ТЕОРЕТИЧЕСКАЯ НЕОРГАНИЧЕСКАЯ ХИМИЯ

УДК 546.621

ТЕОРЕТИЧЕСКОЕ МОДЕЛИРОВАНИЕ РЕАКЦИЙ ЭКЗО-И ЭНДОЭНДРАЛЬНОГО ГИДРИРОВАНИЯ ДОПИРОВАННОГО МАГНИЕВОГО КЛАСТЕРА Мg₁₇Ni

© 2021 г. А. П. Мальцев^{а, b,} *, О. П. Чаркин^{а,} **

^аИнститут проблем химической физики РАН, пр-т Академика Семенова, 1, Черноголовка, Московская обл., 142432 Россия ^bМосковский государственный университет имени М.В. Ломоносова Ленинские горы, 1, Москва, 119991 Россия *e-mail: maltsevaleksej@gmail.com **e-mail: charkin@icp.ac.ru Поступила в редакцию 20.04.2021 г.

После доработки 01.06.2021 г. Принята к публикации 27.06.2021 г.

На основании DFT- и IRC-расчетов сопоставлены поверхности потенциальной энергии каналов гидрирования кластера $Mg_{17}Ni$. В "экзоэдральных" каналах сорбционные, постсорбционные и миграционные процессы атомов Н полагаются локализованными на поверхности каркаса с максимальными барьерами ~14 ккал/моль. В "эндоэдральном" канале с барьером ~6 ккал/моль ключевую роль играют трансформации плоской конфигурации поверхностной NiH₄-группы в тетраэдрическую, при которой два ее нижних атома Н мигрируют через внутреннюю полость и выходят на поверхностные позиции, инвертируя через квадратную и смежные треугольные грани в нижней половине каркаса. Протекание последнего процесса требует более мягких условий по сравнению с экзоэдральными каналами.

Ключевые слова: метод функционала плотности, влияние допанта, хранение водорода **DOI:** 10.31857/S0044457X21120114

ВВЕДЕНИЕ

Магний является перспективным материалом для обратимого хранения водорода благодаря высокой емкости образующихся гидридов, однако его применение ограничено из-за ряда недостатков, к которым относятся высокие активационные барьеры сорбции-десорбции водорода и медленные скорости диффузии водорода через гидридный слой [1-3]. Эффективным способом улучшения кинетических характеристик считается введение каталитических добавок, таких как переходные 3*d*-металлы, и изменение микроструктуры сплавов с увеличением площади межфазных границ и уменьшением размеров зерен до субмикронных или наноразмерных [4, 5]. Тем не менее достигнутые результаты еще не полностью соответствуют требованиям для практического применения магниевых сплавов, а экспериментальное изучение наноразмерных материалов на основе магния, в том числе механизмов их гидрирования, сопровождается техническими трудностями. В связи с этим в последние годы быстро растет интерес к квантово-химическому изучению наноразмерных магниевых кластеров и моделированию элементарных процессов сорбциидесорбции водорода на металлических кластерах или магниевых поверхностях.

Благодаря интенсивному развитию методов масс-спектроскопии, ИК-спектроскопии в низкотемпературных инертных матрицах в совокупности с применением квантово-химических расчетов, стало возможным получать и идентифицировать наноразмерные смешанные магний-алюминиевые кластеры [6–10], гомоядерные магниевые кластеры [11] и их гидриды [12]. В последние годы активно проводятся квантово-химические расчеты гомоядерных магниевых кластеров Mg_n (n = 2-56) [13–18], особенно стремительно растет интерес к квантово-химическим расчетам малых магниевых кластеров. Так, в работах [19–21] проведены расчеты серии бериллий-допированных магниевых кластеров Mg_nBe^Q_m (n = 1-20; m = 1, 2; Q = 0,

вых кластеров $Mg_n Be_m (n - 1 - 20, m - 1, 2, Q - 0, -1)$, найдены глобальные минимумы структур, определены их энергетические характеристики, установлено, что наиболее стабильными являют-

ся кластеры BeMg₉, Be₂Mg₅, Be₂Mg₅ и Be₂Mg₈. Аналогичные расчеты выполнены для кластеров Mg_nSi (n = 3-12) [22], Mg_nZn_m (n = 1-5, m = 1, 2) [23], Mg_nZr (n = 1-11) [24], Mg₂B_n (n = 4-14) [25],

Рис. 1. Оптимизированные ключевые структуры интермедиатов и переходных состояний каталитического цикла реакций (1).

