазе, что неизбежно должно приводить к изменению свойств получаемого стекла. В связи с этим весьма актуальны высокотемпературные исследования состава насыщенного пара над сложными оксидными системами и, в частности, над системой PbO–ZnO.

Цель настоящей работы — масс-спектрометрическое исследование состава газовой фазы, определение термодинамических характеристик процессов парообразования в системе PbO—ZnO и расчет стандартных энтальпий образования простых и сложных оксидов в насыщенном паре.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Согласно данным [4, 5], фазовая диаграмма системы PbO–ZnO имеет простую эвтектику с составом 95 мол. % PbO и температурой 850–870°С. При температуре эвтектики наблюдается незначительное растворение оксида цинка (не более 3 мол. %) в оксиде свинца. Таким образом, можно считать, что ниже температуры эвтектики система представляет собой механическую смесь оксидов цинка и свинца, активность которых практически равна единице на всем протяжении составов.

Твердофазный синтез образцов состава 10.0, 50.0 и 90.0 мол. % РbО проводили в платиновых тиглях на воздухе при температуре 1073 К в течение 35 ч. Исходными веществами служили РbО (желтый) и ZnO квалификации "ос. ч." (Merck, Германия). Смеси оксидов растирали со спиртом в яшмовой ступке перед началом отжига и несколько раз, прерывая отжиг. Чистоту и фазовый состав синтезированных образцов контролировали рентгенофазовым и рентгенофлуоресцентным методами анализа.

Парообразование в системе исследовали эффузионным методом Кнудсена с масс-спектральным

ГРИБЧЕНКОВА и др.

Ион E_i , эВ**		Относительная интенсивность***	Ион	<i>Е</i> _{<i>i</i>} , эВ	Относительная интенсивность
Pb ⁺	7.4	(270) 70.2	$Pb_2ZnO_2^+$	<15	0.7
PbO ⁺	8.8	(87) 43.6	$Pb_2Zn_2O_4^+$	<14	1.2
$PbZnO_2^+$	10.0	6.6	$Pb_3O_2^+$	11.0	11
$PbZn_2O_3^+$	10.0	25	$Pb_3O_3^+$	9.2	8.9
Pb_2O^+	<12.5	72	$Pb_3ZnO_4^+$	_	1.1
$Pb_4O_3^{2+}$	14.0	8.3	$Pb_4O_4^+$	8.8	98
$Pb_2O_2^+$	8.0	100		1	•

Таблица 1. Масс-спектр газовой фазы над системой PbO–ZnO, T = 1110 K, $U_{\mu OHU3} = 60$ B*

* Масс-спектр приведен с учетом изотопного состава.

** Точность измерения энергии ионизации (E_i) 1 эВ.

*** Значения интенсивности ионных токов, указанных в скобках, соответствуют начальному периоду парообразования в системе PbO–ZnO.

анализом газовой фазы на приборе MC-1301. Испарение проводили в интервале температур 1010– 1120 К. В работе использовали камеры из оксида циркония с алундовыми крышками с отношением площади испарения к эффективной площади эффузии ~200. Температуру измеряли Pt–Pt/Rh-термопарой и поддерживали постоянной с точностью ±1°C. Масс-спектр газовой фазы снимали при ионизирующем напряжении 50–60 В.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Состав газовой фазы над системой PbO-ZnO

В табл. 1 приведен масс-спектр газовой фазы при сублимации системы PbO–ZnO начального состава 50 мол. % PbO.

