

УДК 547.4;546.311;548.737

КОМПЛЕКСООБРАЗУЮЩИЕ СВОЙСТВА 2-ОКСИ-5-ЭТИЛФЕНИЛФОСФОНОВОЙ КИСЛОТЫ (H₃L). КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И АНАЛЬГЕТИЧЕСКАЯ АКТИВНОСТЬ [Cu(H₂L)₂(H₂O)₂]

© 2021 г. И. С. Иванова^{*a*}, Г. С. Цебрикова^{*b*}, *, Ю. И. Рогачева^{*c*}, А. Б. Илюхин^{*a*}, В. П. Соловьев^{*b*}, Е. Н. Пятова^{*a*}, В. Е. Баулин^{*c*}

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия ^bИнститут физической химии и электрохимии им. А.Н. Фрумкина РАН,

Ленинский пр-т, 31, корп. 4, Москва, 119991 Россия

^сИнститут физиологически активных веществ РАН, Северный пр-д, 1, Черноголовка Московской обл., 142432 Россия

*e-mail: tsebrikova@yandex.ru

Поступила в редакцию 24.04.2021 г. После доработки 31.05.2021 г.

Принята к публикации 01.06.2021 г.

Взаимодействием меди(II) с 2-окси-5-этилфенилфосфоновой кислотой (H₃L) синтезирован комплекс $[Cu(H_2L)_2(H_2O)_2]$ и методом РСА изучена его структура. Методом потенциометрического титрования определены константы протонирования кислоты H₃L и константы устойчивости ее комплексов с Cu²⁺ в воде. Установлено, что комплекс $[Cu(H_2L)_2(H_2O)_2]$ обладает малой токсичностью и высокой анальгетической активностью.

Ключевые слова: медь(II), РСА, ИК-спектроскопия, константа протонирования кислоты, константа устойчивости комплекса металл-лиганд

DOI: 10.31857/S0044457X21120060

введение

Известно [1-7], что фосфорорганические соединения играют большую роль в органическом синтезе, катализе и биохимии, а фосфорсодержащие фенолы являются необходимыми компонентами в синтезе более сложных структур [8, 9]. Методы синтеза различных фосфорилсодержащих фенолов недавно были проанализированы авторами [10-12]. В работе [11] описан синтез 2-оксифенилфосфонистой (L¹), 2-оксифенилфосфоновой (L^2) и 2-окси-5-этилфенилфосфоновой (H_3L) кислот, которые относятся к классу 2-фосфорилфенолов. Эти соединения являются структурными аналогами салициловой кислоты (L³), в которой С(О)ОН-группа заменена на группу P(O)(OH)₂. Кислота L³ является хорошо известным органическим лигандом, производные которого обладают противовоспалительным, жаропонижающим и обезболивающим действием [13] и широко используются в современной фармацевтике [14]. Известно, что комплексы органических лигандов с катионами металлов часто проявляют более высокую биологическую активность и менее токсичны, чем исходные лиганды [15-18]. Так, комплексы меди с органическими лигандами обладают широким спектром биологической активности (противоопухолевой, антимикробной, противовоспалительной и др.) [19–26] и представляют интерес в качестве компонентов радиофармпрепаратов [27–30]. Однако данных о строении и свойствах координационных соединений катионов металлов с 2-фосфорилфенолами (фосфорильными аналогами салициловой кислоты) известно мало. Комплексы 2-фосфорилфенолов с некоторыми лантанидами(III) описаны в работе [31], в [32] представлены кристаллические структуры некоторых комплексов меди(II) с фосфорилфенолами.

В продолжение изучения [11] физико-химических, биологических свойств и строения фосфорильных аналогов салициловой кислоты в настоящей работе синтезирован комплекс 2-окси-5этилфенилфосфоновой кислоты (H₃L) с катионом меди(II) — [Cu(H₂L)₂(H₂O)₂]. Состав комплекса подтвержден методами элементного анализа, ИК-спектроскопии и термогравиметрии. Определены константы протонирования кислоты H₃L и константы устойчивости ее комплексов с Cu²⁺ в воде. Методом РСА установлена кристаллическая структура комплекса [Cu(H₂L)₂(H₂O)₂]. Проведена оценка острой токсичности и анальгетической активности комплекса.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез 2-окси-5-этилфенилфосфоновой кис- (H_2L) лоты описан в [11]. Комплекс [Cu(H₂L)₂(H₂O)₂] получали взаимодействием водных растворов H_3L и $Cu(ClO_4)_2 \cdot 6H_2O$ при эквимолярном соотношении исходных компонентов. Смесь растворов ярко-голубого цвета на непродолжительное время оставляли на воздухе. Выпавший светло-голубой кристаллический осадок отфильтровывали, промывали небольшим количеством воды и сушили на воздухе при комнатной температуре. Варьирование соотношения реагентов и проведение реакции в присутствии 1 экв NaOH не влияет на выход и состав образующегося осадка. Комплекс малорастворим в воде и малополярных органических растворителях, но хорошо растворим в этаноле, ДМФА и ДМСО. Кристаллы для РСА получены в результате медленной кристаллизации водного раствора.

	С	Н
Найдено, %:	38.43, 38.57;	5.32, 5.34.
Для C ₁₆ H ₂₄ CuO ₁₀ P ₂		
вычислено, %:	38.29;	4.82.

Элементный анализ проводили на C,H,N-анализаторе (Carlo Erba Strumentazione, Italy) и атомно-эмиссионном спектрометре с индуктивно связанной плазмой IRIS Advantage ("Thermo Jarrell Ash", США).

ИК-спектры поглощения записывали в диапазоне 4000–550 см⁻¹ методом НПВО на спектрометре Nexsus Nicolete.