 $Mg_nX (X = Ge, C, Sn; n = 2-12)$ [26]. Для кластеров Mg_nZn_m и Mg_2B_n авторами работ [23 и 25] рассчитаны соответственно гидриды $Mg_nZn_mH_2$ и $Mg_2B_nH_2$, определены их геометрические и энергетические параметры. Показано, что энергия хемосорбции в кластерах, допированных Zr, варьируется от 20 до 30 ккал/моль, а энергия физической сорбции в кластерах Mg_2B_n составляет ~5 ккал/моль.

Значительный интерес представляет квантово-химическое моделирование элементарных реакций гидрирования допированных кластеров. Ранее эта проблема подробно исследовалась для родственных реакций наноразмерных алюминиевых кластеров, для которых были рассчитаны поверхности потенциальной энергии (ППЭ) вдоль минимальных энергетических путей (МЭП) с участием допантов Mg, Si [27, 28], B, C, P, Ca [28] и атомов переходных металлов 3d- и 4d-периодов [29-32]. Реакции водорода с допированными магниевыми кластерами исследованы в меньшей степени. В работе [33] выполнены расчеты ППЭ гидрирования магний-алюминиевого кластера Mg₅Al₇Ni, а в работах [34, 35] – допированных магниевых кластеров Mg_nL (n = 2-10; M = Rh, Со), показано, что энергия присоединения молекулы H₂ составляет ~15-20 ккал/моль.

Недавно проведены расчеты ППЭ реакций гидрирования гомоядерного кластера Mg_{18} [36], допированных кластеров $Mg_{17}L$

$$Mg_{17}L + H_2 \rightarrow Mg_{17}LH_2 \tag{1}$$

с допантами L атомов переходных 3*d*-металлов от Ti до Ni [37], а также серии реакций типа (1) последовательного присоединения шести молекул H_2 к кластеру Mg₁₇Ni [38]. Отвечающий им каталитический цикл изображен на рис. 1.

Согласно [36], барьеры перемещений атомов Н на поверхности кластера Mg₁₈ не превышают нескольких ккал/моль и свидетельствуют о возможности квазисвободной поверхностной миграции атомов Н у родственных гомоядерных кластеров в условиях обычных или умеренно повышенных температур. Энергия гидрирования кластера Mg₁₈ оценивается в ~5 ккал/моль, но осушествление этой реакции затруднено высоким активационным барьером сорбции и диссоциации молекулы Н2, достигающим ~30 ккал/моль. Замещение поверхностного атома Mg атомом L переходного 3dметалла снижает этот барьер до ~1-3 ккал/моль, так что в системах с допантами 3d-элементов сорбция Н2 и образование "первичного" дигидрида Mg₁₇LH₂ (E) должны проходить без существенных изменений энергии. Энергии образования $Mg_{17}LH_2$ (E) монотонно уменьшаются с увеличением порядкового номера допанта L от ~30 и ~20 ккал/моль у Ti и V до ~12 ккал/моль у Ni. В постсорбционном участке реакции лимитирующей является стадия очистки допанта M от связанных с ним атомов H. Соответствующие ей активационные барьеры тоже уменьшаются с увеличением порядкового номера допанта L от ~20 ккал/моль у Ti и V до ~10–12 ккал/моль у Ni [37, 38].

При последовательном присоединении первых шести (n = 6) молекул H₂ к кластеру Mg₁₇Ni (параллельно со смещениями атомов Н по поверхности) атом допанта тоже смешается с поверхностной позиции и погружается ("ныряет") во внутреннюю полость каркаса Mg₁₇ на ~1.5 Å и более. В подобных "закрытых" внутренних позициях допант экранирован соседними атомами магния, затрудняющими его взаимодействие с новой молекулой Н₂. Для восстановления каталитической активности допант должен быть возвращен ("промотирован") в открытое поверхностное положение. Оценки необходимых для этого энергий промотирования (Епром) не превышают умеренных 4-6 ккал/моль у первых трех реакций (n = 3), но увеличиваются до ~20 ккал/моль при n = 6, так что промотирование становится лимитирующей стадией при увеличении *n* и может привести к обрыву цепочки циклов при скромном числе сорбированных молекул Н₂. При значительных *п* картина еще усложняется одновременными структурными перестройками каркаса Mg₁₇, в ходе которых один или несколько атомов Мд выходят из состава каркаса в "надповерхностную" сферу и образуют внешние терминальные связи Ni-Mg, которые еще сильнее экранируют допант и тоже могут обрывать процесс последовательного гидрирования.

