СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 537.635:538.935:539.216:621.793.18

СИНТЕЗ И СВОЙСТВА ПЛЕНОК Y₃Fe₅O₁₂ НА СЕГНЕТОЭЛЕКТРИЧЕСКИХ КЕРАМИЧЕСКИХ ПОДЛОЖКАХ PbZr_{0.45}Ti_{0.55}O₃ и Ba_{0.4}Sr_{0.6}TiO₃

© 2021 г. А. И. Стогний^{*a*}, А. И. Серокурова^{*a*}, М. Н. Смирнова^{*b*}, Н. Н. Новицкий^{*a*}, С. А. Шарко^{*a*}, В. А. Кецко^{*b*}, *

^аНаучно-практический центр НАН Беларуси по материаловедению, ул. П. Бровки, 19, Минск, 220072 Беларусь ^bИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия

*e-mail: ketsko@igic.ras.ru Поступила в редакцию 19.05.2021 г. После доработки 28.06.2021 г. Принята к публикации 29.06.2021 г.

Методом ионно-лучевого распыления-осаждения смесью ионов аргона и кислорода получены пленки железоиттриевого граната ($Y_3Fe_5O_{12}$, YIG) толщиной ~2 мкм с буферным наноразмерным слоем TiO₂ на сегнетоэлектрических керамических подложках PbZr_{0.45}Ti_{0.55}O₃ и Ba_{0.4}Sr_{0.6}TiO₃. Кристаллизацию полученных гетероструктур проводили на воздухе при температуре 820°C в течение 5 мин. На основании данных рентгенофазового анализа и характеристического рентгеновского излучения установлено, что пленка $Y_3Fe_5O_{12}$ в составе гетероструктур является однофазной, а ее элементный состав соответствует заданному. В ходе магнитных измерений показано, что насыщение намагниченности слоя YIG на подложках сегнетоэлектриков достигается в поле 0.2 Tл, а ее величина составляет 0.70–0.85 от значения намагниченности насыщения монокристаллического объемного $Y_3Fe_5O_{12}$.

Ключевые слова: пленки Y₃Fe₅O₁₂, сегнетоэлектрические подложки PbZr_{0.45}Ti_{0.55}O₃ и Ba_{0.4}Sr_{0.6}TiO₃, синтез, магнитные свойства **DOI:** 10.31857/S0044457X21120199

ВВЕДЕНИЕ

Интенсивное развитие средств связи, телекоммуникаций, навигации и радиолокации в последние годы предъявляет новые повышенные требования к характеристикам приборов обработки СВЧ-сигнала (резонаторам, фильтрам, фазовращателям, линиям задержки и др.). Основные тенденции в развитии связаны с увеличением добротности устройств, снижением потерь и собственных шумов, возможностью электронной перестройки по частоте, фазе и времени задержки [1–4].

Широкое использование ферромагнитных структур для электронных устройств обусловлено особенностями волновых процессов в намагниченных монокристаллических пленках ферритов. К преимуществам таких волн относятся низкие потери на распространение, разнообразие дисперсионных характеристик, а также низкие фазовая и групповая скорости, позволяющие реализовывать большое разнообразие миниатюрных СВЧ-устройств. Однако электронное управление существующими устройствами осуществляется за счет изменения напряженности магнитного поля. Данный способ перестройки связан с необхо-

димостью изменения тока в катушках электромагнита, следовательно, основными недостатками устройств являются потребляемая мощность и габариты. Другим возможным способом электронного управления сегнетоэлектрическими материалами и устройствами на их основе [5–7] является перестройка за счет изменения электрического поля.

Наиболее актуальным направлением разработок в этой области электроники является создание материалов нового типа, построенных на базе гетероструктур ферритов-сегнетоэлектриков, обладающих мультиферроидными свойствами, в связи с перспективой получения на их основе устройств стрейнтроники [8–11]. Сочетание в одной и той же слоистой структуре феррита и сегнетоэлектрика позволяет управлять рабочими характеристиками СВЧ-устройств с помощью как магнитного, так и электрического поля.