Термогравиметрические исследования проводили на дериватографе SDT Q600 в диапазоне температур от 20 до 600°С при скорости нагревания 4 град/мин в токе аргона.

Константы протонирования кислоты H_3L и константы устойчивости ее комплексов с перхлоратом меди(II) определяли методом потенциометрического титрования. Методика титрования с использованием потенциометра OP-300 Radelkis изложена в [33]. Для изучения комплексообразования использовали гексагидрат перхлората меди(II) марки "х. ч.".

Четыре титрования Н₃L, выполненные стандартным 0.1 М раствором NaOH при температуре 298 ± 0.1 К и ионной силе I = 0.1 М КСІ, включали от 41 до 54 точек. Исходная аналитическая концентрация H₃L составляла 0.62, 0.80, 0.99 и 1.57 ммоль/л. Титрование проводили в интервале рН от 3.0 до 11.2. Константы протонирования H₃L определены с помошью программы CHEMEOUI с использованием трех алгоритмов [34, 35], позволяющих значительно повысить надежность оценок констант протонирования. Расчеты констант выполнены как для каждого эксперимента, так и для объединенных четырех экспериментов, обеспечивая наименьшие погрешности в оценке констант. В качестве критериев согласия предполагаемого набора равновесных реакций в растворе с экспериментальными данными использовали *R*фактор Гамильтона (HRF) и коэффициент детерминации (R_{det}^2) [33]. В зависимости от эксперимента и алгоритма программы фактор *HRF* варьировали от

0.26 до 1.28%, а коэффициент R_{det}^2 — от 0.999 до 1.0. Всего выполнено 18 оценок констант, по которым вычислены их средние значения, за исключением, согласно правилу Томсона [36], резко отклоняющихся величин.

Титрования растворов H_3L с Cu(ClO₄)₂ · 6H₂O, выполненные в аналогичных условиях, включали от 49 до 50 точек. Исходные аналитические концентрации H_3L и $Cu(ClO_4)_2 \cdot 6H_2O$ в трех титрованиях составляли 0.76 и 0.36; 0.69 и 0.34; 0.41 и 0.21 ммоль/л. Титрование проводили в интервале рН от 3.3 до 10.9. Медь(II) образует в воде устойчивые гидроксиды [37], поэтому оценки констант комплексообразования Cu²⁺ с изучаемыми кислотами были выполнены как с учетом реакций гидролиза меди(II), так и без их учета. В расчетах использовали следующие константы устойчивости (lgβ_n) гидроксокомплексов в воде: -6.29 и -13.10 соответственно для равновесий Cu²⁺ + nH₂O = $= Cu^{2+}(OH^{-})_n + nH^{+}, n = 1, 2$ [37]. Оба подхода дали близкие оценки констант комплексообразования с пересекаюшимися интервалами их стандартных отклонений. Константы комплексообразования H_3L с Cu(ClO₄)₂ · 6H₂O были оценены с помощью программы CHEMEQUI [34, 35] с использованием четырех алгоритмов: EQ, Simplex, Monte-Carlo и Genetic Algorithm [38]. В этих экспериментах фактор HRF варьировался от 0.88 до 1.68%, а R_{det}^2 — от 0.996 до 0.999. По трем титрованиям и четырем алгоритмам выполнено 12 оценок констант, по которым вычислены их средние значения, за исключением (по правилу Томсона) резко отклоняющихся величин [36]. В расчетах констант комплексообразования Cu2+ с протонированными формами $H_n L^{(3-n)-}$ (n=0, 1, 2) константы диссоциации кислоты Н₃L не варьировали,

ты уточнения структуры т				
Параметр	Значение			
Соединение	Ι			
<i>Т</i> , К	150(2)			
Сингония	Моноклинная			
Пр. гр.	C2/c			
<i>a</i> , Å	35.570(2)			
<i>b</i> , Å	4.8324(3)			
<i>c</i> , Å	12.7041(7)			
β, град	110.891(2)			
$V, Å^3$	2040.1(2)			
Ζ	4			
$ ho_{выч},$ г/см ³	1.634			
μ, мм ⁻¹	1.279			
Размер кристалла, мм	$0.30 \times 0.20 \times 0.12$			
интервал Ө, град	2.452, 30.074			
Интервал индексов	$-50 \le h \le 50$			
	$-6 \le k \le 6$			
	$-17 \le l \le 17$			
Собранных отражений	10739			
Независимых отражений (R_{int})	2978, 0.0940			
Полнота до $\theta = 25.242^{\circ}, \%$	99.9%			
Max, min пропускание	0.746, 0.5479			
Ограничения/ параметры	0/135			
GOOF	1.053			
$R_1, wR_2 (I \ge 2\sigma(I))$	0.0644, 0.1658			
R_1, wR_2 (весь массив)	0.0675, 0.1685			
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min}}$, $e \text{ Å}^{-3}$	1.787, -0.714			

Таблица 1. Основные структурные данные и результаты уточнения структуры І

они взяты как ранее оцененные в предыдущих титрованиях H_3L . Оценки констант комплексообразования могут быть несколько смещены вследствие образования осадка — помутнения раствора при pH > 6, что свидетельствует о малой растворимости комплексов. Смещение оценок можно считать незначительным, поскольку при варьировании (оптимизации, что возможно с помощью программы CHEMEQUI) аналитической концентрации как лиганда, так и лиганда и меди(II) по результатам титрований были получены достаточно согласованные величины.