Настоящая работа является продолжением работ [36—38] и посвящена поиску способов обойти трудности, связанные с энергиями промотирования допанта, с использованием модифицированного цикла

$$H_{2n-2}Mg_{17}(NiH_2) + H_2 \rightarrow H_{2n}Mg_{17}(NiH_2),$$
 (2)

в котором атом допанта Ni остается фиксированным в составе группы NiH₂ на открытой поверхностной позиции кластера Mg_{17} Ni на всех участках МЭП от начальной структуры A до конечной J и не требует затрат энергии на промотирование.

Цель настоящей работы — расчет геометрических, энергетических и электронных характеристик ключевых структур, отвечающих особым точкам ППЭ серии реакций (2), и сравнение относительных энергий интермедиатов и активационных барьеров реакций (2) с аналогичными характеристиками реакций (1) гидрирования голого кластера Mg₁₇Ni [36].

РАСЧЕТНЫЕ МЕТОДЫ

Как и ранее [36–38], расчеты выполняли в рамках метода функционала плотности (**DFT**) ВР86 [39] с использованием программы GAUSS-IAN-09 [40] и базиса 6-31G*. Характер особых точек ППЭ контролировали расчетами частот нормальных колебаний и методом внутренней координаты реакции (irc). Согласно нашим DFT-расчетам синглетного и триплетного термов, выполненным ранее в [37], у всех локальных минимумов и переходных состояний вдоль рассмотренных минимальных энергетических путей равновесные структуры у обоих термов очень близки, а триплет лежит выше синглета на почти постоянную величину ~10 ккал/моль.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Реакция $H_{2n}Mg_{17}(NiH_2) + H_2 \rightarrow H_{2n+2}Mg_{17}(NiH_2)$

Начальный (сорбционный) участок ППЭ реакции (1), отвечающий присоединению первой молекулы H_2 к голому кластеру $Mg_{17}Ni$ и образованию первичного дигидрида $Mg_{17}NiH_2$ (E), ранее подробно рассматривался в [36]. На рис. 2 и 3 приведены ключевые структуры, отвечающие MЭП реакции

$$Mg_{17}(NiH_2) + H_2 \rightarrow H_2Mg_{17}(NiH_2),$$
 (2a)

и молекулярные диаграммы

$$H_2Mg_{17}(NiH_2) + H_2 \rightarrow H_4Mg_{17}(NiH_2).$$
 (26)

На стадии сорбции присоединения второй молекулы H_2 к дигидриду $Mg_{17}NiH_2$ (E) образуется тетрагидрид $Mg_{17}NiH_4$ (2E) с группой NiH₄, pacположенной над поверхностью магниевого каркаса на расстоянии ~1.23 Å. Дигидрид Е и тетрагидрид 2E разделены двумя барьерами ~7 ккал/моль, первый (2В) из которых отвечает физической сорбции молекулы H_2 и образованию комплекса μ - H_2 , а последний – диссоциации молекулы водорода на атомы. Из сравнения молекулярных диаграмм на рис. 3 можно проследить ряд отличий реакций (1) и (2) на стадии сорбции. У реакции (2а) барьер физосорбции (2В) вдвое выше, чем у реакции (1). У реакции (1) диссоциация молекулы H₂ с образованием дигидрида Mg₁₇NiH₂ проходит в одну стадию (при одновременном образовании обоих симметричных мостиков Ni-H_b-Mg) с малоощутимым барьером (несколько десятых долей ккал/моль), в то время как у реакции (2а) распад H₂ на атомы протекает в две ступени с последовательным образованием первого и второго водородных мостиков, причем барьер диссоциации 2D вполне ощутим и сопоставим с барьером физосорбции 2Е (~7 ккал/моль). Кроме того, в отличие от реакции (1), при переходе от дигидрида Е к тетрагидриду 2Е реакция (2а) проходит через интермедиат NiH₃H (2 C^*), в котором три ато-

Рис. 2. Оптимизированные ключевые структуры интермедиатов и переходных состояний реакции $Mg_{17}NiH_2 + H_2 \rightarrow H_2Mg_{17}(NiH_2)$ (2a).

