СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 541.11

СИНТЕЗ, КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА CuSm₂Ge₂O₈

© 2021 г. Л. Т. Денисова^{*a*, *}, М. С. Молокеев^{*a*, *b*}, Ю. Ф. Каргин^{*c*}, Л. А. Иртюго^{*a*}, Н. В. Белоусова^{*a*}, В. М. Денисов^{*a*}

^аСибирский федеральный университет, пр-т Свободный, 79, Красноярск, 660041 Россия

^bИнститут физики им. А.В. Киренского ФИЦ КНЦ СО РАН, Академгородок, 50, Красноярск, 660036 Россия

^сИнститут металлургии и материаловедения им. А.А. Байкова РАН, Ленинский пр-т, 49, Москва, 119991 Россия

*e-mail: ldenisova@sfu-kras.ru Поступила в редакцию 28.04.2021 г. После доработки 08.06.2021 г. Принята к публикации 28.06.2021 г.

Твердофазным методом с использованием в качестве компонентов CuO, Sm₂O₃ и GeO₂ выполнен синтез на воздухе при конечной температуре обжига 1273 К (200 ч) германата меди-самария состава CuSm₂Ge₂O₈ и определена его кристаллическая структура (пр. гр. *Cm*; *a* = 9.7592(2), *b* = 15.2608(4), *c* = 8.2502(2) Å, β = 148.2566(8)°, *V* = 646.46(3) Å³). На температурной зависимости молярной тепло-емкости *C_p* = *f*(*T*), измеренной в интервале температур 350–1000 К, установлено наличие экстремума с максимумом при *T*_{max} = 498.5 К, связанного с фазовым переходом. По экспериментальным данным рассчитаны термодинамические свойства.

Ключевые слова: германат меди-самария, кристаллическая структура, высокотемпературная теплоемкость, термодинамические функции

DOI: 10.31857/S0044457X21120023

введение

При исследовании систем СиО-М2О3-ЭО2 (M = Al, Ga, Fe, Cr, Bi, Y; Э = Si, Ge) при 1273 К установлено образование трех новых соединений: CuY₂Ge₂O₈, CuY₂Ge₄O₁₂ и CuY₂Si₄O₁₂ [1]. Позднее этими же авторами замещением У на редкоземельные элементы (за исключением Се и Lu) получены соединения $CuR_2Ge_2O_8$ (R = La-Yb) [2]. К настоящему времени они исследованы крайне мало. Имеются сведения об их оптических (R = Sm-Tm, Y [3], CuNd₂Ge₂O₈ [4]) и магнитных свойствах (CuNd₂Ge₂O₈, CuY₂Ge₂O₈ и $CuLa_2Ge_2O_8$ [5], $CuR_2Ge_2O_8$ (R = Pr, Nd, Sm, Eu) [6]). По данным [2], структура CuY₂Ge₂O₈ является моноклинной с возможными пр. гр. $C^{\frac{2}{2}}$, Cm и C2. Существует мнение, что CuY₂Ge₂ O_8 , $CuLa_2Ge_2O_8$ [5] и $CuR_2Ge_2O_8$ (R = Pr, Nd, Sm, Eu) [6] имеют пр. гр. І1т1. Согласно [2, 4-6], германаты РЗЭ одинакового состава CuR₂Ge₂O₈ и даже одни и те же соединения могут иметь разные пространственные группы (например, [2, 4] и [5, 6]). Теплофизические свойства германатов CuR₂Ge₂O₈ ограничены лишь данными по теплоемкости при очень низких температурах: до $15 \text{ K Cu}Y_2\text{Ge}_2\text{O}_8$ [5] и до 20 К CuR₂Ge₂O₈ (R = Pr, Nd, Sm, Eu) [6]. Диаграммы состояния систем CuO-R₂O₃-GeO₂ не построены. Для оптимизации условий синтеза и уточнения фазовых равновесий методами термодинамического моделирования необходимы сведения о термодинамических свойствах всех образующихся соединений в таких системах. Эти данные в литературе отсутствуют.

В связи с этим целью настоящей работы был синтез $CuSm_2Ge_2O_8$, определение его кристаллической структуры, измерение высокотемпературной теплоемкости и расчет термодинамических свойств.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Германат CuSm₂Ge₂O₈ получали твердофазным синтезом с использованием CuO (Alfa Aesor) – 99.9995%, Sm₂O₃ – 99.96% и GeO₂ – 99.999% в качестве исходных компонентов. Стехиометрические смеси предварительно прокаленных исходных оксидов перетирали в агатовой ступке и прессовали в форме таблеток. Зная, что при высоких температурах, при которых ведется твердофазный синтез, происходит частичное испарение оксида германия [7], синтез проводили в закрытых тиглях, как и в работе [8]. Количественный

Рис. 1. Экспериментальный (1), расчетный (2) и разностный (3) профили рентгенограмм $\text{CuSm}_2\text{Ge}_2\text{O}_8$ (штрихи указывают расчетное положение рефлексов).

состав сложных оксидных соединений подтверждали с помощью атомно-эмиссионной спектроскопии на спектрометре с индуктивно связанной плазмой Optima 5300 DV фирмы Perkin Elmer. Спрессованные образцы последовательно обжигали на воздухе при 1223, 1248 (по 10 ч) и 1273 К (200 ч). Для увеличения глубины протекания твердофазной реакции через каждые 10 ч проводили перетирание спека с последующим прессо-

Таблица 1. Параметры элементарной ячейки $CuSm_2Ge_2O_8$

Состав	Настоящая работа	[2]		
Пр. гр.	Ст	Ст		
<i>a</i> , