— ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ

УДК 546.32.654.42

ИССЛЕДОВАНИЕ СИСТЕМЫ $KLa(SO_4)_2 \cdot H_2O-SrSO_4 \cdot 0.5H_2O$

© 2021 г. Н. Н. Бушуев^{*a*, *,} Г. С. Тюльбенджян^{*a*}, Ю. А. Великодный^{*b*}, А. Н. Егорова^{*a*}, Т. Б. Шаталова^{*b*}

^аРоссийский химико-технологический университет им. Д.И. Менделеева, Миусская площадь, 9, Москва, 125047 Россия

^b Московский государственный университет им. М.В. Ломоносова, Ленинские горы, 1, Москва, 119991 Россия

*e-mail: nbushuev@muctr.ru

Поступила в редакцию 23.06.2020 г. После доработки 14.09.2020 г. Принята к публикации 20.09.2020 г.

Методами рентгенофазового, дифференциального термогравиметрического анализа и электронной микроскопии исследована система $KLa(SO_4)_2 \cdot H_2O-SrSO_4 \cdot 0.5H_2O$. Определены пределы существования двух типов твердых растворов: на основе структуры гексагональной модификации α -SrSO₄ · 0.5H₂O в концентрационном интервале 10–70 мол. % SrSO₄ · 0.5H₂O и на основе структуры ромбической модификации β-SrSO₄ · 0.5H₂O в концентрационном интервале 85–100 мол. % SrSO₄ · 0.5H₂O.

Ключевые слова: сульфат стронция, моногидрат двойного сульфата калия и лантана, термогравиметрия, рентгенография

DOI: 10.31857/S0044457X21030041

введение

Ромбическая модификация безводного CaSO₄ является хорошим абсорбентом лантаноидов в виде NaLn(SO₄)₂, где Ln = La, Ce, Nd, в результате гетеровалентного замещения двух ионов Ca²⁺ на ионы Na⁺ и Ln³⁺, имеющие близкие ионные радиусы. В работах [1-4] методом твердофазных реакций исследованы бинарные системы $CaSO_4 - NaLn(SO_4)_2$ и определены области указанного выше изоморфного замещения. В работах [5, 6] установлены пределы аналогичного изоморфного замещения в структуре гексагональной модификации CaSO₄ · 0.5H₂O. При изоморфном замещении в системе CaSO₄ · · 0.5H₂O-CePO₄ · 0.5H₂O происходит одновременная компенсация зарядов в катионной $(3Ca^{2+} = 2Ce^{3+})$ и анионной $(3[SO_4]^{2-} = 2[PO_4]^{3-})$ подрешетках структуры. Этот процесс требует больше времени для достижения равновесия по сравнению с системой CaSO₄ $\cdot 0.5H_2O -$ NaCe(SO₄)₂ · H₂O. Структура LnPO₄ · 0.5H₂O наиболее устойчива для лантаноидов цериевой группы (La–Sm) [7]. В фосфорной кислоте (38 мас. % P₂O₅) реализуется структурная форма $CePO_4 \cdot 0.5H_2O_5$, изоморфная CaSO₄ · 0.5H₂O [8, 9]. Эти соединения образуют широкую область твердых растворов на основе структуры CaSO₄ · 0.5H₂O. Структурное родство CaSO₄ · 0.5H₂O и указанных соединений РЗЭ позволяет использовать полугидрат сульфата кальция в качестве затравочного материала для

сорбционного извлечения лантаноидов из растворов экстракционной фосфорной кислоты (ЭФК) с образованием твердых растворов на основе структуры CaSO₄ · 0.5H₂O. Поиск дешевых адсорбентов РЗЭ из ЭФК без использования дорогостоящих ионообменных смол [10] или органических экстрагентов [11], в том числе на основе широко известного $CaSO_4 \cdot 0.5H_2O$, имеет важное научное и практическое значение. Как показано в работе [12], присутствие солей натрия в растворах ЭФК приводит к уменьшению концентрации лантаноидов в жидкой фазе и образованию осадков NaLn(SO₄)₂ · H₂O, где Ln = La–Sm. Однако использование абсорбционной способности ионов лантаноидов кристаллической матрицей CaSO₄ или CaSO₄ · 0.5H₂O приводит к ряду существенных затруднений в процессе отделения соединений кальция от соединений лантаноидов [13-15].