Анализ масс-спектра и исследование процессов ионизации молекул насышенного пара показали. что в газовой фазе над системой PbO-ZnO кроме молекул оксида свинца и его ассоциатов (PbO)_n, где n = 2-4, присутствуют молекулы смешанных оксидов $PbZnO_2$, $PbZn_2O_3$, Pb_2ZnO_3 , $Pb_2Zn_2O_4$, Pb₃ZnO₄ и атомы свинца. Учитывая, что процесс парообразования оксида свинца протекает конгруэнтно [6], в газовой фазе есть еще и молекулы кислорода. Причем в условиях эффузионного эксперимента соотношение парциальных давлений должно быть равно $p_{\rm Pb}/p_{\rm O_2} = 5.08$. Как показало исследование процессов ионизации, формирование масс-спектра насыщенного пара протекает практически без глубокой фрагментации молекул, например, ионы PbO⁺ образованы только из молекул PbO, ионы $PbZnO_2^+$ – из молекул $PbZnO_2$. Некоторым исключением являются ионы Pb₂O⁺ и Pb₃O₂⁺, образованные при диссоциативной ионизации молекул Pb_2O_2 и Pb_3O_3 соответственно. Доказательством этого является равенство тангенсов углов наклона, полученных по температурным зависимостям ионных токов Pb_2O^+ , $Pb_2O_2^+$ и $Pb_3O_2^+$, $Pb_2O_2^+$.

Для определения характера парообразования был выполнен эксперимент по изотермической сублимации навески в системе PbO-ZnO начального состава 50 мол. % PbO. Как показали измерения интенсивности ионных токов (табл. 1), все они, за исключением Pb⁺ и PbO⁺, в течение всего периода парообразования оставались постоянными вплоть до полного исчезновения. По окончании эксперимента, по данным РФА, в эффузионной камере в качестве нелетучего продукта остался оксид цинка. Полученные результаты полностью согласуются с фазовой диаграммой [4, 5] и свидетельствуют о постоянстве и близости к единице активностей оксидов свинца и цинка в процессе сублимации системы PbO-ZnO. Таким образом, процесс парообразования в этой системе может быть выражен следующими гетерофазными реакциями:

$$PbO_{(TB)} = Pb_{(r)} + 0.5O_2,$$
 (1)

$$n \operatorname{PbO}_{(\text{TB})} = (\operatorname{PbO})_{n(\text{r})} (n = 1, 2, 3, 4),$$
 (2)

$$n \text{PbO}_{(\text{TB})} + m \text{ZnO}_{(\text{TB})} = \text{Pb}_n \text{Zn}_m \text{O}_{(n+m)(r)}$$
(3)
(n = 1, 2, 3; m = 1, 2).

Расчет абсолютных величин парциальных давлений был выполнен по предварительной калибровке масс-спектрометра по известной величине парциального давления молекул PbO при T = 1110 К $p_{PbO} = 6.6 \times 10^{-6}$ атм, приведенной в работе [6], атомным сечениям ионизации [7], скорректиро-

Молекула	Давление	Молекула	Давление
Pb	$8.04 \times 10^{-6*}$	Pb ₂ ZnO ₃	0.61×10^{-7}
	3.87×10^{-6} [8]	2 5	
	3.20×10^{-5} [10]		
	1.70×10^{-6} [11]		
O ₂	$1.58 \times 10^{-6*}$	PbZn ₂ O ₃	$2.17 \times 10^{-6*}$
	0.76×10^{-6} [8]		
	0.67×10^{-6} [10]		
	3.35×10^{-7} [11]		
PbO	$6.58 \times 10^{-6*}$	$Pb_2Zn_2O_4$	$0.10 \times 10^{-6*}$
	6.08×10^{-5} [8]		
	6.34 × 10 ⁻⁶ [9]		
	0.59×10^{-6} [10]		
	1.19×10^{-5} [11]		
	7.40×10^{-6} [12]		
Pb ₂ O ₂	$1.73 \times 10^{-5*}$	Pb_3ZnO_4	$7.10 \times 10^{-8*}$
	2.67×10^{-5} [8]		
	4.94 × 10 ⁻⁶ [9]		
	1.62×10^{-5} [11]		
	1.50×10^{-5} [12]		
PbZnO ₂	$1.21 \times 10^{-6*}$	Pb_4O_4	$8.17 \times 10^{-6*}$
			2.37×10^{-5} [8]
			9.47 × 10 ⁻⁶ [9]
			6.31×10^{-6} [11]
			7.90×10^{-6} [12]
Pb ₃ O ₃	$1.52 \times 10^{-6*}$		
	- [8]		
	- [9]		
	5.55×10^{-1} [11] = [12]		
	- 14	11	

Таблица 2. Величины парциальных давлений (атм) насыщенного пара над системой PbO–ZnO при *T* = 1110 K

* Величины давлений, полученные в настоящей работе.