ма H расположены на смежных гранях Mg–Mg–Ni, а четвертый атом H образует вертикальную терминальную связь NiH (рис. 2). Комплекс NiH₃H (**2C***) отделен от тетрагидрида **2E** небольшим барьером **2D*** ~1.5 ккал/моль.

Внутри сорбционного участка 2В-2С реакции (2а) имеет место перестройка структуры магниевого каркаса, которая приближается к структуре сферически ароматичного кластера Mg₁₇ [16] и с небольшими деформациями сохраняется на остальных стадиях (от Е до Ј) не только у реакции (2а), но и в последующих реакциях присоединения третьей и четвертой молекул H₂. По сравнению с дигидридом Mg₁₇NiH₂ (Е) длины связей Mg-Mg в тетрагидриде $Mg_{17}NiH_4$ (2E) укорачиваются на 0.05–0.1 Å, а их колебательные частоты увеличиваются на 5–10 см⁻¹. В квадратной группе NiH_4 тетрагидрида $Mg_{17}NiH_4$ (2E) атомы H располагаются в мостиковых позициях над магниевыми ребрами с расстояниями R(NiH) = 1.56 и R(MgH) = 2.08 Å и углом $\phi(MgHMg) = 100^{\circ}$. Энергия образования $Mg_{17}NiH_4$ (**2**E) при присоединении H_2 к дигидриду $Mg_{17}NiH_2$ (E) оценивается в ~4.6 ккал/моль.

Как и у реакции (1), по завершении сорбционной стадии и образовании тетрагидрида в реакции (2а) реализуется стадия "очистки допанта" за счет перемещения присоединившихся атомов Н к удаленным граням или ребрам магниевого каркаса и образования интермедиатов 2G и 2I'. Активационные барьеры 2F и 2H, разделяющие интермедиаты 2E, 2G и 2I, составляют 12.4 и 10.8 ккал/моль соответственно и сопоставимы с аналогичными барьерами 1F и 1H, рассчитанными в [36], в пределах нескольких ккал/моль. При сравнении диаграмм реакций (1) и (2), приведенных на рис. 3, можно видеть их подобие и полуколичественное сходство как в структурах, так и в положении ключевых структур на энергетической шкале. У обеих реакций лимитирующей остается стадия очистки допанта. Количественные отличия проявляются в том, что сорбционный барьер **2В** на 3.5 ккал/моль выше барьера **1В**,

Рис. 3. Энергии ключевых структур интермедиатов и переходных состояний на первых трех циклах гидрирования $Mg_{17}Ni + H_2$ и $H_{2n-2}Mg_{17}NiH_2 + H_2$. Структуры и диаграммы реакции $Mg_{17}Ni + H_2 \rightarrow Mg_{17}NiH_2$ (1) приведены в [36].

а постсорбционные барьеры 2F и 2H тоже на несколько ккал/моль выше аналогов 1F и 1H. Структура 2I лежит на 6 ккал/моль выше изолированной системы Mg₁₇NiH₂ + H₂ и на 6 ккал/моль ниже диссоциационного предела Mg₁₇Ni + 2H₂. В отличие от (1), в реакции (2) допант везде остается фиксированным на "открытой" поверхностной позиции в составе группы NiH₂ и в структуре 2I готов к присоединению следующей молекулы H₂ без затрат энергии на промотирование. Та же качественная картина с допантом, фиксированным на поверхностной позиции в структуре **3I**, получена в наших расчетах аналогичного цикла (26), в котором к дигидридной группе NiH₂ присоединяется третья молекула Н₂ит.д.

