= ФИЗИКОХИМИЯ РАСТВОРОВ =

УДК 546.831.4+547.442.3+539.1.074.9

β-ДИКЕТОНАТЫ ЦИРКОНИЯ ДЛЯ СОЗДАНИЯ Zr-СОДЕРЖАЩИХ ЖИДКИХ ОРГАНИЧЕСКИХ СЦИНТИЛЛЯТОРОВ

© 2021 г. Л. Б. Безруков^{*a*}, Г. Я. Новикова^{*a*, *}, Е. А. Янович^{*a*}, Б. В. Локшин^{*b*}, В. П. Моргалюк^{*b*}, А. И. Костылев^{*c*}, Н. А. Корсакова^{*c*}

^аИнститут ядерных исследований РАН, пр-т 60-летия Октября, 7а, Москва, 117312 Россия ^bИнститут элементоорганических соединений им. А.Н. Несмеянова РАН, ул. Вавилова, 28, Москва, 119334 Россия ^cAO "Радиевый институт им. В.Г. Хлопина", 2-й Муринский пр-т, 28, Санкт-Петербург, 194021 Россия

*e-mail: g-novikova@mail.ru Поступила в редакцию 10.06.2020 г. После доработки 11.09.2020 г. Принята к публикации 14.09.2020 г.

С целью создания низкофоновых Zr-содержащих жидких органических сцинтилляторов изучены β -дикетонаты циркония — синтезированный дипивалоилметанат и коммерчески доступный ацетилацетонат. Исследована их растворимость в органических растворителях — линейном алкилбензоле и псевдокумоле. Измерено поглощение света в псевдокумоле и гексане, а также световыход сцинтиллятора с введенными β -дикетонатами в зависимости от концентрации циркония и сцинтилляционных добавок. Показано, что световыход сцинтиллятора имеет высокое значение (>60%) только при малых концентрациях циркония (не более 2.5 г/л).

Ключевые слова: цирконий, ацетилацетонат, дипивалоилметанат, псевдокумол, световыход, сцинтиллятор

DOI: 10.31857/S0044457X2103003X

введение

Одним из самых привлекательных свойств βдикетонатов металлов является термическая устойчивость и способность возгоняться без разложения, благодаря чему они широко применяются для получения пленок и покрытий методом MOCVD (Metal organic chemical vapor deposition) [1– 5], а также для газофазного разделения изотопов.

В последнее время β -дикетонаты металлов нашли новое применение в области нейтринной физики как вещества, подходящие для создания металлсодержащих жидких органических сцинтилляторов, в частности, в эксперименте Double Chooz [6] для создания Gd-содержащего сцинтиллятора был использован дипивалоилметанат гадолиния.

Стабильность и высокая летучесть β-дикетонатов особенно важны для создания сцинтилляторов в экспериментах, предназначенных для поиска редких событий, таких как измерение потока солнечных нейтрино [7] или поиск двойного безнейтринного β-распада [8], регистрация которого крайне важна для определения массы нейтрино.

Надежная идентификация редких событий в сцинтилляторе требует низкого уровня его соб-

ственного радиоактивного фона, что подразумевает глубокую очистку от примесей радиоактивных элементов всех его компонентов: растворителя, сцинтилляционных добавок и вводимых в него соединений. Достоинством В-дикетонатов металлов является их способность к очистке от U и Th методом сублимации непосредственно перед введением их в сцинтиллятор, поскольку давление паров β-дикетонатов тяжелых металлов, таких как уран и торий, ниже давления паров более легких металлов, таких как In. Nd. Zr [9]. Важна также устойчивость этих соединений в органических растворителях, поскольку в силу редкости регистрируемых событий сцинтилляторы, предназначенные для их регистрации, должны сохранять свои рабочие характеристики длительное время.

В нашей предыдущей публикации [10] мы исследовали летучие комплексы β -дикетонатов неодима для создания Nd-содержащих сцинтилляторов, предназначенных для поиска и регистрации двойного безнейтринного β -распада на изотопе неодима ¹⁵⁰Nd. Наряду с изотопом ¹⁵⁰Nd большая вероятность такого вида распада существует и для изотопа ⁹⁶Zr [11]. Однако содержание этого изотопа в природной смеси изотопов циркония составляет 2.8%, поэтому так же, как в случае с ¹⁵⁰Nd, необходимо предварительное обогащение Zr по изотопу ⁹⁶Zr. Проблема обогащения циркония существует уже давно, но интерес был направлен на его легкий изотоп ⁹⁰Zr, так как именно этот изотоп имеет наименьшее сечение реакции с нейтронами и не образует радиоактивных элементов при использовании циркония в конструкционных материалах ядерной энергетики. На настоящее время известно много исследовательских работ и патентов, посвященных методам разделения изотопов циркония, например, в работе [12] именно летучие β -дикетонаты циркония рассматриваются как перспективные материалы для газофазного разделения изотопов циркония.