ванному правилу аддитивности и значениям интенсивности ионных токов масс-спектра, полученного в настоящей работе. Рассчитанные таким образом величины парциальных давлений приведены в табл. 2. Поскольку активность оксида свинца в системе PbO—ZnO практически равна единице, состав газовой фазы и величины парциальных давлений молекул (PbO)_n должны быть такими же, как и над чистым оксидом свинца, что согласуется с большей частью известных литературных данных (табл. 2), за исключением результатов недавно вышедшей работы [10]. Согласно этому исследованию [10], насыщенный пар состоит из атомов свинца, молекул кислорода и оксида свинца PbO.

По найденным величинам парциальных давлений над системой PbO–ZnO рассчитали мольный состав металлов в газовой фазе, который оказался равен: n(Pb) = 94.0 мол. %, n(Zn) = 6.0 мол. %. Следует отметить, что подобный состав газовой фазы необходимо учитывать при высокотемпературной варке стекол и переработке шлаков в цветной металлургии.

Термодинамические характеристики простых и комплексных оксидов свинца

В ходе исследования температурных зависимостей интенсивностей основных ионных токов (величин парциальных давлений) масс-спектра насыщенного пара над системой PbO–ZnO (табл. 1) в интервале температур 1010–1120 К по уравнениям Клаузиуса–Клапейрона и Вант–Гоффа методом наименьших квадратов рассчитали стандартные энтальпии реакций (2), (3). Полученные таким образом значения энтальпии и значения, пересчитанные к T = 298.15 К, представлены в табл. 3, 4.

Пересчет энтальпий реакций (2) к T = 298.15 К был выполнен по известным теплоемкостям твердого оксида свинца [13] и молекул (PbO)_{*n* (г)}, оцененным и приведенным в работе [8].

При пересчете энтальпий гетерогенных реакций (3) к T = 298.15 К использовали известные теплоемкости твердых оксидов свинца, цинка [14] и оцененные нами значения для комплексных молекул оксидов. При этом приняли, что теплоемкость смешанного оксида равна теплоемкости молекулы оксида свинца, содержащего такое же число атомов металла, например, $c_n(Pb_2Zn_2O_4) = c_n(Pb_4O_4)$.

Таблица 3. Стандартные энтальпии реакций сублимации оксидов свинца (кДж/моль)

Реакция	$\Delta_r H_{1075}^\circ$	$\Delta_r H_{298}^\circ$				
		наши данные	[6]	[8]	[9]	[11]
$PbO_{(\kappa)} = PbO_{(\Gamma)}$	300.4 ± 5.0	310.1 ± 5.5	289.5 ± 4.0	278.1 ± 5.0	286.9	286.2 ± 0.8
$2PbO_{(\kappa)} = (PbO)_{2(\Gamma)}$	305.5 ± 6.3	310.2 ± 8.0	313.8 ± 4.5	306.4 ± 8.7	286.2	310.4 ± 2.0
$3PbO_{(\kappa)} = (PbO)_{3(\Gamma)}$	321.0 ± 10.1	325.7 ± 12.0	339.7 ± 7.0	414.0 ± 21.8	—	324.0 ± 1.2
$4\text{PbO}_{(\text{K})} = (\text{PbO})_{4(\text{F})}$	296.0 ± 8.1	310.3 ± 12.5	313.0 ± 10.5	290.8 ± 18.0	271.8	287.1 ± 0.4