В реакции (2б) двухэтапное гидрирование структуры $H_2Mg_{17}NiH_2$ (2I) в тетрагидрид $H_2Mg_{17}NiH_4$ может осуществляться двумя путями (рис. 4). Первый путь (верхний на рис. 4) начинается с сорбции третьей молекулы H_2 и образования интермедиата **3E*** с группой NiH₄, в котором удаленные атомы H локализованы в экваториальном поясе каркаса. На постсорбционном этапе удаленные атомы H смещаются из экватора в нижнюю полусферу каркаса с образованием более выгодной структуры тетрагидрида **3E**. На втором пути (нижнем на рис. 4) меняется последовательность этапов: он начинается с перемещения атомов H из экватора в нижнюю полусферу с образованием интермедиата $H_2Mg_{17}(NiH_2)$ (**3E****), в котором сохраняется группа NiH_2 , и заканчивается сорбцией третьей молекулы H_2 с образованием того же тетрагидрата **3E**. Обоим каналам отвечают низкие потенциальные барьеры.

Поверхностная миграция атомов Н проходит через пологие локальные минимумы 2К и 2М, отделенные от I и друг от друга барьерами 2J, 2L и 2N (рис. S1), высота которых не превышает 3 ккал/моль. На последнем участке 2M-2N-2O смещение атома Н оказывается связанным с переориентацией группы NiH₂ и структурной перестройкой каркаса, которые сопровождаются суммарным выигрышем энергии интермедиата 20 по сравнению с 2I на ~10 ккал/моль (рис. 3). К такому же выигрышу энергии приводит сорбция третьей молекулы водорода и образование тетрагидрида H₂Mg₁₇NiH₄ (E) относительно изолированных реагентов $H_2Mg_{17}NiH_2 + H_2$. На первом пути он отвечает стадии сорбции, а на втором – сложной кооперативной перегруппировке, включающей одновременно миграцию атомов Н, поворот группы NiH_2 и перестройку каркаса Mg_{17} .

Продолжение цикла с присоединением новых молекул водорода может следовать той же схеме аналогично рассмотренным выше циклам с активным центром NiH_2 . Их ключевой стадией должна остаться очистка допанта с перемещениями пары атомов H из группы NiH_4 в предпочтительные поверхностные позиции **3G** и **3I** в экваторе каркаса, которые разделены друг от друга и

Рис. 4. Оптимизированные ключевые структуры интермедиатов и переходных состояний каталитического цикла гидрирования H₂Mg₁₇NiH₂ + H₂. Стадии поверхностной миграции изображены на рисунке S1 приложения.

от тетрагидрида **3E** активационными барьерами **3F** и **3H** ~14–16 ккал/моль.

Реакции "эндоэдрального" гидрирования

Обсуждаемые выше каналы относятся к реакциям "поверхностного гидрирования", в которых группа NiH₄ имеет квазиплоское строение и в которых перемещения и миграция присоединившихся атомов Н происходят на поверхности кластера. У всех таких реакций очистка допанта от атомов Н оказывается лимитирующей стадией с активационными барьерами F и H, которые нигде не опускаются ниже ~10–14 ккал/моль и служат препятствием для проведения этих реакций в мягких условиях.

Рассмотрим теперь альтернативный канал "эндоэдрального" гидрирования, в котором атомы водорода перемещаются с поверхности вглубь каркаса и мигрируют в его внутренней полости. Этот канал можно условно разбить на несколько стадий. Сначала один из присоединившихся атомов (ниже **H***) уходит с поверхности внутрь каркаса и включается в состав эндоэдрального мостика Ni-H*-Мg_с между допантом и центральным атомом Mg_c. После этого атом Н* удаляется от допанта и мигрирует в нижнюю половину каркаса через систему промежуточных мостиков между атомом Мд. и ребрами или гранями каркаса. Далее атом Н* инвертирует через нижнее квадратное окно в каркасе, находящееся в трансположении к допанту, выходит из внутренней полости на поверхность, занимает позицию над прилежащим ребром или гранью и далее может мигрировать обычным образом на другие поверхностные позиции кластера. Ключевые структуры вдоль одного из путей миграции и их относительные энергии (в ккал/моль) приведены на рис. 5. Более полный список структур и их полные энергии представлены на рис. S2.