В предлагаемой работе авторы не ставили своей целью поиск наиболее летучих соединений циркония, а только исследовали принципиальную возможность использования β -дикетонатов циркония для создания Zr-содержащих жидких органических сцинтилляторов, предназначенных для регистрации безнейтринного двойного β -распада изотопа ⁹⁶Zr.

В настоящее время разрабатывается проект ZICOS (Zirconium complex in organic liquid scintillator) [13–15] для поиска двойного безнейтринного β -распада на изотопе ⁹⁶Zr, где рассматривается *тетракис*-изопропилацетоацетат циркония, а в качестве растворителя — анизол. Альтернативой может служить сцинтиллятор [16], в котором цирконий загружается в органический растворитель в виде наночастиц ZrO₂ (4–10 микрон), поверхность которых модифицирована молекулами карбоновых кислот (6-фенилгексановой или 3-фенилпропионовой), а в качестве растворителя используется толуол.

В настоящей работе показано, что для создания Zr-содержащих сцинтилляторов может быть использован дипивалоилметанат циркония, а в качестве растворителя хорошо подходит псевдокумол, который прекрасно зарекомендовал себя в эксперименте Борексино [17].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали цирконий(IV) хлорид безводный (ZrCl₄, 99.5% чистоты), 2,4-пентандион (ацетилацетон, **HAA**, 99.5% чистоты, ГОСТ 10259-78-ЧДА), 2,2,6,6-тетраметилгептан-3,5-дион (дипивалоилметан, **HDPM**, 99% чистоты) производства компании ДалХим. Ацетилацетонат циркония (Zr(AA)₄) производства ABCR перед использованием очищали сублимацией в вакууме (0.05 торр).

Триоктилфосфиноксид (ТОРО, 99.9%, Aldrich), 2,5-дифенилоксазол (РРО), 2-(4-бифенилил)-5-фенилоксазол (ВРО), 1,4-ди-(5-фенил-2оксазолил)бензол (РОРОР) перекристаллизовывали из гептана. 2-Метилвалериановую кислоту (**H-2MVA**, 98%, Acros Organics) очищали перегонкой в вакууме (14 торр), 1,2,4-триметилбензол (псевдокумол, **PC**, 98%, Acros Organics) и линейный алкилбензол (**ЛАБ**, марка A, TУ 2414-028-05766480-2006, ООО "Кинеф") – путем пропускания через колонку с Al_2O_3 (ч, ТУ-6-09-3916, ООО "Русхим"); ЛАБ – смесь алкилбензолов с общей формулой $C_6H_5C_nH_{2n+1}$, где n = 10-13.

Очистку β-дикетонатов циркония проводили методом сублимации с использованием стеклянной печи Buchi B-585.

Элементный анализ на С и Н осуществляли на автоматическом анализаторе Carlo Erba 1106.

ИК-спектры регистрировали на ИК-фурьеспектрометре VERTEX 70v (ФРГ) в режиме нарушенного полного внутреннего отражения (**HIIBO**) с использованием приставки НПВО GladyATR (Pike, США) с алмазным рабочим элементом, область измерений 4000–400 см⁻¹, спектральное разрешение 4 см⁻¹. Спектры получены непосредственно для порошкообразных образцов без специальной предварительной подготовки. Измеренные спектры НПВО корректировали с применением входящей в состав программного обеспечения ОPUS 7 программы для учета зависимости глубины проникновения излучения в образец от длины волны.

UV/VIS-спектры растворов β-дикетонатов циркония в псевдокумоле и гексане регистрировали на спектрофотометре Perkin–Elmer Lambda 35 с использованием 10 и 100 мм кварцевых кювет.

Концентрацию циркония в образцах определяли методом комплексонометрического титрования в кислой среде по модифицированной методике [18]. Для этого к 5 мл 2 М раствора соляной кислоты добавляли аликвоту раствора β-дикетоната циркония (обычно 0.1 мл) и индикатор ксиленоловый оранжевый. Далее титрование осуществляли 0.005 М раствором трилона-Б (динатриевая соль этилендиаминтетрауксусной кислоты).