Методами твердофазного синтеза при температуре выше 550° С была исследована безводная система CaSO₄—KLa(SO₄)₂, в которой не установлено образование промежуточных соединений или областей твердых растворов, что исключает возможность изоморфного включения лантаноидов в структуру безводной модификации CaSO₄ с участием ионов калия по схеме гетеровалентного замещения K⁺ + La³⁺ = 2Ca²⁺ вследствие большого различия их ионных радиусов [16].

Целью настоящей работы является изучение возможности гетеровалентного замещения достаточно близких по размеру ионов $K^+ + La^{3+} = 2Sr^{2+}$, что может предполагать использование $SrSO_4$ в качестве матрицы для извлечения РЗЭ из различных сульфатных систем калия и лантаноидов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Первый этап работы заключался в исследовании безводной системы $KLa(SO_4)_2$ —SrSO₄ и изучении возможности образования кристаллогидратных форм в системе $KLa(SO_4)_2 \cdot H_2O$ —SrSO₄ · 0.5H₂O. Твердофазное взаимодействие исходных компонентов осуществлялось в широком концентрационном и температурном интервале с целью выяснения возможности образования индивидуальных соединений или твердых растворов в результате возможного гетеровалентного замещения $K^+ + La^{3+} = 2Sr^{2+}$ в катионной подрешетке структуры сульфатов.

Образцы для исследования безводной системы $KLa(SO_4)_2$ —SrSO₄ готовили смешиванием стехиометрических количеств $KLa(SO_4)_2$, предварительно синтезированного методом твердофазных реакций при температуре 500°С исходя из K_2SO_4 (ч. д. а.) и $La_2(SO_4)_3$ (ч. д. а.), и образцов SrSO₄ (ч. д. а.) с шагом 10 мол. %. Образцы в количестве 1–2 г тщательно смешивали, перетирали в агатовой ступке и подвергали отжигу при 550°С в течение 30 ч с промежуточным перетиранием через каждые 5 ч отжига с целью увеличения скорости твердофазных реакций и достижения состояния равновесия.

В результате выполненных исследований, включающих рентгенографический анализ, в системе KLa(SO₄)₂—SrSO₄ не установлено какое-либо взаимодействие. Все образцы с различными стехиометрическими составами, отожженные ниже температуры разложения KLa(SO₄)₂ (905°C), содержали фазы исходных KLa(SO₄)₂ и SrSO₄ без видимого смещения дифракционных линий на соответствующих рентгенограммах, что исключает существование областей твердых растворов в указанной безводной системе.

С целью исследования возможности образования кристаллогидратных соединений в системе $KLa(SO_4)_2 \cdot H_2O - SrSO_4 \cdot 0.5H_2O$ образцы с шагом 5–10 мол. % (при необходимости 2–3 мол. %) готовили из растворов с концентрацией нитрата калия и нитрата лантана 1 моль/л, с одной стороны, и раствора с концентрацией 1 моль/л нитрата стронция – с другой. Осаждение сульфатных осадков осуществляли внесением эквивалентного количества серной кислоты с концентрацией 1 моль/л в подготовленные смеси растворов нитратов. Полученные осадки тщательно отфильтровывали на мелкопористом стеклянном нутч-фильтре № 4 и

промывали небольшим количеством этилового спирта для удаления остаточной адсорбированной влаги.

Рентгенографический анализ выполняли с помощью фокусирующей камеры-монохроматора G-670 фирмы HUBER (Си $K_{\alpha 1}$ -излучение, шаг измерения 20 0.005°) и программного комплекса WinXPOW (version 2.20 2006 г.) фирмы STOE. Термогравиметрический анализ (ТГА) и дифференциальную сканирующую калориметрию (ДСК) образцов проводили на синхронном термоанализаторе Netzsch STA 409 PC в режиме ТГ-ДСК в динамическом потоке воздуха (30 мл/мин) при нагреве до 1000 или 1400°С со скоростью 1 град/мин. Образцы сульфатов массой 10 мг помещали в корундовый тигель и нагревали. Микроскопическое исследование концентратов РЗЭ выполнено в аналитическом центре ЦКП РХТУ им. Д.И. Менделеева с использованием растрового электронного микроскопа JEOL JSM-6510LV, оснащенного камерой Х-тах 20 мм.

Методом рентгенофазового анализа установлена кристаллизация чистого однофазного моногидрата состава KLa(SO₄)₂ · H₂O с параметрами тригональной ячейки a = 7.172(2), c = 13.286(2) Å (пр. гр. $P3_221$), очень близкими к параметрам этого соединения (a = 7.149, c = 13.244 Å), полученного в работе [17]. Аналогичным образом – смешиванием растворов нитрата стронция и серной кислоты с концентрацией 1 моль/л – нами получен осадок чистого безводного сульфата стронция SrSO₄, кристаллизующегося в ромбической сингонии с параметрами a = 8.369(2), b = 5.355(2), c = 6.875(2) Å, V = 307.0(3) Å³, которые очень близки к параметрам SrSO₄, определенным в работах [18, 19].

На рис. 1 приведена кривая потери массы (ТГ) образца исходного KLa(SO₄)₂ · H₂O, из которой видно, что при температуре 250–260°С происходит удаление всей кристаллогидратной воды. В результате термогравиметрических исследований системы KLa(SO₄)₂ · H₂O–SrSO₄ · 0.5H₂O установлено, что кристаллогидратная вода в синтезированных образцах существует во всем концентрационном интервале, а ее количественное содержание позволяет рассматривать систему KLa(SO₄)₂ · H₂O–SrSO₄ · 0.5H₂O как квазибинарную.

Гетеровалентное замещение двух ионов стронция на ионы калия и лантана стабилизирует существование метастабильной модификации полугидратной формы $SrSO_4 \cdot 0.5H_2O$. В концентрационном интервале от 100 до 85 мол. % $SrSO_4 \cdot 0.5H_2O$ установлено существование области гомогенности, представляющей собой твердый раствор на основе структуры ромбической модификации β - $SrSO_4 \cdot 0.5H_2O$. В интервале концентраций 70–

Рис. 1. Термограмма образца $KLa(SO_4)_2 \cdot H_2O$.

10 мол. % SrSO₄ · 0.5H₂O образуется твердый раствор на основе гексагональной структуры α -SrSO₄ · 0.5H₂O, достаточно близкой к гексагональной модификации KLa(SO₄)₂ · H₂O. В концентрационном интервале 10-0 мол. % SrSO₄ · $0.5H_2O$ существует двухфазная область, включающая исходный KLa(SO₄)₂ · H₂O и образовавшийся твердый раствор на основе структуры α -SrSO₄ · 0.5H₂O. Изоморфное гетеровалентное замещение двух атомов стронция на атомы калия и лантана в гексагональной структуре твердого раствора α -SrSO₄ · 0.5H₂O протекает без строгого чередования атомов К, La, Sr. Такое статистическое распределение этих атомов сопровождается исчезновением некоторых дифракционных линий на соответствующих рентгенограммах. Статистическое расположение атомов в катионной подрешетке твердого раствора на основе α -SrSO₄ · 0.5H₂O приводит к уменьшению параметра с в 2 раза по сравнению с параметром с достаточно близкой гексагональной структуры исходного образца KLa(SO₄)₂ · H₂O. В табл. 1 представлены результаты индицирования линий рентгенограммы образца твердого раствора состава 33.3 мол. % KLa(SO₄)₂ · H₂O + 66.7 мол. % SrSO₄ · · 0.5H₂O, свидетельствующие о его однофазности. Параметры его гексагональной элементарной ячейки равны: a = 7.208(2), c = 6.642(2) Å, V =

= 298.9(2) Å³ (гексагональный тип структуры α -SrSO₄ · 0.5H₂O). Существование подобной гексагональной модификации с близкими параметрами отмечалось нами в работах [18, 19], а также в работах других исследователей [20, 21].

На рис. 2 представлена термограмма образца 33.3 мол. % $KLa(SO_4)_2 \cdot H_2O + 66.7$ мол. % $SrSO_4 \cdot 0.5H_2O$, из которой видно, что основная потеря кристаллогидратной воды происходит в интервале температур 230–250°С, что близко к температуре дегидратации исходного чистого образца $KLa(SO_4)_2 \cdot H_2O$. Остаточное количество воды удаляется при 350°С.

При температуре 250–260°С кристаллогидратная вода удаляется из образцов всех составов в системе $KLa(SO_4)_2 \cdot H_2O$ –SrSO₄ · 0.5H₂O (рис. 3).

На рис. 4а и 4б приведены соответственно электронные фотографии кристаллов исходного соединения $KLa(SO_4)_2 \cdot H_2O$ и гексагональных кристаллов твердого раствора состава 33.3 мол. % $KLa(SO_4)_2 \cdot H_2O + 66.7$ мол. % $SrSO_4 \cdot 0.5H_2O$.

Как видно из фотографий, образование твердого раствора сопровождается уменьшением размеров кристаллов по сравнению с размером кристаллов KLa(SO₄)₂ · H₂O. На рис. 4в приведена электронная фотография кристаллов твердого раствора (увеличение ×5000), на которой отчет-

Таблица 1. Результаты индицирования линий рентгенограммы образца состава 33.3 мол. % $KLa(SO_4)_2 \cdot H_2O + + 66.7 \text{ мол. } \% SrSO_4 \cdot 0.5H_2O$

đÅ	1%	hbl	2θ _{эксп} ,	$2\theta_{\text{pacy}},$	$2\theta_{3KC\Pi} - 2\theta_{pacy}$
и, л	1, 70	1111	град	град	град
6.241	51.2	100	14.179	14.176	0.0036
4.547	16.1	101	19.506	19.499	0.0065
3.605	62.0	110	24.678	24.681	-0.0025
3.162	2.7	111	28.203	28.147	0.0562
3.122	98.1	200	28.569	28.574	-0.0056
2.932	100.0	102	30.467	30.466	0.0017
2.825	0.9	201	31.643	31.648	-0.0048
2.442	15.0	112	36.769	36.771	-0.0025
2.360	10.4	210	38.109	38.109	0.0007
2.274	6.1	202	39.601	39.594	0.0066
2.224	32.4	211	40.539	40.541	-0.0020
2.217	14.9	003	40.661	40.724	-0.0622
2.086	2.2	103	43.335	43.330	0.0055
1.9859	12.9	301	45.646	45.650	-0.0045
1.9236	55.0	212	47.211	47.217	-0.0057
1.8863	3.3	113	48.203	48.202	0.0015
1.8042	11.6	203	50.549	50.501	0.0476
1.7636	20.1	302	51.796	51.806	-0.0102
1.7398	1.5	221	52.559	52.578	-0.0192
1.7318	18.4	310	52.822	52.833	-0.0117
1.6754	2.8	311	54.745	54.744	0.0016
1.6158	1.0	213	56.942	56.995	-0.0529
1.6049	4.9	104	57.366	57.378	-0.0125
1.5842	4.3	222	58.188	58.199	-0.0106

ливо видна игольчатая форма, характерная для гексагональных кристаллитов.

На рис. 5а и 5б приведены соответственно электронные фотографии кристаллов исходного соединения $SrSO_4$ и кристаллов впервые обнаруженного нами твердого раствора на основе ромбической модификации β -SrSO₄ · 0.5H₂O.

Образование твердого раствора также сопровождается уменьшением размеров кристаллов по сравнению с образцом безводного ромбического SrSO₄. При увеличении в 5000 раз отчетливо видна характерная ромбическая огранка (рис. 5в). Параметры элементарной ромбической ячейки твердого раствора 11 мол. % KLa(SO₄)₂ · H₂O + + 89 мол. % SrSO₄ · 0.5H₂O на основе ромбической модификации β-SrSO₄ · 0.5H₂O составляют: a = 8.389(2), b = 5.364(2), c = 6.879(2) Å, V = 310(3) Å³.

Следует отметить, что образцы в интервале концентраций 85–70 мол. % $SrSO_4 \cdot 0.5H_2O$ содержат как β -SrSO₄ · 0.5H₂O, так и α -SrSO₄ · 0.5H₂O.

Такое неустойчивое состояние сопровождается образованием рентгеноаморфной фазы, состав которой ориентировочно отвечает $SrSO_4 \cdot 2H_2O$. На рис. 3 приведена кривая потери массы (ТГ) при нагревании образца, содержащего 80 мол. % $SrSO_4 \cdot 0.5H_2O$. Видно, что исходный образец содержит избыточное количество адсорбированной влаги по сравнению со стехиометрическим содержанием влаги в системе KLa(SO₄)₂ · H₂O-SrSO₄ · 0.5H₂O. При нагревании этого образца при 120°С происходит интенсивная потеря воды в результате разложения предполагаемой фазы SrSO₄ · 2H₂O. Как видно из термограмм, приведенных на рис. 2 и 3, окончательная потеря кристаллогидратной воды завершается при температуре 230-250°С, что характерно для всех образцов системы $KLa(SO_4)_2$. \cdot H₂O-SrSO₄ \cdot 0.5H₂O. Определить точный состав и структуру рентгеноаморфной фазы, существующей в области концентраций 85-70 мол. % $SrSO_4 \cdot 0.5H_2O$, нам не удалось. Однако на рентгенограмме образца 80 мол. % $SrSO_4 \cdot 0.5H_2O$ нами обнаружены следы метастабильной моноклинной модификации сульфата стронция с неуказанным количеством кристаллогидратной воды, упомянутой в работе Takahashi S. [22].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Авторами [20] установлено образование гексагональной кристаллогидратной формы SrSO₄ · 0.5H₂O с параметрами ячейки a = 7.178, b = c = 6.589 Å, которая существует при нормальной влажности, давлении и комнатной температуре только в течение 120 мин. В отличие от работы [20], образцы полученного нами твердого раствора на основе $SrSO_4 \cdot 0.5H_2O$, имеющие аналогичную гексагональную структуру, достаточно устойчивы и стабилизированы за счет гетеровалентного замещения $2Sr^{2+} = K^+ + La^{3+}$. Например, твердый раствор состава 33.3 мол. % KLa(SO₄)₂ · H₂O + + 66.7 мол. % SrSO₄ · 0.5H₂O может существовать в течение нескольких месяцев при обычных условиях. При нагревании гексагональный полугидрат сульфата стронция $SrSO_4 \cdot 0.5H_2O$ полностью обезвоживается с переходом в ромбическую структуру SrSO₄. Изоморфное замещение двух ионов Sr²⁺ на ионы K⁺ и La³⁺ в областях существования твердых растворов с ростом содержания $KLa(SO_4)_2 \cdot H_2O$ сопровождается незначительным увеличением объема элементарной ячейки вследствие большего размера иона K^+ (1.38 Å) по сравнению с ионом Sr²⁺ (1.16 Å) [23].

В результате проведенного исследования установлено, что в концентрационной области 100–90 мол. % SrSO₄ · 0.5H₂O существует твердый раствор на основе ромбической структуры β -SrSO₄ · 0.5H₂O, содержащий кристаллогидратную воду.

Рис. 2. Термограмма образца 33.3 мол. % KLa(SO₄)₂ · H₂O + 66.7 мол. % SrSO₄ · 0.5H₂O.

Рис. 3. Термограмма образца 20% $KLa(SO_4)_2 \cdot H_2O + 80\%$ SrSO₄ · 0.5H₂O.

Увеличение объема элементарной ячейки от 307.7 Å³ (100 мол. % SrSO₄ \cdot 0.5H₂O) до 310.0 Å³ (90 мол. % SrSO₄ \cdot 0.5H₂O) объясняется замещением ионов стронция на более крупные ионы калия. В концентрационной области 90–70 мол. % SrSO₄ \cdot 0.5H₂O существует два вида твердых растворов: на основе ромбической модификации

β-SrSO₄ · 0.5H₂O и на основе гексагональной модификации α-SrSO₄ · 0.5H₂O. В концентрационной области 70–10 мол. % α-SrSO₄ · 0.5H₂O сохраняется область твердого раствора на основе гексагональной структуры α-SrSO₄ · 0.5H₂O с увеличением объема элементарной ячейки от 297.6 до 300.7 Å³. В области концентраций 10–0 мол. % SrSO₄ · 0.5H₂O

Рис. 4. Макроснимки образцов: а – KLa(SO₄)₂ · H₂O (×1000), б и в – 33.3 мол. % KLa(SO₄)₂ · H₂O + + 66.7 мол. % SrSO₄ · 0.5H₂O (×1000 и ×5000 соответственно).

присутствуют две фазы: исходный $KLa(SO_4)_2 \cdot H_2O$ и твердый раствор на основе α -SrSO₄ · 0.5H₂O.

Установленное нами существование различных неустойчивых кристаллогидратных форм сульфата стронция позволяет предположить следующую схему превращений при нагревании с

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 3 2021

Рис. 5. Макроснимки образцов: а – SrSO₄ (×1000), б и в – 11 мол. % KLa(SO₄)₂ · H_2O + 89 мол. % SrSO₄· · 0.5H₂O (×1000 и ×5000 соответственно).

последовательным повышением симметрии кристаллизующихся фаз: $SrSO_4 \cdot 2H_2O$ (возможно, моноклинная) $\rightarrow SrSO_4 \cdot 0.5H_2O$ (ромбическая) \rightarrow $\rightarrow SrSO_4 \cdot 0.5H_2O$ (гексагональная) $\rightarrow SrSO_4$ (ромбическая) $\rightarrow SrSO_4$ (кубическая выше 1280°C). Эта схема аналогична предложенной нами [24] для фазовых превращений сульфата кальция в процессе нагревания: $CaSO_4 \cdot 2H_2O$ (моноклинная) $\rightarrow CaSO_4 \cdot 0.5H_2O$ (моноклинная–псевдогексагональная) $\rightarrow CaSO_4 \cdot 0.5H_2O$ (гексагональная) $\rightarrow CaSO_4$ (ромбическая) $\rightarrow CaSO_4$ (кубическая выше 1200°C).

Установленная нами возможность гетеровалентного замещения ионов по схеме $2Sr^{2+} = K^{+} + La^{3+} c$ образованием твердых растворов на основе SrSO₄ предполагает его использование в качестве абсорбента для извлечения РЗЭ из различных водосодержащих сульфатных систем калия и лантана. Отжиг полученных кристаллогидратных форм твердых растворов на основе ромбической или гексагональной модификации SrSO₄ · 0.5H₂O при температурах выше 250-260°С предполагает разложение твердого раствора с образованием практически нерастворимой безводной ромбической модификации SrSO₄ и достаточно растворимой фазы KLa(SO₄)₂, растворимость которой в 20-50 раз выше по сравнению с SrSO₄ [12]. В результате водной обработки или при выщелачивании отожженных образцов возможно полное отделение лантаноидов от стронция.

ЗАКЛЮЧЕНИЕ

Впервые изучены фазовые равновесия в системах $KLa(SO_4)_2$ -SrSO₄ и $KLa(SO_4)_2 \cdot H_2O$ -SrSO₄ · 0.5H₂O. Взаимное растворение компонентов в безводной системе не обнаружено. В системе, образованной кристаллогидратами, установлено существование твердых растворов на основе структур ромбической и гексагональной модификации SrSO₄ · 0.5H₂O. Возможность протекания гетеровалентного замещения $2Sr^{2+} = K^+ + La^{3+}$ в этой системе, приводяет предполагать перспективность использования SrSO₄ в качестве матрицы для извлечения P3Э из различных сульфатных систем калия и лантаноидов, что предполагает практическую значимость предпринятого авторами исследования.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бушуев Н.Н. Физико-химическое исследование структурных особенностей сульфата кальция / Сер. Минеральные удобрения и серная кислота. М.: НИИТЭХИМ, 1990. 31 с.
- Bushuev N.N., Tavrovskaya A.Ya., Babaev S.N., Egorova A.N. // Russ. J. Inorg. Chem. 1989. V. 34. № 1. P. 100. [Бушуев Н.Н., Тавровская А.Я., Бабаев С.И., Егорова А.Н. // Журн. неорган. химии. 1989. Т. 34. № 3. С. 179.]