Согласно расчетам, структура 1 с плоской NiH₄-группой не является энергетически предпочтительной. На ~1.2 ккал/моль ниже ее лежит интермедиат 3 с тетраэдрической группой HNiH₃, который отделен от 1 "входным" барьером ~6.5 ккал/моль. В ходе перегруппировки NiH₄ \rightarrow HNiH₃ между этими плоской и тетраэд-

5. LM —0.4 ккал/моль

Рис. 5. Ключевые структуры вдоль внутреннего пути миграции атомов Н.

7. LM

+3.9 ккал/моль

6. TS

+4.1 ккал/моль

рической формами три внешних атома Н остаются координированными к верхним связям Ni-Mg, а четвертый атом Н* инвертирует через смежное ребро Mg-Mg, растягивающееся при этом почти на 1 Å, опускается внутрь каркаса и включается в эндоэдральный треугольник NiHMg_c с расстояниями R(NiH) = 1.57, $R(Mg_cH) =$ = 2.10 и $R(NiMg_c) = 2.78$ Å. Интермедиат 3 интересен тем, что, за исключением области, близкой к допанту, его ППЭ внутренней миграции атома Н в лежащие ниже позиции представляет собой совокупность мелких локальных минимумов, разделенных низкими барьерами (не выше 1.5-2 ккал/моль), которые способствуют квазисвободной миграции Н* при обычных или слегка повышенных температурах.

Аналогичные результаты получаются в расчетах последовательной инверсии обоих противолежащих атомов Н плоской группы NiH₄ с образованием тетраэдрического изомера H₂NiH₂, в котором пара верхних атомов остается фиксированной в составе группы NiH₂, а два атома Н перемещаются во внутреннюю полость с образованием эндоэдрального ромба Ni(H)₂Mg_c. В перегруппировке NiH₄ \rightarrow H₂NiH₂ (ее механизм см. на рис. S3 и S4 приложения) последние два атома Н последовательно инвертируют через растягивающиеся смежные ребра примерно с одинаковым барьером ~6.5 ккал/моль на каждую инверсию, близким к барьеру перегруппировки NiH₄ \rightarrow HNiH₃.

В обоих случаях этот входной инверсионный барьер оказывается вдвое ниже барьеров G и H очистки допанта в реакциях (1) и (2). Отметим, что, в отличие от вполне ощутимого входного барьера при трансформации плоской NiH₄-группы в тетраэдрическую, выходной инверсионный барьер ~4 ккал/моль представляет меньше трудностей для миграции атомов Н из внутренней полости на поверхность через нижнее "окно" каркаса. По мере выхода атомов Н из полости к группе NiH₂ может присоединиться новая молекул H₂ с образованием плоской группы NiH₄ и началом нового цикла. Можно полагать, что эндоэдральное гидрирование будет проходить в более мягких условиях, чем экзоэдральное. Можно также полагать, что эндоэдральный канал представляет интерес и для обратного процесса десорбции с легким переходом поверхностных атомов Н во внутреннюю полость через нижнее окно и с умеренным барьером выхода на поверхность через образование плоской группы NiH₄ с последующим освобождением молекулы Н2 из комплекса $Mg_{17}NiH_2(\mu-H_2).$

Отметим, что попытки оценить возможности удлинения цепочек из следующих друг за другом циклов типа (1) или (2) пока преждевременны. По мере увеличения n и заполнения поверхности атомами Н картина может усложняться из-за нарастания искажений каркаса Mg₁₇ с разрывом напряженных ребер Mg-Mg, образованием более

крупных 5- и 6-атомных "окон" и появлением новых каналов перемещения атомов H с поверхности во внутреннюю полость каркаса и обратно. Важность каркасных деформаций и перегруппировок с увеличением *n* была продемонстрирована ранее на примере последовательно гидрированных алюминиевых кластеров $Al_{44}H_n$ и $Al_{86}H_m$ [41]. Связи Mg-Mg менее прочны и более лабильны по сравнению со связями Al-Al, и следует ожидать, что при гидрировании магниевых кластеров "каркасные" эффекты должны проявляться еще более отчетливо. Эти вопросы являются предметом наших дальнейших исследований.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена по теме государственного задания, номер государственной регистрации АААА-А19-119061890019-5.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

ДОПОЛНИТЕЛЬНЫЕ МАТЕРИАЛЫ

Рис. S1. Ключевые структуры интермедиатов и переходных состояний на пути поверхностной миграции атомов водорода в случаях, когда: а) поверхностная миграция предшествует стадии сорбции и б) стадии сорбции предшествуют стадиям поверхностной миграции.