Особый интерес при создании композитных мультиферроидных структур для устройств стрейнтроники СВЧ-диапазона представляют структуры на основе тонких пленок железоиттриевого граната (Y₃Fe₅O₁₂, **YIG**) [1, 2]. Спиновые волны с различными типами дисперсионных характеристик могут распространяться в этих структурах из-за низкого коэффициента затухания [2, 12]. Наличие в $Y_3Fe_5O_{12}$ магнитоупругих свойств, с одной стороны, и рекордно низкие скорости релаксации намагниченности — с другой, позволяют в композитных мультиферроидных структурах на основе YIG управлять фазой, временем задержки, полосой фильтрации, а также бистабильностью спиновых волн.

В работе [13] получена двухслойная композитная структура YIG на подложке PbZr_{0.45}Ti_{0.55}O₃ (РДТ), описаны ее свойства и перспективы применения. Однако большинство существующих в настоящее время методов формирования таких структур основаны на механическом соединении слоев. Существенным недостатком таких слоистых структур является то, что они не позволяют проводить процессы жидкостного травления, а сами структуры быстро деградируют при термоциклировании. Эти недостатки являются принципиальными и не допускают возможности обработки этих структур методами микроэлектроники. В связи с этим открытым остается вопрос разработки технологии получения таких гетероструктур, в частности, методом ионно-лучевого распыления-осаждения [14, 15]. Ранее в работах [16, 17] была показана возможность получения слоев YIG на полупроводниковых подложках GaAs, Si, GaN с помощью ионно-лучевого распыления-осаждения. Было показано, что слои железоиттриевого граната на кремниевых и кварцевых подложках имеют сравнительно низкое структурное совершенство из-за значительного рассогласования параметров решетки и разных коэффициентов термического расширения $Y_3Fe_5O_{12}$ и Si.

Эти факты исключают эпитаксиальный рост слоев YIG непосредственно на РZТ. Однако если удастся разделить процессы осаждения и кристаллизации и создать антидиффузионный слой на поверхности PZT, предотвращая побочные реакции во время отжига с высокой адгезией к поверхности подложки, получение высококачественных поликристаллических слоев Y₃Fe₅O₁₂ будет вполне возможным. В работе [18] были получены структуры Co/TiO₂ на подложках GaAs и Si. При этом было показано, что применение антидиффузионного слоя TiO₂ предотвращает протекание нежелательных химических реакций и в то же время сохраняет химическую индифферентность подложки по отношению к осаждаемому слою в процессе кристаллизации.

Цель настоящей работы — синтез и сопоставительный анализ свойств пленок $Y_3Fe_5O_{12}$, полученных методом ионно-лучевого распыленияосаждения на сегнетоэлектрических керамических подложках $PbZr_{0.45}Ti_{0.55}O_3$ и $Ba_{0.4}Sr_{0.6}TiO_3$.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Мишени для синтеза пленок YIG были получены из порошкообразного материала $Y_3Fe_5O_{12}$, который, в свою очередь, был синтезирован методом сжигания геля [19, 20].

Керамические подложки $PbZr_{0.45}Ti_{0.55}O_3$ и $Ba_{0.4}Sr_{0.6}TiO_3$ (**BST**) толщиной 400 мкм были синтезированы методом твердофазного синтеза [21]. После синтеза подложки полировали до субмикронной шероховатости поверхности и обрабатывали в кислородной плазме СВЧ-разряда.

Затем с целью доведения среднеквадратичной шероховатости до наноразмерного уровня поверхность подложек была подвергнута ионно-лучевой планаризации [22]. Планаризацию проводили в два этапа. На первом этапе барьерный слой TiO_2 толщиной ~0.2 мкм осаждали на керамическую подложку путем распыления мишени Ті ионами O⁺ с энергией 1.6 кэВ. Затем поверхность с барьерным слоем распыляли в более мягком режиме теми же ионами с энергией 0.4 кэВ в течение времени, немного превышающего время осаждения слоя TiO_2 . Цикл планаризации повторяли 2 раза.