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 3 2021

Реакция	$\Delta_r H_{1075}^{\circ}$	$\Delta_r H_{298}^\circ$	$-\Delta_{\!f} H^\circ_{298}$
$PbO_{(\kappa)} + ZnO_{(\kappa)} = PbZnO_{2(\Gamma)}$	292.9 ± 4.0	297.1 ± 6.0	290.4 ± 6.6
$PbO_{(\kappa)} + 2ZnO_{(\kappa)} = PbZn_2O_{3(\Gamma)}$	319.2 ± 8.9	323.9 ± 11.0	628.4 ± 11.9
$2PbO_{(\kappa)} + ZnO_{(\kappa)} = Pb_2ZnO_{3(\Gamma)}$	317.3 ± 19.0	322 ± 21.0	488.2 ± 21.5
$2PbO_{(\kappa)} + 2ZnO_{(\kappa)} = Pb_2Zn_2O_{4(\kappa)}$	287.1 ± 11.4	291.8 ± 14.0	883.2 ± 15.1
$3PbO_{(\kappa)} + ZnO_{(\kappa)} = Pb_3ZnO_{4(\Gamma)}$	322.0 ± 29.6	335.8 ± 31.0	697.1 ± 31.6

Таблица 4. Стандартные энтальпии реакций (3) и образования комплексных оксидов, кДж/моль

Таб	лица 5.	Стандартные энтальпии	образования	оксидов свинца
-----	---------	-----------------------	-------------	----------------

Оксид	$\Delta_{\!f}\!H^{\circ}_{298}$						
	наши данные	[6]*	[15]	[11]**	[8]	[9]	
РbO _(к)	-222.7 ± 6.0	-219.0	_	-220.5 ± 1.5	_	$-218.7 \pm 0.8^{***}$	
PbO _(r)	87.4 ± 7.8	70.5	—	69.6 ± 4.0	53.5 ± 5	72.37	
(PbO) _{2 (г)}	-135.2 ± 9.3	-124.2	-126.2 ± 10.9	-122.8 ± 4.0	-143.0 ± 5	-137.14	
(PbO) _{3 (г)}	-342.4 ± 14.4	-317.3	-335.0 ± 16.7	-325.8 ± 4.0	-259.5 ± 25	—	
(PbO) _{4 (r)}	-580.5 ± 14.4	-563.0	-574.3 ± 25.1	-579.3 ± 4.0	-621.0 ± 15	-591.23	

* Рассчитано по данным [6].

** Значения энтальпий относятся к температуре 0 К.

*** Найдено в работе [9] методом ЭДС.

Энтальпию реакции (1) находили путем исследования температурной зависимости в интервале 1010—1120 К, ее константы равновесия, которая, учитывая конгруэнтный характер парообразования оксида свинца, может быть записана в виде:

$$k_{p}(1) = p_{\rm Pb} p_{\rm O_{2}}^{0.5} = p_{\rm Pb}^{1.5}$$
(4)

или через ионный ток I_{Pb}^+ , соответствующий ионизации только атомов свинца:

$$k_p^*(1) = (I_{\rm Pb}^+ T)^{1.5},$$
 (5)

где $p_{Pb}(p_{O_2})$ — парциальное давление атомов свинца (молекул кислорода) над оксидом свинца при температуре *T*; I_{Pb}^+ — ионный ток, образованный при ионизации атомов свинца.

Расчет методом наименьших квадратов по уравнению Вант-Гоффа привел к значению стандартной энтальпии реакции (1), равному $\Delta_r H_T^{\circ}(1) = 409.6 \pm 7.0$ кДж/моль, величина которой, пересчитанная к T = 298.15 К, по данным [13], составила 417.8 \pm 7.0 кДж/моль.

По найденным значениям стандартных энтальпий реакций (1)—(3) и известной энтальпии образования оксида цинка [14] по закону Гесса рассчитали стандартные энтальпии образования оксидов свинца $PbO_{(\kappa)}$, (PbO)_{*n* (г)} и комплексных соединений на основе оксидов свинца и цинка $Pb_nZn_mO_{(n+m)}$ (г) (табл. 4, 5).