РСА. Экспериментальные данные для соединения $[Cu(H_2L)_2(H_2O)_2]$ (I) получены на дифрактометре Bruker SMART APEX3 (λ (Mo K_{α}), графитовый монохроматор) [39], ЦКП ИОНХ РАН. Поглощение учтено полуэмпирическим методом по эквивалентам (программа SADABS [40]). Структура опрелелена комбинацией прямого метода и синтезов Фурье. Кристалл оказался псевдомероэдрическим двойником – матрица 0/-1/0/0/0/-1/1/0/1 преобразует моноклинную ячейку в псевдоромбическую (a = 4.832, b == 12.704, c = 33.232 Å, $\alpha = 90.03^{\circ}$, $\beta = 90.00^{\circ}$, $\gamma =$ $= 90.00^{\circ}$), соотношение доменов равно 0.72 : 0.28. Метильный фрагмент лиганда разупорядочен по двум позициям в соотношении 1 : 1. Структура уточнена полноматричным анизотропно-изотропным (разупорядоченный атом С) МНК. Атомы водорода частично локализованы из разностного синтеза Фурье, частично рассчитаны из геометрических соображений. Все расчеты выполнены по программам SHELXS и SHELXL [41].

Экспериментальные данные для структуры I депонированы в Кембриджском банке структурных данных (ССDС № 2077739; deposit@ccdc.cam.ac.uk или http://www.ccdc.cam.ac.uk). Основные структурные данные приведены в табл. 1, геометрия водородных связей – в табл. 2.

Биологические испытания. Исследование острой токсичности H₃L и комплекса [Cu(H₂L)₂(H₂O)₂] проводили путем однократного внутрижелудочного или внутрибрюшинного введения водного/водно-крахмального раствора мышам CD1 обоего пола массой 21–24 г. Наблюдение проводили в течение 14 сут. Значения ЛД₅₀ рассчитывали по методу Литчфилда и Уилкоксона [42].

Анальгетическую активность H_3L и [Cu(H_2L)₂(H_2O)₂] исследовали на белых беспородных мышах обоих полов массой 18–24 г на модели корчей, вызванных внутрижелудочным введением 0.25 мл 0.75%-ного раствора уксусной кислоты на 10.00 г веса животного. Исследуемые вещества вводили однократно в виде водного/водно-крахмального раствора в соотношении 0.10 мл на 100.00 г веса мыши за 1 ч до введения уксусной кислоты. Количество корчей подсчитывали в течение 15 мин. Каждую дозу исследовали

Таблица 2. Геометрические параметры водородных связей в структуре I

D–HA	D–H, Å	H…A, Å	D…A, Å	∠(DHA), град
$O(3)-H(1)\cdots O(2) (x, y+1, z)$	0.90	1.60	2.498(4)	175
O(4)-H(2)···O(3) (x , $-y$ + 1, z - 1/2)	0.82	2.02	2.835(5)	178
$O(5)-H(3)\cdots O(1) (x, y-1, z)$	0.90	1.82	2.719(5)	180
O(5)-H(4)···O(2) $(-x + 1, y, -z + 3/2)$	0.90	1.92	2.722(5)	148

Рис. 1. Строение комплекса [Cu(H₂L)₂(H₂O)₂] в структуре I (Cu(1)–O(1) 1.967(3), Cu(1)–O(4) 2.448(3), Cu(1)–O(5) 1.949(3) Å) (а) и проекция структуры I вдоль оси *b* (б).

на шести животных. Контрольным животным вводили соответствующий объем растворителя (вода), в случае комплекса добавляли крахмал. Активность оценивали по величине ЕД₅₀, т.е. дозе, вызывающей 50% эффекта (уменьшения количества корч по сравнению с контролем). В качестве препарата сравнения использовали анальгин (ООО "ГРОТЕКС", Россия).

Работа выполнена с соблюдением всех применимых международных, национальных и институциональных руководящих принципов по уходу и использованию животных.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Структура I образована центросимметричными комплексами [Cu(H₂L)₂(H₂O)₂] (рис. 1а). Координационное окружение 4 + 2 обычно для Cu²⁺. Короткая водородная связь (**BC**) O(3)–H...O(2) между некоординированными атомами O фосфоновых фрагментов объединяет комплексы в 1Dцепочку, параллельную оси *b*, совместное действие четырех BC приводит к образованию 2Dструктуры (слои перпендикулярны оси *a*), т.е. в структуре I присутствуют гидрофильные и гидрофобные области (рис. 1б). Отсутствие значимых вторичных взаимодействий в гидрофобной области приводит к разупорядоченности этильного фрагмента $H_2L. \label{eq:holescale}$

Известно, что в результате комплексообразования наибольшие изменения в ИК-спектрах испытывают частоты валентных колебаний донорных групп, принимающих участие в образовании координационных и водородных связей.

Отнесение некоторых колебательных частот донорных групп в ИК-спектрах H_3L и [Cu(H_2L)₂(H_2O)₂], позволяющих судить о координации лиганда, проведено с учетом совокупных спектральных и структурных исследований фосфорилподандов — производных *бис*-фосфоновых кислот, их комплексов [43–46] и ортозамещенных фенолов [47, 48], выполненных ранее.

Известно, что молекулы такого рода соединений, как кислота H_3L , в свободном состоянии ассоциированы за счет образования BC, в результате в ИК-спектрах полосы, обусловленные колебаниями донорных групп, могут быть существенно смещены в низкочастотную область [49]. В ИКспектре H_3L валентные колебания фенольной OH-группы v(OH)_{Ph} проявляются в виде широкой полосы средней интенсивности с максимумом около 2971 см⁻¹ (~3600 см⁻¹ в спектре свободного фенола). Полосы валентных колебаний фосфонатных OH-групп $v(OH)_P$ лежат ниже, это малоинтенсивная широкая асимметричная полоса с максимумом при ~2690 см⁻¹ и полоса около 2290 см⁻¹. Существенное смещение в низкочастотную область и уширение полос валентных колебаний всех групп OH свидетельствуют об их участии в образовании водородных связей.