Слои YIG получали на установке двойного ионно-лучевого напыления. Установка была собрана на базе вакуумного поста установки СVС и включала вакуумную камеру объемом 0.7 м³, которую откачивали диффузионным насосом до давления не выше 10⁻³ Па. Источники ионов кислорода и аргона имеют однотипную конструкцию, базирующуюся на использовании двухкаскадного самостоятельного разряда низкого давления с холодным полым катодом в качестве эмиттера ионов. После планаризации наносили слой YIG путем распыления поликристаллической мишени Y₃Fe₅O₁₂ смесью ионов аргона и кислорода с энергией 1.5 кэВ при плотности тока 0.2 мА/см². Распыляемый материал мишени наносили на поверхность подложек при давлении 2.5×10^{-2} Па и комнатной температуре. Толщина аморфного слоя YIG составляла ~2 мкм. Его кристаллизовали отжигом на воздухе при температуре 820°С в течение 5 мин [15].

Слои были однородными по толщине с точностью до 10% на площади до 10 см², а их катионный состав совпадал со стехиометрическим составом мишени с точностью до 5%.

Полученные таким образом гетероструктуры были охарактеризованы с помощью растровой электронной микроскопии (**P**9**M**) на приборе FEI HeliosNanoLab 600. Поперечное сечение образцов исследовали с помощью сфокусированных пучков ионов галлия с энергией 30 кэВ. Рентгеновские исследования проводили на дифрактометре Bruker D8 Advance с использованием Cu K_{α} -излучения с длиной волны 1.5405 Å. Рентгенограммы были полу-

Рис. 1. РЭМ-изображение поверхности пленочной гетероструктуры YIG/ TiO₂/BST; на вставке естественный скол гетероструктуры.

чены в диапазоне углов 20 15°-80°. Каждое измерение проводили с шагом 0.0133° в течение 3 с. Идентификацию фаз осуществляли с использованием базы данных Неорганических кристаллических структур (ICSD). Элементный анализ полученных структур проводили с помощью рентгенофлуоресцентного спектрометра PANalytical Epsilon (источник Am-241). Вибрационный магнитометр Liquid Helium Free High Field Measurement System использовали для магнитных исследований гетероструктур при комнатной температуре.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 представлено РЭМ-изображение поверхности и естественный скол поликристаллического слоя YIG толщиной до 2 мкм гетероструктуры YIG/TiO₂/BST. Видно, что слой YIG является сплошным и покрывает плавные впадины и выступы поверхности керамики BST с TiO₂. При этом сам слой YIG состоит из плотноупакованных зерен-кристаллитов размерами ~200 нм с выраженной кристаллической огранкой, которые частично срослись между собой в монолитные образования.

На рис. 2 показана поверхность слоя YIG гетероструктуры YIG/TiO₂/PZT и ее поперечное сечение (вставка). Слой YIG характеризуется наличием сети трещин, является поликристаллическим и состоит из монокристаллических блоков с характерными размерами до 2 мкм. Зерновые соединения насыщены дефектами, что отражается на контрасте поверхностных изображений. Сеть трещин не распространяется по всей толщине слоя YIG. В этом контексте следует отметить, что образование сетей трещин было также описано для тонких слоев феррита-граната, выращенных магнетронным распылением на Si и кварцевых подложках [24]. Видно, что гетероструктуры YIG/TiO₂/BST и YIG/TiO₂/PZT (вставки на рис. 1 и 2) имеют непрерывный плоскопараллельный интерфейс без каких-либо дефектов, связанных с взаимодействием между буферным слоем и подложкой. Между слоем YIG и подложкой PZT хорошо заметна непрерывная темная полоса диоксида титана TiO₂ толщиной 0.1 мкм, который находится в аморфном состоянии, о чем свидетельствует отсутствие его рефлексов на рентгенограмме структуры YIG/TiO₂/PZT (рис. 3). К сожалению, на изображении поперечного сечения естественного скола невозможно четко разграничить слои и указать слой TiO₂ сфокусированным пучком ионов галлия (как это позволяет сделать ФИП).