Как видно из табл. 3, 5, полученные нами термодинамические характеристики оксидов свинца хорошо согласуются с большинством литературных данных, за исключением результатов, приведенных в работе [10], согласно которой газовая фаза над желтым оксидом свинца состоит из атомов свинца, молекул кислорода и оксида свинца PbO. Полученные данные могут быть связаны только с методикой проведения экспериментальных исследований [10]. В своей работе, выполненной эффузионным методом Кнудсена с масс-спектральным анализом газовой фазы, авторы использовали иридиевую ячейку Кнудсена. Безусловно, иридий наилучший материал ячеек Кнудсена при исследовании химически активных соединений, в частности оксидов металлов, но только в том случае, если насыщенный пар над изучаемым соединением не содержит атомов или молекул металла. В противном случае последние будут растворяться при высоких температурах в материале (иридий, платина) камер Кнудсена. Этот процесс, как отмечалось многократно, приводит к заметным искажениям состава насыщенного пара [16-18] и термодинамическим характеристикам изучаемых соединений. Кроме того, подобная ситуация приводит к тому, что материал ячейки уже нельзя рассматривать как индивидуальный инертный металл, так как его свойства могут определяться химической активностью растворенного металла. Согласно [10], иридиевая камера использовалась для исследования различных оксидов, включая оксиды щелочных металлов, а именно оксида натрия в интервале температур 1000–1100 К [19]. На основании даты публикации работы [19] можно предположить, что исследование Na₂O происходило в тот же период, что и PbO, и могло предшествовать ему. Процесс парообразования Na₂O протекает с переходом в газовую фазу атомов натрия и молекул кислорода [20, 21]:

$$Na_2O_{(\kappa)} = 2Na_{(\Gamma)} + 0.5O_2.$$
 (6)

Велика вероятность того, что в этих условиях иридиевая эффузионная камера будет содержать растворенный натрий, активность которого, учитывая массы камеры и исследуемой навески Na₂O, должна быть не выше 0.001-0.0005. Это предположение согласуется с результатами работ [22, 23], в которых изопиестическим методом исследовали взаимодействие паров цинка с металлической платиной и золотом. Так, при взаимодействии в течение 4-6 сут в областях, обогащенных платиной и золотом, активность растворенного цинка при температуре 1173 К составляла $a_{Zn}(Pt) =$ = 0.016 и a_{7n} (Au) = 0.04. Согласно диаграмме Эллингама [24], в интервале температур 273-1800 К натрий является сильным восстановителем в реакциях с оксидом свинца:

$$PbO_{(k)} + 2Na(Ir)_{(k)} = Pb_{(r)} + Na_2O_{(k)}.$$
 (7)

Расчет энергии Гиббса этой реакции при T = 1110 К и $a_{PbO} = 1$, $a_{Na} = 0.001$, $a_{Na_2O} = 1$, $P_{Pb} = 3.2 \times 10^{-5}$ атм приводит к отрицательному значению $\Delta G_{1110}^{\circ} = -32.0$ кДж/моль. Полученный результат позволяет дать вполне разумное объяснение результатам работы [10] — высокое содержание атомов свинца и отсутствие полимерных молекул в насыщенном паре. Первоначально высокие интенсивности ионного тока Pb⁺ в наших исследованиях (табл. 1), по всей видимости, связаны с аналогичными причинами — содержанием незначительной примеси оксида натрия в керамической эффузионной камере, быстрое выгорание которого сопровождается установлением равновесного пара над оксидом свинца.