Содержание Fe, U, Th в образце $Zr(AA)_4$ определяли методом ICP MS на приборе Perkin Elmer Naxlon 300D в PXTУ им. Менделеева.

Световыход сцинтиллятора (величина, которая определяется количеством фотонов на единицу поглощенной энергии) измеряли с помощью многоканального амплитудного анализатора. В качестве источника возбуждения использовали гамма-кванты от радиоактивного источника ¹³⁷Cs. Методика измерений и анализа описана ранее [19]. В представленных результатах приведена относительная величина световыхода, т.е. процентное отношение световыхода сцинтиллятора, с введенным соединением циркония к световыходу незагруженного цирконием сцинтиллятора на основе псевдокумола с добавкой ВРО (3 г/л) принимали за 100%.

Синтез *тетракис*(2,2,6,6-тетраметил-3,5-гептандионато)циркония(IV) (дипивалоилметанат циркония, Zr(ДПМ)₄) выполнен по модифицированной методике [20].

К раствору 21.4 г (17.9 мл, 86 ммоль) 2,2,6,6тетраметилгептан-3,5-диона в 30 мл метанола при 0°С и перемешивании медленно по каплям добавляли раствор 5.0 г (89 ммоль) КОН в 10 мл метанола и перемешивали еще 1 ч при этой же температуре. Затем, поддерживая температуру 0°С, при перемешивании медленно по каплям добавляли раствор 5 г (21.5 ммоль) ZrCl₄ в 30 мл метанола, после чего перемешивали еще 30 мин при 0°С. Выпавший осадок отфильтровывали, промывали метанолом (15 мл × 2), охлажденным до 0°С. Фильтрат упаривали в вакууме (14 торр) при 20°С, твердый остаток очищали возгонкой при 170°С в вакууме 5 × 10⁻² торр. Получено 16.75 г (70%) дипивалоилметаната циркония.

	С	Н	Zr	
Найдено, %:	64.04;	9.25;	11.19.	
Для ($C_{11}H_{19}O_2$) ₄ Zr ($M = 824.34$)				
вычислено, %:	64.11;	9.29;	11.07.	

Получение сцинтилляционного раствора смесей Zr(AA)₄ с TOPO при мольном соотношении 1 : 1

К раствору 0.267 г Zr(AA)₄ (0.55 ммоль) в 5 мл бензола при 20°С и перемешивании добавляли 0.211 г TOPO (0.55 ммоль) в 2 мл бензола, перемешивали 30 мин и упаривали бензол в вакууме (14 торр) при 20°С. Отобрали 0.215 г для ИКспектроскопического анализа. Остаток (0.263 г) растворили в 5 мл раствора ВРО (3 г/л) в псевдокумоле.

Сцинтилляционные растворы смесей Zr(AA)₄ с ТОРО при мольном соотношении 1 : 2 и Zr(AA)₄ с 2-метилвалериановой кислотой при мольном соотношении 1 : 3 получали аналогично.

Полученные таким способом растворы смесей ацетилацетонатов циркония с ТОРО и 2-метилвалериановой кислотой были использованы сразу после приготовления.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Одной из главных характеристик любых сцинтилляторов является световыход — количество фотонов на единицу поглощенной энергии.

Поэтому при выборе новых соединений, предназначенных для введения в жидкий сцинтиллятор, прежде всего необходимо выяснить их растворимость в сцинтилляционных растворителях и влияние на световыход.

Таблица 1. Световыход сцинтиллятора с растворенным Zr(AA)₄ в зависимости от концентрации PPO, POPOP и Zr. (Погрешность измерения световыхода ~3%)

Концентрация		CRETORLIVOT %	
Zr, г/л	РРО, г/л	РОРОР, мг/л	Световыход, 70
5.6	6	50	14
5.6	9	50	18
5.6	12	50	22
5.6	18	50	23
5.6	24	50	25
5.6	24	450	39
5.6	24	1000	55
2.8	12	500	73

Исследования были начаты на самых доступных β-дикетонатах циркония – ацетилацетонатах.

Установлено, что коммерчески доступные ацетилацетонаты циркония (производитель ABCR) практически не растворяются ни в псевдокумоле, ни в ЛАБе. Но эти же реактивы, подвергнутые операции возгонки, так же как и свежесинтезированные Zr(AA)₄, хорошо растворяются в бензоле и псевдокумоле и только в ЛАБе практически не растворяются.