- 3. Bushuev N.N., Efremov O.I., Tavrovskaya A.Ya. // Russ. J. Inorg. Chem. 1988. V. 33. № 3. Р. 418. [Бушуев Н.Н., Ефремов О.Н., Тавровская А.Я. // Журн. неорган. химии. 1988. Т. 33. № 3. С. 743.]
- Bushuev N.N., Tavrovskaya A.Ya., Zaitsev P.M. // Russ. J. Inorg. Chem. 1988. V. 33. № 9. Р. 1384. [Бушуев Н.Н., Тавровская А.Я., Зайцев П.М. // Журн. неорган. химии. 1988. Т. 33. № 9. С. 2420.]
- 5. Бушуев Н.Н., Набиев А.Г., Классен П.В. Влияние примесей на кристаллизацию сульфата кальция в производстве экстракционной фосфорной кислоты. Сер. Минеральные удобрения и серная кислота. М.: НИИТЭХИМ, 1990. 36 с.
- Bushuev N.N., Nabiev A.G., Petropavlovskiy I.A., Smirnova I.S. // Russ. J. Appl. Chem. 1988. V. 61. № 10. Р. 1973. [Бушуев Н.Н., Набиев А.Г., Петропавловский И.А., Смирнова И.С.// Журн. прикл. химии. 1988. Т. 61. № 10. С. 2153.]
- Rafiuddin M.R., Grosvenor A.P. // Inorg. Chem. 2016. V. 55. № 19. P. 9685.
- Skogareva L.S., Shekunova T.O., Baranchikov A.E. et al. // Russ. J. Inorg. Chem. 2016. V. 61. № 10. Р. 1219. [Скогарева Л.С., Шекунова Т.О., Баранчиков А.Е. и др. // Журн. неорган. химии. 2016. Т. 61. № 10. С. 1276.]
- 9. *Mesbah A., Clavier N., Elkaim E.* // Cryst. Growth Des. 2014. V. 14. № 10. P. 5090.
- 10. *Kumar B.N., Radhika S., Reddy B.R.* // Chem. Eng. J. 2010. V. 160. № 1. P. 138.
- 11. *Radhika S., Kumar B.N., Kantam M.L., Reddy B.R.* // Separation Purification Technol. 2010. V. 75. № 3. P. 295.
- Lokshin E.P., Tareeva O.A., Kashulina T.G. // Russ. J. Appl. Chem. 2008. V. 81. № 1. Р. 1. [Локшин Е.П., Тареева О.А., Кашулина Т.Г. // Журн. прикл. химии. 2008. Т. 81. № 1. С. 3.]
- 13. *Bushuev N.N., Zinin D.S.* // Russ. J. Inorg. Chem. 2016. V. 61. № 2. Р. 161. [*Бушуев Н.Н., Зинин Д.С.* // Журн. неорган. химии. 2016. Т. 61. № 2. С. 173.]
- 14. *Zinin D.S., Bushuev N.N.* // Russ. J. Inorg. Chem. 2018. V. 63. № 2. Р. 251. [*Зинин Д.С., Бушуев Н.Н.* // Журн. неорган. химии. 2018. Т. 63. № 2. С. 239.]
- Zinin D.S., Bushuev N.N. // Russ. J. Inorg. Chem. 2018.
 V. 63. № 9. Р. 1211. [Зинин Д.С., Бушуев Н.Н. // Журн. неорган. химии. 2018. Т. 63. № 9. С. 1189.]
- 16. *Тюльбенджян Г.С., Бушуев Н.Н. //* Успехи в химии и хим. технологии. 2017. Т. 31. № 4. С. 61.
- 17. *Kazmierczak K., Henning A. Höppe //* J. Solid State Chem. 2010. V. 183. № 9. P. 2087.
- Bushuev N.N., Nabiev A.G. // Russ. J. Inorg. Chem. 1988.
 V. 33. № 11. Р. 1708. [Бушуев Н.Н., Набиев А.Г. // Журн. неорган. химии. 1988. Т. 33. № 11. С. 2962.]
- 19. Bushuev N.N., Nikonova N.S., Mishenina N.V. // Russ. J. Inorg. Chem. 1988. V. 33. № 2. Р. 2991. [Бушуев Н.Н., Никонова Н.С., Мишенина Н.В. // Журн. неорган. химии. 1988. Т. 33. № 2. С. 531.]
- Satoshi Takahashi, Masanobu Seki, Katsumi Setoyama // Bull. Chem. Soc. Jpn. 1993. V. 66. P. 2219.
- Carlos M. Pina, Alvaro Tamayo // Geochim. Cosmochim. Acta. 2012. V. 92. P. 220.
- 22. ICDD. card № 44-0375 // Takahashi S. // Kougakuin University. Japan. Private Communication. 1993.
- 23. *Shannon R.D., Prewitt C.T.* // Acta Crystallogr. 1969. V. 25. P. 925.
- 24. Bushuev N.N., Maslennikov B.M., Borisov V.M. // Russ. J. Inorg. Chem. 1983. V. 28. № 10. Р. 1404. [Бушуев Н.Н., Масленников Б.М., Борисов В.М. // Журн. неорган. химии. 1983. Т. 28. № 10. С. 2469.]