Необходимо отметить некоторое различие между работами Поповича [8] и Кнаке [9] с одной стороны и Семенихина [15], Дроворта [6], Казенаса [11] и данного исследования – с другой, связанное с содержанием тримерных молекул оксида свинца (PbO)₃. Первая группа авторов [8, 9] считает, что в газовой фазе оксида свинца эти молекулы в измеримых количествах отсутствуют, а ионы $Pb_3O_2^+$ и $Pb_3O_3^+$ в масс-спектре образованы за счет диссоциативной ионизации молекул Pb_4O_4 . Данный вывод сделан при анализе энергий появ-

ления ионов и кривых эффективности ионизации. Используя аналогичный подход и исследуя температурные зависимости интенсивностей основных ионов масс-спектра, авторы второй группы [6, 11, 15] и настоящей работы пришли к выводу, что в насыщенном паре оксида свинца присутствуют тримерные молекулы. В пользу этого предположения говорят результаты исследования процессов парообразования оксида свинца. Как видно из табл. 3, значения энтальпий сублимации тримерных молекул, рассчитанные по ионным то-

кам $Pb_3O_2^+$, $Pb_3O_3^+$, заметно выше значений энтальпии сублимации тетрамерных молекул. Этот результат однозначно свидетельствует о присутствия в насыщенном паре тримерных молекул, которым в масс-спектре соответствуют в основном ионы

 $Pb_3O_2^+$, $Pb_3O_3^+$. Свое заключение авторы [8, 9] сделали, по всей видимости, основываясь на относительно высоком значении энергии появления (9.1 эВ) иона $Pb_3O_3^+$, считая его осколочным ионом, образованным при диссоциативной ионизации тетрамерных молекул.

ЗАКЛЮЧЕНИЕ

Как правило, надежность экспериментальных данных определяется совпадением термодинамических характеристик, рассчитанных по 2- и 3-му законам термодинамики. Но в данном исследовании при расчете стандартных энтальпий гетерофазных реакций и образования оксидов свинца и смешанных оксидов по экспериментальным данным использовали только 2-й закон термодинамики. Это связано с отсутствием належных данных по молекулярным константам молекул оксидов в газовой фазе. Однако о корректности данного исследования можно судить по хорошему совпадению значения стандартной энтальпии образования кристаллического (желтого) оксида свинца, найденного в настоящей работе методом Кнудсена, с таковыми, найденными методом ЭДС [9, 25] и приведенными в справочниках [26, 27].

Эффузионным методом Кнудсена с масс-спектральным анализом состава газовой фазы исследован процесс парообразования двухкомпонентной системы PbO–ZnO.

Впервые установлено, что в насыщенном паре наряду с молекулами оксида свинца и его ассоциатов присутствуют молекулы смешанных оксидов с общей формулой $Pb_nZn_mO_{(n+)}$ (r) (n = 1, 2, 3; m = 1, 2).

По 2-му закону термодинамики впервые рассчитаны стандартные энтальпии образования пяти смешанных оксидов: $PbZnO_{2(r)}$, $PbZn_2O_{3(r)}$, $Pb_2ZnO_{3(r)}$, $Pb_2Zn_2O_{4(r)}$, $Pb_3ZnO_{4(r)}$, оксидов свинца общей формулы (PbO)_{*n*(*r*)} и $PbO_{(\kappa)}$, хорошо согласующиеся с большинством литературных данных.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Sayyeda M.I., Rammahb Y.S., Abouhaswab A.S. et al. // Physica B: Condens. Mater. 2018. V. 548. P. 20. https://doi.org/10.1016/j.physb.2018.08.024
- Sideka H.A.A., Elazoumia S.H., El-Mallawanyb R. et al. // J. Non-Cryst. Solids. 2019. V. 523. https://doi.org/10.1016/j.jnoncrysol.2019.119640
- Ticha H., Schwarz J., Tichy L. // Mater. Chem. Phys. 2019. V. 237. P. 121834. https://doi.org/10.1016/j.matchemphys.2019.121834
- Jak E., Decterov S.A., Wu P. et al. // Metall. Mater. Trans. 1997. V. B28B. P. 1011.
- https://doi.org/10.1007/s11663-997-0055-x 5. *Shevchenko M.E., Jak E.* // Calphad. 2019. V. 64. P. 318.
- https://doi.org/10.1016/j.calphad.2019.01.011
- Drowart J., Colin R., Exsteen G. // Trans. Faraday Soc. 1965. V. 61. № 511. P. 1376. https://doi.org/10.1039/tf9656101376
- Mann J.B. // J. Chem. Phys. 1967. V. 46. P. 1646. https://doi.org/10.1063/1.1840917
- Popovic A., Lesar A., Gucek M., Bencze L. // Rapid Commun. Mass Spectrom. 1997. V. 11. P. 459. https://doi.org/10.1002/(sici)1097-0231(199703)11:5<459::aid-rcm889>3.0.co;2-g
- Knacke O., Richthoven A. // Z. Phys. Chem. 1994. № 187. S. 257.
- https://doi.org/10.1524/zpch.1994.187.part_2.257 10. *Kobertz D.* // Calphad. 2019. V. 65. P. 155.
- https://doi.org/10.1016/j.calphad.2019.02.012
- 11. Казенас Е.К., Петров А.А. // Металлы. 1996. № 4. С. 22.
- Lopatin S.I., Mittova I.Ya., Gerasimov F.S. et al. // Russ. J. Inorg. Chem. 2006. V. 51. № 10. Р. 1646. [Лопатин С.И., Миттова И.Ю., Герасимов Ф.С. и др. // Журн. неор-