Поэтому псевдокумол был выбран в качестве основного растворителя для исследования зависимости световыхода этих растворов от концентрации циркония и введенных в раствор сцинтилляционных добавок (РРО и РОРОР). Были приготовлены растворы Zr(AA)₄ с концентрацией Zr 5.6 г/л. Результаты исследования представлены в табл. 1.

Из результатов табл. 1 видно, что хороший световыход (~55%) достигается только при высоких концентрациях используемых сцинтилляционных добавок РРО и РОРОР. Уменьшение концентрации циркония вдвое увеличивает световыход до 73% при вдвое меньших концентрациях сцинтилляционных добавок.

Использование ВРО вместо РРО повышает световыход Zr-содержащих сцинтилляторов, что можно видеть из табл. 2.

Как видно из результатов, приведенных в табл. 1 и 2, при использовании ВРО хороший световыход (62%) достигается при концентрации ВРО 9 г/л и РОРОР 50 мг/л, а в случае использования РРО близкий световыход (55%) достигается при концентрации РРО 24 г/л, а РОРОР 1 г/л.

Таблица 2. Световыход сцинтиллятора с растворенным Zr(AA)₄ в зависимости от концентрации BPO, POPOP и Zr. (Погрешность измерения световыхода ~3%)

Концентрация		CRETORINOT %	
Zr, г/л	ВРО, г/л	РОРОР, мг/л	Световыход, 70
5.6	3	50	38
5.6	6	50	51
5.6	9	50	62
5.6	12	50	67
5.6	15	50	71

Таблица 3. Световыход сцинтиллятора с растворенным Zr(AA)₄ с TOPO и H-2MVA в зависимости от концентрации Zr. (Погрешность измерения световыхода ~3%)

Соединение	Световыход, % РС (ВРО – 3 г/л)		
	Zr 1.25 г/л	Zr 2.5 г/л	Zr 5 г/л
$Zr(AA)_4 + 3H-2MVA$	54	27	9
$Zr(AA)_4 + TOPO$	60	42	25
$Zr(AA)_4 + 2TOPO$	69	43	28
$Zr(AA)_4$	—	_	36

Исследование стабильности Zr(AA)₄ и сцинтилляторов на его основе

Оказалось, что со временем растворимость свежевозогнанного ацетилацетоната циркония падает.

Рис. 1. ИК-спектры поглощения смеси $Zr(AA)_4$ с ТОРО в мольном соотношении 1 : 2 (1), 1 : 1 (2), чистого ТОРО (3).

Более того, растворы Zr(AA)₄ в псевдокумоле, полученные из свежевозогнанного Zr(AA)₄, также нестабильны при контакте с воздухом – через несколько недель наблюдается пожелтение растворов и выпадение осадка.

Для повышения растворимости и стабильности растворов Zr(AA)₄ в псевдокумоле было предложено добавлять ТОРО (в мольном отношении 1:1 и 1:2) и H-2MVA (в мольном отношении 1:3). Согласно [21], такие добавки повышают стабильность Gd-содержащих сцинтилляторов. Однако в случае с цирконием добавление ТОРО не улучшает стабильность растворов с Zr(AA)₄. И это вполне объяснимо, так как цирконий, в отличие от гадолиния, который относится к *f*-элементам и имеет высокое координационное число, образует координационно-насыщенные соединения, и при добавлении ТОРО образуется не прочный комплекс, как в случае с гадолинием [21], а простая смесь ацетилацетоната циркония и ТОРО, что подтверждает ИК-спектроскопический анализ. Полученные ИК-спектры смесей Zr(AA)₄ и ТОРО в мольном соотношении 1:1 и 1:2 и чистого ТОРО представлены на рис. 1.

Из рис. 1 видно, что полоса поглощения фосфорильной группы (P=O) во всех трех спектрах имеет практически одно и то же значение (1145 см⁻¹) и не смещается в низкочастотную сторону, как при образовании прочного комплекса. На основании этого можно сделать вывод, что ТОРО не входит в координационную сферу циркония.

Был также измерен световыход растворов Zr(AA)₄ с добавками ТОРО и H-2MVA в зависимости от концентрации циркония при неизменной концентрации ВРО. Результаты измерений представлены в табл. 3.