Анализируя данные РФА для структур $YIG/TiO_2/PZT$ и $YIG/TiO_2/BST$ (рис. 3 и 4), можно отметить, что рентгенограммы слоя YIG для обеих структур содержат узкие интенсивные отражения, которые можно индексировать по кубической симметрии (пр. гр. 230) [25]. В этом случае параметр решетки для слоя субмикронной толщины составляет 1.2378 нм, что немного превышает параметр объемных монокристаллов YIG (1.2376 нм [17]). Несколько смещенные от первоначального положения пики от подложек свидетельствуют о том, что в данном случае

Рис. 2. РЭМ-изображение поверхности YIG/TiO₂/PZT; на вставке поперечное сечение гетероструктуры.

Рис. 3. Дифрактограммы образцов YIG/ TiO₂/BST.

 $PbZr_{0.45}Ti_{0.55}O_3$ и $Ba_{0.4}Sr_{0.6}TiO_3$ под слоем YIG находятся в напряженном состоянии. Следует также обратить внимание на тот факт, что параметр решетки слоев феррита-граната, полученных ионно-лучевым напылением, всегда превышает параметр, характерный для объемных монокристаллов. Это можно объяснить как собственной структурой дефектов, образующихся при кристаллизации YIG, так и тем фактом, что связь слой-

подложка в гетероструктурах обусловлена не эпитаксией, а адгезией.

Данные рентгеноструктурного анализа коррелируют с результатами элементного анализа полученных структур методом характеристического рентгеновского излучения. С учетом анализа спектров наложения отдельных элементов состав монолитных гетероструктур соответствует

Рис. 4. Дифрактограммы образцов YIG/TiO₂/PZT.

YIG/TiO₂/PZT и YIG/TiO₂/BST. Суммарный спектр состава структур приведен в табл. 1.

Это свидетельствует об отсутствии посторонних химических соединений, наличие которых может привести к существенному ухудшению магнитных свойств.

И действительно, данные магнитных измерений и внешний вид петель намагничивания слоя YIG для гетероструктур YIG/TiO₂/PZT и YIG/TiO₂/BST (рис. 5) свидетельствуют о том, что пленки $Y_3Fe_5O_{12}$ являются сплошными и характеризуется намагниченностью насыщения 100 Гс для YIG/TiO₂/PZT и 120 Гс для YIG/TiO₂/BST. На основании данных РЭМ с учетом вычитания площади неровностей рельефа поверхности была пересчитана эффективная намагниченность насышения
составила >0.7 M_{SAT} (M_{SAT} = 139 Гс – намагниченность насыщения монокристаллов YIG [26]) для YIG/TiO₂/PZT и >0.85 M_{SAT} для YIG/TiO₂/BST.

Пленки YIG характеризуются узкой петлей гистерезиса с коэрцитивной силой Hc = 30-40 Э (рис. 5, вставка). Полученные в настоящей работе значения коэрцитивной силы свидетельствуют о высокой степени магнитной однородности слоев YIG в исследуемых нами структурах.

При этом слои YIG на подложках BST обладают большей магнитной однородностью по сравнению с аналогичными слоями на PZT (рис. 5).

По-видимому, это можно объяснить тем обстоятельством, что при наличии барьерного слоя кристаллизация слоя YIG на подложке PZT при отжиге идет одновременно как от поверхности, так и от подложки. Поскольку внутренняя энергия слой/поверхность меньше, чем подложка/слой, у поверхности образуются большие кристаллиты, а у подложки — структурно менее совершенный слой. В результате этого кристаллиты прорастают в буферный слой, что приводит к увеличению дефектности и, следовательно, к магнитной неоднородности. Улучшение магнитных свойств на подложках BST можно объяснить двухстадийным формированием слоя YIG. После первой стадии

Таблица 1. Суммарный спектр состава структур YIG/TiO₂/PZT и YIG/TiO₂/BST

Элемент состава	YIG/TiO ₂ /PZT, ат. %	YIG/ TiO ₂ /BST, ат. %
0	60.5	61.8
Ti	18.1	17.2
Ba	_	9.9
Pb	10.2	_
Sr	_	5.8
Zr	4.6	_
Fe	3.6	3.8
Y	1.7	1.5

том 66

Рис. 5. Петли намагничивания слоя YIG для структур YIG/ TiO₂/BST и YIG/TiO₂/PZT при комнатной температуре. Поле направлено параллельно плоскости образца.