ган. химии. 2006. Т. 51. № 10. С. 1749.] https://doi.org/10.1134/S0036023606100214

- Термические константы веществ. Справочник / Под ред. Глушко В.П. М.: ВИНИТИ, 1965. Т. IV. Кн. 2. 1970.
- Термические константы веществ. Справочник / Под ред. Глушко В.П. М.: ВИНИТИ, 1965. Т. VI. Кн. 2. 1972.
- 15. Семенихин А.Н., Рыков А.Н., Сидоров Л.Н. // Журн. физ. химии. 1983. Т. 150. Р. 1663.
- Gribchenkova N.A., Steblevsky A.B., Alikhanyan A.S. // J. Chem. Thermodynamics. 2017. V. 1151. P. 6. https://doi.org/10.1016/j.jct.2017.07.009
- Gribchenkova N.A., Alikhanyan A.S. // J. Alloys Compd. 2019. V. 778. P. 77.e82. https://doi.org/10.1016/j.jallcom.2018.11.136
- 18. Сморчков К.Г., Грибченкова Н.А., Алиханян А.С. // Журн. неорган. химии. 2020. Т. 65. № 11. https://doi.org/10.31857/S0044457X20110185
- Kobertz D. // Calphad. 2019. V. 64. P. 327. https://doi.org/10.1016/j.calphad.2019.01.006
- Hildenbrand D.L., Murad E. // J. Chem. Phys. 1970.
 V. 53. № 9. P. 3403. https://doi.org/10.1063/1.1674508
- Steinberg M., Schofield K.A. // J. Chem. Phys. 1991.
 V. 94. № 5. P. 3901. https://doi.org/10.1063/1.460666
- Sasaki H., Nagai T., Maeda M. // J. Alloys Compd. 2010. V. 504. P. 475. https://doi.org/10.1016/j.jallcom.2010.05.146
- Sasaki H., Miyake M., Maeda M. // J. Electrochem. Soc. 2010. V. 157. P. E82. https://doi.org/10.1149/1.3332468
- Ellingham H.J.T. // J. Soc. Chem. Industry. Transactions and Communications. 1944. P. 125. https://doi.org/10.1002/jctb.5000630501
- 25. *Bannister M.J.* // J. Chem. Thermodyn. 1984. V. 16. P. 787. https://doi.org/10.1016/0021-9614(84)90063-6
- 26. *Wagman D.D.* Nati. Bureau Standards Rep. 1965. V. 89. P. 8919.
- 27. JANAF Thermochemical Tables. Part II // J. Phys. Chem. Ref. 1985. Suppl. 1. P. 1643.