Из данных табл. 3 видно, что введение ТОРО и H-2MVA приводит к уменьшению световыхода по сравнению с чистым Zr(AA)₄. При этом наибольшее влияние на световыход оказывает добавка H-2MVA.

Для проверки стабильности сцинтилляторов, приготовленных на основе чистого Zr(AA)₄ и с добавками TOPO и H-2MVA, они были оставлены на хранение в течение 4 мес при контакте с воздухом. Оказалось, что в образцах с добавкой TOPO наблюдалось выпадение осадка и уменьшение концентрации циркония. В образце с добавкой H-2MVA выпадение осадка не наблюдали, и концентрация циркония оставалась неизменной. Это можно объяснить тем, что добавка кислоты способствовала подавлению гидролиза Zr(AA)₄.

Следует также отметить, что во всех образцах при хранении на воздухе наблюдалось пожелтение раствора.

Можно предположить, что пожелтение раствора связано с окислением псевдокумола кислородом воздуха, которое каталитически ускоряется в присутствии ацетилацетоната циркония(IV). Так, из литературных данных известно, что металлические соли органических кислот могут использоваться как катализаторы в процессах окисления органических соединений [22, 23]. В работе [24] исследовали окисление ЛАБ в присутствии карбоксилатов гадолиния, и было отмечено, что скорость окисления растворителя (ЛАБ) в присутствии солей гадолиния выше, чем скорость окисления чистого ЛАБ.

Предположение об окислении псевдокумола в присутствии $Zr(AA)_4$ согласуется с анализом UV/VIS спектров растворов $Zr(AA)_4$ в псевдокумоле, которые хранились в течение 4 мес при контакте с воздухом. Спектры представлены на рис. 2 (спектры снимали в 1 см кюветах по отношению к свежеочищенному псевдокумолу).

В спектрах Zr(AA)₄ в псевдокумоле после хранения на воздухе появляется дополнительный пик в более длинноволновой области по сравнению с пиком самого ацетилацетоната. (Максимум поглощения ацетилацетоната циркония в псевдокумоле находится при 294 нм и сдвигается в длинноволновую область при увеличении концентрации.) Полоса поглощения в области 340-360 нм, на наш взгляд, связана с продуктами окисления псевдокумола. Это подтверждается также литературными данными. Так, в работе [15] был исследован раствор изопропиланетоанетата циркония в анизоле и замечено, что после хранения его на воздухе в спектрах поглощения появляется дополнительный пик, который не наблюдался при хранении раствора в атмосфере азота.

Поэтому весьма вероятно, что β-дикетонаты циркония могут выступать в роли катализаторов процессов окисления алкилбензолов кислородом воздуха, однако это требует дополнительных исследований.

Анализ содержания Fe, U, Th методом ICP MS

Возможной причиной пожелтения растворов соединений циркония может быть также загрязнение циркония примесью железа. Для решения этой задачи был выполнен анализ на содержание

Рис. 2. Спектры поглощения в УФ- и видимой областях $Zr(AA)_4$ в псевдокумоле после 4 мес хранения при контакте с воздухом. $c_{Zr} = 1 \times 10^{-4}$ (*I*), 2×10^{-4} (*2*), 5.6×10^{-4} (*3*), 16×10^{-4} моль/л (*4*).

примесей железа в Zr(AA)₄ методом ICP MS одновременно с анализом содержания тория и урана.

Результаты ICP MS анализа приведены в табл. 4.

Из результатов, представленных в табл. 4, следует, что содержание железа в ацетилацетонате циркония довольно высокое, это нужно учитывать при выборе соединений циркония для создания сцинтилляторов на его основе. Возможно, в дальнейшем необходимо будет проводить предварительную очистку от солей железа.

Содержание урана и тория в цирконии меньше, чем в неодиме [8], но дополнительная очистка от них также необходима.

Исследование Zr(DPM)₄

Дипивалоилметанат циркония в силу большей разветвленности концевых групп, стерически затрудняющих образование межмолекулярных ассоциатов, является более стабильным в растворах соединением по сравнению с Zr(AA)₄, однако имеет более интенсивное поглощение в исследованной спектральной области. Это подтверждает-

Таблица 4. Содержание Th, U, Fe в $Zr(AA)_4$

Элемент	Концентрация, ppb	Стандартная отклонение, ppb	Относительное стандартное отклонение, %
Th	7.7	1.1	14
U	3.9	0.4	9
Fe	8000	450	6

Рис. 3. Спектры поглощения в УФ- и видимой области $Zr(DPM)_4$ в гексане. Концентрация Zr снизу вверх: (1.2; 2.2; 3.3; 4.9; 6.5) × 10⁻⁵ моль/л.