В ИК-спектре H_3L около 1230 см⁻¹ присутствует полоса средней интенсивности, которая, в соответствии со спектральными исследованиями [43–46], относится к v(P=O). Полосу средней интенсивности при 1270 см⁻¹ можно отнести к v(Ph–O) фенольной группы [44, 49, 50].

Полосы деформационных колебаний фосфонового фрагмента δ (РОН) должны лежать около 1000 см⁻¹ [49]. Действительно, в ИК-спектре H₃L в этой области наблюдаются две интенсивные полосы: дублетная при 991, 979 см⁻¹ и интенсивная полоса при 949 см⁻¹.

Комплексообразование приводит к незначительному понижению v(P=O) в ИК-спектре [Cu(H₂L)₂(H₂O)₂] по сравнению со спектром свободного H₃L (1230 \rightarrow 1225 см⁻¹). Похожая ситуация, когда фосфорильные атомы кислорода не участвуют в координации катиона меди, а изменение частоты v(P=O) происходит только за счет образования водородных связей, наблюдалась в случае комплекса меди, описанного в [44]. Частота v(Ph-O) в спектре комплекса повышается до 1284 см⁻¹. В области деформационных колебаний фосфонового фрагмента в спектре комплекса появляется новая интенсивная полоса $\delta(POH)$ около 1017 см⁻¹ вместо дублетной полосы (991, 979 см⁻¹) в спектре H₃L.

В ИК-спектре [Cu(H₂L)₂(H₂O)₂] также появляется новая широкая полоса с двумя максимумами около 3314 и 3201 см⁻¹ вместо полосы при 2971 см⁻¹ в спектре свободного H₃L. Полоса при 3314 см⁻¹ обусловлена, по-видимому, колебаниями v(H₂O) координированных молекул воды; колебания δ (H₂O) проявляются около 1700 см⁻¹ в виде широкой полосы средней интенсивности. Полоса при 3201 см⁻¹ относится, на наш взгляд, к v(OH)_{Ph}, что значительно выше, чем в спектре свободного H₃L. Полосы, обусловленные валентными колебаниями OH-групп фосфонового фрагмена v(OH)_P, участвующих в образовании водородных связей, смещаются в низкочастотную область: 2690 \rightarrow 2570 и 2290 \rightarrow 2273 см⁻¹.

Термогравиметрические исследования $[Cu(H_2L)_2(H_2O)_2]$ показали, что при нагревании комплекса при температуре ~124°С происходит удаление двух молекул воды, что составляет 7.88% от общей массы вещества (рассчитано 7.17%), которое на кривой ДТА сопровождается соответ-

ствующим эндотермическим эффектом. Столь высокое значение температуры указывает на внутрисферный характер молекул воды. Дальнейшее повышение температуры приводит к постепенному разложению комплекса, а на кривой ДТА появляются три эндотермических эффекта при 219, 284 и 333°С.

Методом потенциометрического титрования были определены константы протонирования кислоты H₃L (табл. 3). Ранее для 2-оксифенилфосфоновой кислоты (L²) константы протонирования фосфоновой группы были определены методом потенциометрии, а константа протонирования фенольной группы - спектрофотометрическим методом [51]. Значения вторых констант $\lg K_2$ этих кислот близки: 6.36 ± 0.37 (H₃L) и 6.46 (L² [51]); значения же первой и третьей констант различаются значительно. Более низкая кислотность H₃L $(\lg K_1 = 3.20 \pm 0.74)$ по сравнению с L² ($\lg K_1 = 1.66$ [51]) обусловлена, по-видимому, присутствием лонорного этильного заместителя, который затрудняет ионизацию фосфоновой группы. Кроме того, константа $\lg K_1$ была оценена со значительной величиной стандартного отклонения в связи с тем, что полную константу $lg\beta_3 = 21.14 \pm 0.69$ (табл. 3) не удалось определить с достаточной точностью. Более низкая кислотность фенольной группы кислоты H_3L (lg $K_3 = 11.58 \pm 0.24$) по сравнению с величинами $\lg K_3$, равными 10.03 и 10.56 [51] соответственно для 3- и 4-оксифенилфосфоновых кислот, указывает на внутримолекулярную водородную связь кислоты H₃L. Наличие этой связи в молекуле Н₃L подтверждено данными ИК-спектроскопии. Значение $\lg K_3 = 15.40$ [51] для L² представляется завышенным: маловероятно, чтобы в воде внутримолекулярная водородная связь изменила значение K_3 на пять порядков по сравнению с К₃ 3- и 4-оксифенилфосфоновых кислот.

Диаграмма распределения протонированных форм $H_n L^{(3-n)-}$ (n = 0, 1, 2, 3) кислоты $H_3 L$ в зависимости от pH представлена на рис. 2. При физиологическом значении pH 7.4 в воде преобладает анион HL^{2-} при миллимолярных концентрациях кислоты. В интервале pH от 3 до 5.5 кислота находятся преимущественно в форме аниона H_2L^- .

Константы устойчивости комплексов Cu^{2+} с депротонированными формами кислоты H_3L определены методом потенциометрии с помощью программы CHEMEQUI (табл. 4). Согласно диаграмме распределения комплексов Cu^{2+} с кислотой H_3L (рис. 3), в растворе образуются комплексы состава Cu : L = 1 : 2 и в гораздо меньшем количестве комплексы Cu : L = 1 : 1, что согласуется с преимущественной кристаллизацией ком-

i	Равновесие	$\lg K_i \pm sd^{6}$	Равновесие	$lg\beta_i \pm sd$ в
1	$H_2L + H = H_3L$	3.20 ± 0.74	$\Gamma + H = H\Gamma$	11.58 ± 0.24
2	$HL + H = H_2L$	6.36 ± 0.37	$L + 2H = H_2L$	17.94 ± 0.28
3	L + H = HL	11.58 ± 0.24	$L + 3H = H_3L$	21.14 ± 0.69

Таблица 3. Ступенчатые и полные константы протонирования кислоты H₃L в воде при температуре 298 К и ионной силе 0.1 M КСІ ^а

^аДля простоты представления равновесий заряды химических форм не указаны: вместо H⁺ + L^{3–} = HL^{2–} приведено H + L = = HL и т.д. $\frac{6}{5} \lg K_i$ и sd – ступенчатые константы равновесий и их стандартные отклонения, вычисленные по результатам нескольких титрований и расчетов (см. экспериментальную часть) с использованием закона сложения случайных ошибок и стандартных отклонений для полных констант равновесий lgβ_i. ^в lgβ_i и sd – полные константы равновесий и их стандартные отклонения, рассчитанные с помощью программы CHEMEQUI.