осаждения-распыления YIG в качестве подложки выступает уже не чистый BST, а BST с переходным слоем кристаллизованного слоя YIG, который в данном случае выступает как подложка для вновь напыляемого слоя и является для него близким по структурным и физическим свойствам. Таким образом происходит понижение свободной энергии на границе подложка/слой, в результате чего фронт кристаллизации идет не от поверхности, а от интерфейсной области, что приводит к уменьшению дефектности, которую привносит подложка в осаждаемый на нее материал. Это приводит к большей магнитной однородности YIG/BST по сравнению с аналогичными слоями на PZT.

ЗАКЛЮЧЕНИЕ

В результате исследований получены пленочные структуры $Y_3Fe_5O_{12}$ толщиной ~2 мкм с буферным наноразмерным слоем TiO_2 на сегнетоэлектрических керамических подложках $PbZr_{0.45}Ti_{0.55}O_3$ и $Ba_{0.4}Sr_{0.6}TiO_3$. Полученные структуры имеют стабильный химический состав и обладают высокими значениями магнитных характеристик, устойчивы к условиям постростовой обработки методами микроэлектроники, что делает их при-

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 12 2021

влекательными для использования в устройствах стрейнтроники.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено при поддержке проекта БРФФИ Ф20Р-115 и грантов РФФИ № 19-08-00643 и 18-29-11026 с использованием оборудования ЦКП ФМИ ИОНХ РАН. Рентгенофазовый анализ материалов выполнен при финансовой поддержке Минобрнауки России в рамках государственного задания ИОНХ РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Ishak W.S.* // Proceedings of the IEEE. 1988. V. 76. № 2. P. 171. https://doi.org/10.1109/5.4393
- Lutsev L.V., Dubovoy V.A., Stognij A.I. et al. // J. Appl. Phys. 2020. V. 127. P. 183903. https://doi.org/10.1063/5.0007338

- Mruczkiewicz M., Pavlov E.S., Vysotsky S.L. et al. // Phys. Rev. B. 2014. V. 90. P. 174416. https://doi.org/10.1103/PhysRevB.90.174416
- Balinskiy M., Ojha Sh., Chiang H. et al. // J. Appl. Phys. 2017. V. 122. P. 123904. https://doi.org/10.1063/1.4990565
- Jermain C.L., Aradhya S.V., Reynolds N.D. et al. // Phys. Rev. B. 2017. V. 95. P. 174411. https://doi.org/10.1103/PhysRevB.95.174411
- Kruglyak V.V., Demokritov S.O., Grundler D. // J. Phys. D: Appl. Phys. 2010. V. 43. P. 264001. https://doi.org/10.1088/0022-3727/43/26/264001
- Bukharaev A.A., Zvezdin A.K., Pyatakov A.P. et al. // Phys. Usp. 2018. V. 61. № 12. P. 1175. https://doi.org/10.3367/ufnr.2018.01.038279
- D'Souza N., Salehi Fashami M., Bandyopadhyay S. et al. // Nano Lett. 2016. V. 16. № 2. P. 1069. https://doi.org/10.1021/acs.nanolett.5b04205
- Stognij A.I., Novitskii N.N., Sharko S.A. et al. // Inorg. Mater. 2020. V. 56. № 8. Р. 847. [Стогний А.И., Новицкий Н.Н., Шарко С.А. и др. // Неорган. материалы. 2020. Т. 56. № 8. С. 893.] https://doi.org/10.1134/s0020168520080154
- 10. *Roy K., Bandyopadhyay S., Atulasimha J.* // Appl. Phys. Lett. 2011. V. 99. № 6. P. 063108. https://doi.org/10.1063/1.3624900
- 11. *Ahmad H., Atulasimha J., Bandyopadhyay S. //* Nanotechnology. 2015. V. 26. № 40. P. 401001. https://doi.org/10.1088/0957-4484/26/40/401001
- Bessonov V.D., Mruczkiewicz M., Gieniusz R. et al. // Phys. Rev. B. 2015. V. 91. P. 104421. https://doi.org/10.1103/PhysRevB.91.104421
- 13. Sadovnikov A.V., Grachev A.A., Sheshukova S.E. et al. // Phys. Rev. Lett. 2018. V. 120. № 25. P. 257203. https://doi.org/10.1103/PhysRevLett.120.257203
- Sharko S.A., Serokurova A.I., Novitskii N.N. et al. // J. Magn. Magn. Mater. 2020. V. 514. P. 167099. https://doi.org/10.1016/j.jmmm.2020.167099
- 15. Sharko S.A., Serokurova A.I., Novitskii N.N. et al. // Ceram. Int. 2020. V. 46. № 14. P. 22056. https://doi.org/10.1016/j.ceramint.2020.05.210