Рис. S2. Ключевые структуры на пути внутренней миграции атомов водорода в кластере Mg₁₇NiH₄ и их полные энергии.

Рис. S3. Ключевые структуры интермедиатов и переходных состояний на пути образования кластера Mg₁₇NiH₄ с тетраэдрической группой (NiH₄)_{Td} с двумя внутренними атомами водорода.

Рис. S4. Ключевые структуры интермедиатов и переходные состояния на пути образования кластера с тетраэдрической группой H_2Mg_{17} (NiH₄) Td, с двумя внутренними атомами H и последующими этапами очистки активного центра.

СПИСОК ЛИТЕРАТУРЫ

- Yartys V.A., Lototskyy M.V., Akiba E. et al. // Int. J. Hydrogen Energy. 2019. V. 44. P. 7809. https://doi.org/10.1016/j.ijhydene.2018.12.212
- Tarasov B.P., Arbuzov A.A., Mozhzhuhin S.A. et al. // Int. J. Hydrogen Energy. 2019. V. 45. P. 29212. https://doi.org/10.1016/j.ijhydene.2019.02.033
- 3. *Ouyang L., Liu F., Wang H. et al.* // J. Alloys Compd. 2020. V. 832. P. 154865.
- https://doi.org/10.1016/j.jallcom.2020.154865
- 4. *Yao X., Lu G.* // Chin. Sci. Bull. 2008. V. 53. P. 2421. https://doi.org/10.1007/s11434-008-0325-2

- Huang L.J., Wang H., Liu J.W. et al. // J. Alloys Compd. 2019. V. 792. P. 835. https://doi.org/10.1016/j.jallcom.2019.04.029
- Wang H., Ko Y.J., Zhang X. et al. // J. Chem. Phys. 2014. V. 140. P. 124309. https://doi.org/10.1063/1.4869104
- Luo Z., Grover C.J., Reber A.C. et al. // J. Am. Chem. Soc. 2013. V. 135. P. 4307. https://doi.org/10.1021/ja310467n
- Grover C.J., Reber A.C., Khanna S.N. // J. Chem. Phys. 2017. V. 146. P. 2243301. https://doi.org/10.1063/1.4985093
- 9. Lu B.J., Li X.-T., Zhao Y.-J. et al. // AIP Adv. 2017. V. 7. P. 095023. https://doi.org/10.1063/1.5000792
- 10. Zhang L., Ma X., Guo X. et al. // J. Clust. Sci. 2020. https://doi.org/10.1007/s10876-020-01803-w
- Kaufmann A., Kornath A., Zoermer A. et al. // Inorg. Chem. 2010. V. 49. P. 3851. https://doi.org/10.1021/ic902485z
- Wang X., Andrews L. // J. Phys. Chem. A. 2004. V. 108. P. 11511. https://doi.org/10.1021/jp046410h
- Janecek S., Krotscheck E., Liebrecht M. et al. // Eur. Phys. J. D. 2011. V. 63. P. 377. https://doi.org/10.1140/epjd/e2011-10694-2
- 14. Köhn A., Weigend F, Ahlrichs R. // Phys. Chem. Chem. Phys. 2001. V. 3. P. 711. https://doi.org/10.1039/B007869G
- Heidari I., De S., Ghazi S.M. et al. // J. Phys. Chem. A. 2011. V. 115. P. 12307. https://doi.org/10.1021/jp204442e
- Xia X., Kuang X., Lu C. et al. // J. Phys. Chem. A. 2016. V. 120. P. 677. https://doi.org/10.1021/acs.jpca.6b07322
- Jellinek J., Acioli P.H. // J. Phys. Chem. A. 2002.
 V. 106. P. 10919. https://doi.org/10.1021/jp020887g
- Duanmu K., Roberto-Neto O., Machado F.B.C. et al. // J. Phys. Chem. C. 2016. V. 120. P. 13275. https://doi.org/10.1021/acs.jpcc.6b03080
- Zhang F, Zhang H., Xin W. et al. // Scientific Reports. 2020. V. 10. P. 6052. https://doi.org/10.1038/s41598-020-63237-8
- Zeng L., Wei X.-F, Liang M.-K. et al. // Comput. Mater. Sci. 2020. V. 182. P. 109795. https://doi.org/10.1016/j.commatsci.2020.109795
- Zeng L., Deng P.-J., Bi J., Zhu B.-C. // J. Comput. Chem. 2020. P. 1885. https://doi.org/10.1002/jcc.26359
- 22. *Zhu B.-C., Zhang S., Zeng L.* // Int. J. Quantum. Chem. 2020. V. 120. P. 26143. https://doi.org/10.1002/qua.26143
- Li Z., Zhao Z., Zhou Z. et al. // Mater. Chem. Phys. 2020. V. 199 P. 585. https://doi.org/10.1016/j.matchemphys.2017.07.049
- 24. He C., Chen Y., Sheng Y. // Eur. Phys. J. D. 2019. V. 73. P. 90. https://doi.org/10.1140/epid/e2019-90521-6