Таблица 4. Ступенчатые и полные константы устойчивости комплексов Cu²⁺ с кислотой H₃L в воде при температуре 298 К и ионной силе 0.1 М КСІ

i	Равновесие	$\lg K_i \pm sd$	Равновесие	$\lg \beta_i \pm sd$
1	Cu + L = CuL	8.91 ± 0.06	Cu + L = CuL	8.91 ± 0.06
2	$CuL + L = CuL_2$	8.39 ± 0.08	$Cu + 2L = CuL_2$	17.30 ± 0.05
3	CuL + OH = Cu(OH)L	4.48 ± 0.12	Cu + L + OH = Cu(OH)L	13.39 ± 0.11
4	$CuL_2 + OH = Cu(OH)L_2$	4.46 ± 0.44	$Cu + 2L + OH = Cu(OH)L_2$	21.76 ± 0.44

плекса [Cu(H₂L)₂(H₂O)₂]. При начальных концентрациях реагентов ~0.5 ммоль/л максимумы концентраций комплексов наблюдаются при рН 6.6 (CuL⁻) и рН 8.5 (CuL⁴⁻). При рН > 8 проис-ходит образование и рост доли гидроксилсодержащих комплексов $Cu(OH)L^{2-}$ и $Cu(OH)L^{5-}_{2}$ (рис. 3).

 $\lg K_2 = 8.39$) комплексов CuL⁻ и CuL⁴⁻ оказалась ниже соответствующей константы комплексов структурным данным, длины связей Cu-OPh (2.448(3) Å) и Cu–OP(O)(OH)Ph (1.967(3) Å) cvщественно различаются (см. рис. 1), т.е. эффект кооперативного связывания двумя координациα, % 100 CuL₂ Cu 80

салициловой кислоты с Cu²⁺ ($\lg K_1 = 10.83$ и $\lg K_2 =$

= 8.05 [52, 53]. Очевидно, это связано с тем, что

фенольный кислород лиганда Н₃L в меньшей сте-

пени участвует в комплексообразовании, чем

Рис. 2. Распределение химических форм кислоты H₃L в зависимости от рН в воде при 298 К, ионной силе 0.1 М и аналитической концентрации 1.0 ммоль/л. Для упрощения заряды не включены в формулы анионов кислот.

Рис. 3. Диаграмма распределения комплексов Cu^{2+} с кислотой H₃L в зависимости от pH в воде при 298 K, ионной силе 0.1 М и начальных концентрациях реагентов 0.69 (H₃L) и 0.34 ммоль/л (Cu²⁺). Для упрощения заряды не включены в формулы, α – доля в процентах относительно общей концентрации Cu²⁺

кислород фосфорильной группы. Согласно Первая из констант устойчивости ($\lg K_1 = 8.91$ и

онными центрами лиганда незначительный, в отличие, например, от 4-метоксисалициловой кислоты, для которой связи Cu–OPh (1.899 Å) и Cu– OC(O)Ph (1.889 Å) близки по длине [54]. Тем не менее значение $\lg K_1$ комплекса Cu^{2+} с H_3L (табл. 4) несколько выше соответствующих констант ($\lg K_{Cull}$ = 8.51 [55], 7.69 [56], 7.27 [56]) комплексов Cu²⁺ с подандами 1,5-бис[2-(диоксифосфорил)-4-этилфенокси]-3-оксапентаном, 1,5-бис[2-(диоксифосфорил)фенокси]-3-оксапентаном и 1,8-бис[2-(диоксифосфорил)фенокси]-3,6-диоксаоктаном, являющимися алкилированными аналогами 2-оксифенилфосфоновой кислоты. Это косвенно указывает на определенное участие фенольной группы кислоты H₃L в комплексообразовании с Cu²⁺ с учетом того, что, согласно данным РСА [44, 46], в связывании с катионом меди(II) участвуют только фосфорильные группы указанных подандов.

Предсказание устойчивости комплексов Cu²⁺ на основе ранее полученных моделей структура лиганда—устойчивость комплекса [57] дает согласующиеся с экспериментальными оценки констант lg K_1 и lg K_2 с учетом их погрешностей: 6.5 ± ± 1.1 (73) и 7.7 ± 1.1 (55). В скобках указано число моделей структура—свойство, вовлеченных в предсказание.

Известно, что одними из самых распространенных противовоспалительных препаратов являются производные салициловой кислоты, обладающие как противовоспалительным, так и анальгетическим действием [58]. Однако их передозировка может привести к серьезным побочным эффектам [59, 60]. Салицилатные комплексы Cu(II) оказались более эффективными лекарственными средствами с меньшим токсическим воздействием [61, 62]. Ранее [23] нами было показано, что 2-оксифенилфосфонистая кислота (L¹) обладает низкой токсичностью и заметной анальгетической и противовоспалительной активностью. Поскольку биологическая активность H₃L и $[Cu(H_2L)_2(H_2O)_2]$ не исследовалась, была проведена оценка острой токсичности и анальгетической активности этих соединений.

Установлено, что при внутрижелудочном введении H_3L и комплекса [Cu(H_2L)₂(H_2O)₂] для мышей обоего пола значения $ЛД_{50} \ge 2000$ мг/кг. При внутрибрюшинном способе введения H_3L существует гендерное различие, а именно: для мышей самок LD_{50} составляет 350 мг/кг, для самцов – 400 мг/кг. Тем не менее при обоих способах введения по своим основным токсикометрическим параметрам H_3L относится к 4 классу токсичности – к малотоксичным соединениям.

Проверка анальгетической активности показала, что введение [Cu(H₂L)₂(H₂O)₂] вызывает у мышей дозозависимое уменьшение количества

Таблица 5. Острая токсичность и анальгетическая активность H_3L , $[Cu(H_2L)_2(H_2O)_2]$ и анальгина

Соединение	LD ₅₀ , мг/кг	Анальгетическая активность		
		ED ₅₀ , мг/кг	TI	
H ₃ L	2000	70	28.6	
$[Cu(H_2L)_2(H_2O)_2]$	2000	5.8	344.8	
Анальгин	3390	42	80.7	

корчей, вызванных внутрижелудочным введением уксусной кислоты. Результаты проверки острой токсичности и анальгетической активности комплекса [Cu(H₂L)₂(H₂O)₂] в сравнении с H₃L [11] и анальгином приведены в табл. 5.

Анализ результатов показал, что при малой токсичности анальгетический эффект комплекса $[Cu(H_2L)_2(H_2O)_2]$ на моделях уксусных корчей значительно выше, чем у анальгина и свободной H_3L , и даже выше анальгетического эффекта 2-оксифенилфосфонистой кислоты (L^1) ($ED_{50} = 18$; TI = 194), о которой говорилось в [11]. Результаты вскрытия лабораторных животных не показали ульцерогенного воздействия кислоты H_3L в дозах, соответствующих $EД_{50}$.

ЗАКЛЮЧЕНИЕ

Настоящая работа продолжает изучение 2-оксифенилфосфоновых кислот - фосфорильных аналогов салициловой кислоты. При комплексообразовании 2-окси-5-этилфенилфосфоновая кислота (H₃L) выступает в роли сильной кислоты в качестве хелатирующего лиганда. В координации с катионом меди(II) участвуют атомы кислорода фенольной и депротонированной фосфорильной групп. Впервые получены константы протонирования 2-окси-5-этилфосфоновой кислоты и константы устойчивости ее комплексов с Cu²⁺ в воде. Результаты биологических исследований показали, что комплекс $[Cu(H_2L)_2(H_2O)_2]$ обладает высокой анальгетической активностью, при этом оба соединения не обладают ульцерогенным действием в дозах, соответствующих ЕД₅₀. По своим основным токсикометрическим параметрам кислота H_3L комплекс И $[Cu(H_2L)_2(H_2O)_2]$ относятся к малотоксичным вешествам.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания Института общей и неорганической химии им. Н.С. Курнакова РАН, Института физической химии и электрохимии им. А.Н. Фрумкина РАН и Института физиологически активных веществ РАН (тема № 0090-2019-0008) и при частичной финансовой поддержке Российского научного фонда (проект № 19-13-00294, расчеты констант; проект № 21-43-00020, тестирование биологической активности).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Quin L.D.* A Guide to Organophosphorus Chemistry. New York: Wiley-Interscience, 2000. 408 p.
- Best Synthetic Methods: Organophosphorus (V) Chemistry / Ed. Timperley C.M. London: Academic Press, 2013. 786 p. https://doi.org/10.1016/C2011-0-04165-0
- 3. *De Clercq E.* // Biochem. Pharmacol. 2011. V. 82. № 2. P. 99.
- https://doi.org/10.1016/j.bcp.2011.03.027
- Pradere U., Garnier-Amblard E.C., Coats S.J. et al. // Chem. Rev. 2014. V. 114. № 18. P. 9154. https://doi.org/10.1021/cr5002035
- Queffélec C., Petit M., Janvier P. et al. // Chem. Rev. 2012. V. 112. № 7. P. 3777. https://doi.org/10.1021/cr2004212
- Shameem M.A., Orthaber A. // Chem. A Eur. J. 2016.
 V. 22. № 31. P. 10718. https://doi.org/10.1002/chem.201600005
- Dutartre M., Bayardon J., Jugé S. // Chem. Soc. Rev. 2016. V. 45. № 20. P. 5771.
- https://doi.org/10.1039/C6CS00031B
- Ivanova I.S., Ilyukhin A.B., Tsebrikova G.S. et al. // Inorg. Chim. Acta. 2019. V. 497. P. 119095. https://doi.org/10.1016/j.ica.2019.119095
- Иванова И.С., Баулин В.Е., Полякова И.Н. и др. // Журн. общ. химии. 2017. Т. 87. № 11. С. 1833. [Ivanova I.S., Baulin V.E., Polyakova I.N. et al. // Russ. J. Gen. Chem. 2017. V. 87. № 11. Р. 2574. https://doi.org/10.1134/S107036321711010X]
- 10. *Zhang M., Jia X., Zhu H. et al.* // Org. Biomol. Chem. 2019. V. 17. № 11. P. 2972. https://doi.org/10.1039/C9OB00129H
- Баулин В.Е., Калашникова И.П., Вихарев Ю.Б. и др. // Журн. общ. химии. 2018. Т. 88. № 9. С. 1438. [Baulin V.E., Kalashnikova I.P, Vikharev Y.B. et al. // Russ. J. Gen. Chem. 2018. V. 88. № 9. Р. 1786. https://doi.org/10.1134/S1070363218090049]. https://doi.org/10.1134/S0044460x18090044
- 12. Иванова И.С., Баулин В.Е., Пятова Е.Н. и др. // Журн. общ. химии. 2018. Т. 88. № 9. С. 1524. [Ivanova I.S., Baulin V.E., Pyatova E.N. et al. // Russ. J. Gen. Chem. 2018. V. 88. № 9. Р. 1867. https://doi.org/10.1134/S1070363218090177] https://doi.org/10.1134/s0044460x18090172
- 13. Weder J.E., Dillon C.T., Hambley T.W. et al. // Coord. Chem. Rev. 2002. V. 232. № 1–2. P. 95. https://doi.org/10.1016/S0010-8545(02)00086-3

- 14. Novak E., Osborne D.W., Matheson L.E. et al. // Drug Dev. Ind. Pharm. 1991. V. 17. № 3. P. 373. https://doi.org/10.3109/03639049109043833
- 15. *Hambley T.W.* // Dalton Trans. 2007. № 43. P. 4929. https://doi.org/10.1039/b706075k
- van Rijt S.H., Sadler P.J. // Drug Discov. Today. 2009.
 V. 14. № 23-24. P. 1089. https://doi.org/10.1016/j.drudis.2009.09.003
- Ronconi L., Sadler P.J. // Coord. Chem. Rev. 2007. V. 251. № 13-14 spec. iss. P. 1633. https://doi.org/10.1016/j.ccr.2006.11.017
- Thompson K.H., Orvig C. // Science. 2003. V. 300. № 5621. P. 936. https://doi.org/10.1126/science.1083004
- 19. *Wehbe M., Leung A.W.Y., Abrams M.J. et al.* // Dalton Trans. 2017. V. 46. № 33. P. 10758. https://doi.org/10.1039/c7dt01955f
- Eshaghi Malekshah R., Salehi M., Kubicki M. et al. // J. Coord. Chem. 2018. V. 71. № 7. P. 952. https://doi.org/10.1080/00958972.2018.1447668
- Sadhu M.H., Kumar S.B., Saini J.K. et al. // Inorg. Chim. Acta. 2017. V. 466. P. 219. https://doi.org/10.1016/j.ica.2017.06.006
- Ndagi U., Mhlongo N., Soliman M.E. // Drug Des. Devel. Ther. 2017. V. 11. P. 599. https://doi.org/10.2147/DDDT.S119488
- Shabbir M., Akhter Z., Ismail H. et al. // J. Mol. Struct. 2017. V. 1146. P. 57. https://doi.org/10.1016/j.molstruc.2017.05.127
- Piri Z., Moradi-Shoeili Z., Assoud A. // Inorg. Chem. Commun. 2017. V. 84. P. 122. https://doi.org/10.1016/j.inoche.2017.08.005
- Jayamani A., Sengottuvelan N., Chakkaravarthi G. // Polyhedron. 2014. V. 81. P. 764. https://doi.org/10.1016/j.poly.2014.05.076
- 26. Uzun N., Colak A.T., Emen F.M. et al. // J. Coord. Chem. 2015. V. 68. № 6. P. 949. https://doi.org/10.1080/00958972.2014.1003371
- 27. *Ling X., Cutler C.S., Anderson C.J.* The Radiopharmaceutical Chemistry of the Radioisotopes of Copper Springer Nature Switzerland AG 2019, 2019. P. 335. https://doi.org/10.1007/978-3-319-98947-1_19
- 28. Bandara N., Sharma A.K., Krieger S. et al. // J. Am. Chem. Soc. 2017. V. 139. № 36. P. 12550. https://doi.org/10.1021/jacs.7b05937
- 29. Орлова М.А., Трофимова Т.П., Золотова Н.С. и др. // Изв. АН Сер. хим. 2019. № 10. С. 1933. [Orlova М.А., Trofimova T.P., Zolotova N.S. et al. // Russ. Chem. Bull. Int. Ed. 2019. V. 68. № 10. P. 1933. https://doi.org/10.1007/s11172-019-2649-2]
- McInnes L.E., Noor A., Kysenius K. et al. // Inorg. Chem. 2019. V. 58. № 5. https://doi.org/10.1021/acs.inorgchem.8b03466
- 31. *Shuvaev S., Kotova O., Utochnikova V. et al.* // Inorg. Chem. Commun. 2012. V. 20. P. 73. https://doi.org/10.1016/j.inoche.2012.02.020
- 32. Shuvaev S., Bushmarinov I.S., Sinev I. et al. // Eur. J. Inorg. Chem. 2013. № 27. P. 4823. https://doi.org/10.1002/ejic.201300540
- Цебрикова Г.С., Барсамян Р.Т., Соловьев В.П. и др. // Изв. АН Сер. хим. 2018. № 12. С. 2184. [Tsebrikova G.S.,

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 12 2021

Barsamian R.T., Solov'ev V.P. et al. // Russ. Chem. Bull. Int. Ed. 2018. V. 67. № 12. P. 2184. https://doi.org/10.1007/s11172-018-2352-8]