- 16. Stognij A.I., Novitskii N.N., Golikova O.L. et al. // Inorg. Mater. 2017. V. 53. № 10. Р. 1069. [Стогний А.И., Новицкий Н.Н., Голикова О.Л. и др. // Неорган. материалы. 2017. Т. 53. № 10. С. 1093.] https://doi.org/10.1134/s0020168517100156
- Lutsev L.V., Stognij A.I., Novitskii N.N. et al. // J. Phys. D: Appl. Phys. 2017. V. 51. № 35. P. 355002. https://doi.org/10.1088/1361-6463/aad41b
- Стогний А.И., Пашкевич М.В., Беспалов А.В. и др. // Письма в ЖТФ. 2010. Т 36. Вып. 9. С. 73.
- Smirnova M.N., Goeva L.V., Simonenko N.P. et al. // Russ. J. Inorg. Chem. 2016. V. 61. Р. 1301. [Смирнова М.Н., Гоева Л.В., Симоненко Н.П. и др. // Журн. неорган. химии. 2016. Т. 61. С. 1354.] https://doi.org/10.1134/S0036023616100193
- 20. Smirnova M.N., Kop'eva M.A., Beresnev E.N. et al. // Russ. J. Inorg. Chem. 2018. V. 63. Р. 439. [Смирнова М.Н., Копьева М.А., Береснев Э.Н. и др. // Журн. неорган. химии. 2018. Т. 63. С. 411]. https://doi.org/10.1134/s0036023618040198
- Ketsko V.A., Smirnova M.N., Kop'eva M.A. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 9. Р. 1287. [Кецко В.А., Смирнова М.Н., Копьева М.А. и др. // Журн. неорган. химии. 2020. Т. 65. № 9. С. 1155.] https://doi.org/10.1134/S0036023620090065
- Petrov V.M., Srinivasan G., Laletsin U. et al. // Phys. Rev. B. 2007. V. 75. P. 174422. https://doi.org/10.1103/PhysRevB.75.174422
- Stognij A.I., Novitskii N.N., Sharko S.A. et al. // Inorg. Mater. 2016. V. 52. № 10. Р. 1070. [Стогний А.И., Новицкий Н.Н., Шарко С.А. и др. // Неорган. материалы. 2016. Т. 52. № 10. С. 1141.] https://doi.org/10.1134/S0020168516100162
- 24. Stognij A.I., Lutsev L.V., Novitskii N.N. et al. // J. Phys. D: Appl. Phys. 2015. V. 48. P. 485002. https://doi.org/10.1088/0022-3727/48/48/485002
- 25. International Centre for Diffraction Data. 1998. JCPDS. Card № 43-0507.
- Von Aulock W.H., Arnold S., Boxer, Handbook of Microwave Ferrite Materials. N.Y.: Academic Press, 1965. P. 78.