ся UV-VS спектрами $Zr(DPM)_4$ в гексане, представленными на рис. 3.

Из рис. 3 видно, что в гексане максимум поглощения $Zr(DPM)_4$ сдвигается вправо по мере увеличения концентрации от 279 нм (при $c = 1.2 \times 10^{-5}$ моль/л) до 295 нм (при $c = 6.5 \times 10^{-5}$ моль/л). Коэффициент экстинкции в максимуме, вычисленный из приведенных спектров, составляет 28000 л моль⁻¹ см⁻¹.

Результаты измерения световыхода сцинтиллятора с использованием Zr(DPM)₄ (растворитель псевдокумол) в зависимости от концентрации циркония и BPO (РОРОР не добавляли) представлены в табл. 5.

Из данных табл. 5 видно, что высокий световыход получается только при малых концентрациях $Zr(DPM)_4$ и высоких концентрациях BPO, как и в случае с ацетилацетонатом циркония.

Таблица 5. Световыход сцинтиллятора с растворенным Zr(DPM)₄ в зависимости от концентрации Zr и BPO (погрешность измерения световыхода ~3%)

Концентрация, г/л		Chomopy work 0%	
Zr	BPO	Световыход, 70	
5	3	20	
5	6	30	
5	9	36	
2.5	4.5	47	
2.5	9	63	
1.25	4.5	64	
1.25	9	79	

Этот вывод согласуется также с выводом, сделанным в нашей предыдущей работе [10], в которой исследовали летучие комплексы фторсодержащих β-дикетонатов неодима и сравнивали световыход сцинтилляторов с добавленными β-дикетонатами со световыходом сцинтиллятора с добавкой карбоксилата (3,5,5-триметилгексаноата неодима).

Поэтому авторы считают, что β-дикетонаты металлов при использовании их в жидких органических сцинтилляторах позволяют получить хороший световыход только при малых концентрациях металлов, при этом световыход не зависит от длины и разветвленности алкильных концевых групп β-дикетонатных лигандов, а определяется только основной структурой образуемого β-дикетонатного комплекса.

ЗАКЛЮЧЕНИЕ

Проведенные исследования показали, что сцинтиллятор на основе псевдокумола с введенным в него ацетилацетонатом циркония не является стабильным, поскольку растворимость Zr(AA)₄ в нем падает со временем.

Растворы $Zr(DPM)_4$ в псевдокумоле оказались ожидаемо более устойчивыми по сравнению с аналогичными растворами $Zr(AA)_4$ — при хранении на воздухе в течение года в них не наблюдалось пожелтения раствора и выпадения осадка, как в случае с $Zr(AA)_4$. Однако требуются дополнительные исследования стабильности Zr-содержащих сцинтилляторов при использовании инертной атмосферы (продувки аргоном и хранении в атмосфере аргона), а также проведение более тщательной очистки используемого растворителя от воды, кислорода и кислородсодержащих соединений.

 $Zr(DPM)_4$ интенсивно поглощает свет в УФобласти, коэффициент экстинкции в максимуме (279 нм) составляет 28000 л моль⁻¹ см⁻¹.

Световыход сцинтиллятора с введенным $Zr(DPM)_4$ имеет высокое значение (>60%) при концентрациях циркония 1.25, 2.5 г/л при использовании в качестве сцинтилляционной добавки ВРО с концентрацией соответственно 4.5, 9 г/л.

На наш взгляд, дипивалоилметанат циркония является вполне подходящим соединением для создания Zr-содержащих жидких органических сцинтилляторов, так как он достаточно летуч для очистки от радиоактивности методом сублимации и достаточно устойчив в органических сцинтилляторах на базе псевдокумола, но может применяться только при малых концентрациях циркония (не более 2.5 г/л).

БЛАГОДАРНОСТЬ

Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации с использованием научного оборудования Центра исследования строения молекул ФГБУН Институт элементоорганических соединений им. А.Н. Несмеянова РАН (ИНЭОС РАН).