- 34. Соловьев В.П. Программа ChemEqui для расчета констант химических равновесий и сопутствующих параметров, исходя из экспериментальных результатов физико-химических методов, таких как УФ, ИК и ЯМР спектроскопия, калориметрия, потенциометрия и кондуктометрия. http://vpsolovev.ru/programs/ (12 августа 2020).
- 35. *Solov'ev V.P., Tsivadze A.Y.* // Prot. Met. Phys. Chem. Surfaces. 2015. V. 51. № 1. P. 1. https://doi.org/10.1134/S2070205115010153
- 36. *Muller P.H., Neumann P., Storm R.* Tafeln der mathematischen Statistik. Leipzip: VEB Fachbuchverlag, 1979.
- Bandyopadhyay S., Das A., Mukherjee G.N. et al. // Inorg. Chim. Acta. 2004. V. 357. № 12. P. 3563. https://doi.org/10.1016/j.ica.2004.05.010
- Ali M., Pant M., Abraham A. // Trans. Inst. Meas. Control. 2012. V. 34. № 6. P. 691. https://doi.org/10.1177/0142331211403032
- 39. Bruker AXS Inc. // APEX3 and SAINT 2016.
- 40. *Sheldrick G.M.* // SADABS, Programs Scaling Absorpt. Correct. Area Detect. Data. 1997.
- 41. *Sheldrick G.M.* // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
- Беленький М.Л. Элементы количественной оценки фармакологического эффекта. Л.: Медицинская литература, 1963. 146 с.
- Tsebrikova G.S., Polyakova I.N., Solov'ev V.P. et al. // Inorg. Chim. Acta. 2018. V. 478. P. 250. https://doi.org/10.1016/j.ica.2018.04.007
- 44. Баулин В.Е., Кискин М.А., Иванова И.С. и др. // Журн. неорган. химии. 2012. Т. 57. № 5. С. 739. [Baulin B.E., Kiskin M.A., Ivanova I.S. et al. // Russ. J. Inorg. Chem. 2012. V. 57. № 5. Р. 671. https://doi.org/10.1134/S0036023612050038]
- 45. Баулин В.Е., Миначева Л.Х., Иванова И.С. и др. // Журн. неорган. химии. 2011. Т. 56. № 8. С. 1293. [Baulin V.E., Minacheva L.K., Ivanova I.S. et al. // Russ. J. Inorg. Chem. 2011. V. 56. № 8. Р. 1222. https://doi.org/10.1134/S0036023611080043]
- 46. Баулин В.Е., Миначева Л.Х., Иванова И.С. и др. // Журн. неорган. химии. 2011. Т. 56. № 8. С. 1303. [Baulin V.E., Minacheva L.K., Ivanova I.S. et al. // Russ. J. Inorg. Chem. 2011. V. 56. № 8. Р. 1232. https://doi.org/10.1134/S0036023611080055]
- 47. Демин С.В., Нефедов С.Е., Баулин В.Е. и др. // Коорд. химия. 2013. Т. 39. № 4. С. 223. [Demin S.V., Nefedov S.E., Baulin V.E. et al. // Russ. J. Coord. Chem. 2013. V. 39. № 4. Р. 333. https://doi.org/10.1134/S1070328413040052] https://doi.org/10.7868/s0132344x13040051

- Нолякова И.Н., Баулин В.Е., Иванова И.С. и др. // Кристаллография. 2015. Т. 60. № 1. С. 63. [Polyakova I.N., Baulin V.E., Ivanova I.S. et al. // Crystallogr. Reports. 2015. V. 60. № 1. Р. 57. https://doi.org/10.1134/S1063774515010162] https://doi.org/10.7868/s0023476115010166
- Беллами Л. Инфракрасные спектры сложных молекул. М.: Изд-во иностр. литер., 1963. 590 с. [Bellamy L.J. The Infra-Red Spectra of Complex Molecules. London–New York: Methuen & Co. LTD, JHN Wiley & Sons, Inc., 1954.]
- Наканиси К. Инфракрасные спектры и строение органических соединений. М.: Мир, 1965. 216 с. [Nakanishi K. Infrared Absorption Spectroscopy. San Francisco: Holden-Day, Inc.; Tokyo: Nankodo Company Limited, 1962].
- *Nualláin C.Ó.* // J. Inorg. Nucl. Chem. 1974. V. 36. № 2. P. 339. https://doi.org/10.1016/0022-1902(74)80020-5
- 52. Lajunen L.H.J., Portanova R., Piispanen J. et al. // Pure Appl. Chem. 1997. V. 69. № 2. P. 329. https://doi.org/10.1351/pac199769020329
- Venkatnarayana G., Swamy S., Lingaiah P. // Indian J. Chem. 1984. V. 23A. № 6. P. 501.
- 54. Puchoňová M., Matejová S., Jorík V. et al. // Polyhedron. 2018. V. 151. P. 152. https://doi.org/10.1016/j.poly.2018.05.036
- 55. Аль Ансари Я.Ф., Баулин В.Е. // Журн. неорган. химин. 2019. Т. 64. № 4. С. 445. [Al Ansari Y.F., Baulin V.E. // Russ. J. Inorg. Chem. 2019. V. 64. № 4. P. 550. https://doi.org/10.1134/S0036023619040028] https://doi.org/10.1134/s0044457x19040020
- Игнатьева Т.И., Баулин В.Е., Цветков Е.Н., Раевский О.А. // Журн. общ. химии. 1990. Т. 60. № 7. С. 1503.
- 57. Solov'ev V., Varnek A., Tsivadze A. // J. Comput. Aided. Mol. Des. 2014. V. 28. № 5. P. 549. https://doi.org/10.1007/s10822-014-9741-3
- Doutremepuich C. // Thrombosis. 2012. V. 2012. Special Issue. P. 1. https://doi.org/10.1155/2012/626289
- Turnbull C.M., Rossi A.G., Megson I.L. // Expert Opin. Ther. Targets. 2006. V. 10. № 6. P. 911. https://doi.org/10.1517/14728222.10.6.911
- Buttgereit F., Burmester G.R., Simon L.S. // Am. J. Med. 2001. V. 110. № 3 Suppl. 1. P. 13. https://doi.org/10.1016/s0002-9343(00)00728-2
- Jacka T., Bernard C.C.A., Singer G. // Life Sci. 1983.
 V. 32. № 9. P. 1023. https://doi.org/10.1016/0024-3205(83)90934-7
- O'Connor M., Kellett A., McCann M. et al. // J. Med. Chem. 2012. V. 55. № 5. P. 1957. https://doi.org/10.1021/jm201041d

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 12 2021