- Kumar A., Vyas N., Ojha A.K. // Int. J. Hydrogen Energy. 2020. V. 45. P. 12961. https://doi.org/10.1016/j.ijhydene.2020.03.018
- Zeng L., Liang M.-K., Wei X.-F. et al. // J. Phys.: Condens. Matter. 2020. V. 33. https://doi.org/10.1088/1361-648X/abc401
- Henry D.J., Yarovsky I. // J. Phys. Chem. A. 2009. V. 113. P. 2565. https://doi.org/10.1016/10.1021/jp809619q
- Wang L., Zhao J., Zhou Z. et al. // J. Comput. Chem. 2009. V. 30. P. 2509. https://doi.org/10.1016/10.1002/jcc.21239
- Kochnev V.K., Charkin O.P., Klimenko N.M. // Russ. J. Inorg. Chem. 2010. V. 55. P. 65. https://doi.org/10.1134/S0036023610010134
- 30. *Guo L.* // J. Phys. Chem. 2013. V. 117. P. 3458. https://doi.org/10.1021/jp310833y
- Mikhailin A.A., Charkin O.P., Klimenko N.M. // Russ. J. Inorg. Chem. 2013. V. 58. P. 1479. https://doi.org/10.1134/S0036023613120073
- Mikhailin A.A., Charkin O.P., Klimenko N.M. // Russ. J. Inorg. Chem. 2016. V. 61. P. 1558. https://doi.org/10.1134/S0036023616120135
- Mikhailin A.A., Charkin O.P., Klimenko N.M. // Russ. J. Inorg. Chem. 2015. V. 60. P. 1238. https://doi.org/10.1134/S0036023615100137

- Trivedi R., Bandyopadhyay D. // Int. J. Hydrogen Energy. 2015. V. 40. P. 12727. https://doi.org/10.1016/j.ijhydene.2015.07.122
- Trivedi R., Bandyopadhyay D. // Int. J. Hydrogen Energy. 2016. V. 41. P. 20113. https://doi.org/10.1016/j.jihydene.2016.09.007
- Maltsev A.P., Charkin O.P. // Russ. J. Inorg. Chem. 2020. V. 65. P. 185. https://doi.org/10.1134/S0036023620020114
- Maltsev A.P., Charkin O.P. // Russ. J. Inorg. Chem. 2020. V. 65. P. 1204. https://doi.org/10.1134/S0036023620080100
- Charkin O.P., Maltsev A.P. // J. Phys. Chem. A. 2021. V. 125. P. 2308. https://doi.org/10.1021/acs.jpca.1c00211
- Becke A.D. // J. Phys. Chem. 1993. V. 98. P. 5648. https://doi.org/10.1063/1.464304
- 40. *Frisch M.J., Trucks G.W., Schlegel H.B. et al.* // Gaussian, 09. Revision A.02 Gaussian, Inc., Wallingford CT, 2013.
- Charkin O.P., Klimenko N.M., Charkin D.O. // Chem. Phys. 2019. V. 522. P. 112. https://doi.org/10.1016/j.chemphys.2019.02.007