Авторы выражают благодарность И.Р. Барабанову за интерес к работе и плодотворное обсуждение результатов, а также Н.Л. Нольде за помощь в оформлении статьи.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа поддержана грантом РНФ № 16-12-10322.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Sysoev S.V., Kuzin T.M., Zelenina L.M. // Russ. J. Inorg. Chem. 2020. V. 65. № 5. P. 631. https://doi.org/10.1134/S0036023620050241
- 2. *Mishra S., Daniele S. //* Chem. Rev. 2015. V. 115. P. 8379.
 - https://doi.org/10.1021/cr400637c
- Bloor L.G., Carmalt C.J., Pugh D. // Coord. Chem. Rev. 2011. V. 255. P. 1293.
- Nigro R., Toro R.G., Fragala M.E. et al. // Inorg. Chim. Acta. 2009. V. 362. P. 4623. https://doi.org/10.1016/j.ica.2009.05.044
- 5. *Суздалев И.П.* Нанотехнология: физикохимия нанокластеров, наноструктур и наноматералов. М.: URSS, 2019. 592 с. ISBN 978-5-397-06546-7.
- Aberle C., Buck C., Gramlich B. et al. // JINST. 2012. V. 7. P. 0608.
- Buck C., Hartmann F.X., Schonert S., Schwan U. // J. Radioanal. Nucl. Chem. 2003. V. 258. № 2. P. 255263. https://doi.org/10.1023/A:1026273318339
- Barabanov I.R., Bezrukov L.B., Veresnikova A.V. et al. // Phys. Part. Nucl. 2019. V. 82. № 2. P. 89. https://doi.org/10.1134/S1063778819020029

- 9. Суглобов Д.Н., Сидоренко Г.В., Легин Е.К. Летучие органические и комплексные соединения f-элементов. М.: Энергоатомиздат, 1987. 210 с.
- 10. *Bezrukov L.B., Novikova G.Ya., Yanovich E.A. et al.* // Russ. J. Inorg. Chem. 2018. V. 63. № 12. P. 1564. https://doi.org/10.1134/S0036023618120045
- Grotz K., Klapdor H.V. // Phys. Lett. B. 1985. V. 157. № 4. P. 242.
- 12. Игуменов И.К., Тургамбаева А.Е., Крисюк В.В. // Журн. прикл. химии. 2016. Т. 89. № 12. С. 1489.
- Fukuda Y., Kamei Y., Narengerile et al. // XV International Conference on Topics in Astroparticle and Underground Physics Journal of Physics: Conference Series 1342 (2020) 012093 IOP Publishing. https://doi.org/10.1088/1742-6596/1342/1/012093
- 14. *Fukuda Y., Moriyama S., Ogawa I. //* Nucl. Instrum. Methods Phys., Sect. A. 2013. V. 732. P. 397. http://dx.doi./org/10.1016/j.nima.2013.06/043
- Fukuda Y., Narengerile, Obata A. et al. // Ryohei journal or publication title Bulletin of Miyagi University of Education. 2015. V. 49. P. 109. http://id.nii.ac.jp/1138/00000410
- Takigawa S., Koshimizu M., Noguchi T. et al. // J. Radioanal. Nucl. Chem. 2017. V. 314. P. 611. https://doi.org/10.1007/s10967-017-5392-x
- Benziger J. // Int. J. Modern Phys. A. 2014. V. 29. № 16. P. 1442002. https://doi.org/10.1142/S0217751X14420020
- 18. Елинсон С.В., Петров К.В. Аналитическая химия циркония и гафния. М.: Наука, 1965. 241 с.
- 19. Барабанов И.Р., Безруков Л.Б., Новикова Г.Я., Янович Е.А. // ПТЭ. 2017. № 4. С. 82.
- 20. *Рубцов Е.М., Мишин В.Я.* // Коорд. химия. 1982. Т. 8. № 5. С. 651.
- 21. Novikova G.Ya., Bakulina N.I., Morgalyuk V.P. // Russ. J. Inorg. Chem. 2014. V. 59. № 3. P. 244. https://doi.org/10.1134/S0036023614030164
- 22. Брайнина Э.М., Фрейдлина Э.М., Несмеянов А.Н. // Изв. АН СССР. ОХН. 1961. № 4. С. 608.
- 23. *Кнорре Д.Г., Майзус З.К., Эмануэль Н.М. //* Журн. физ. химии. 1955. Т. 29. С. 710.
- Новикова Г.Я., Соловьева М.В., Янович Е.А. // Ядерная физика. 2020. Т. 83. № 1. С. 76. https://doi.org/10.31857/S0044002720010109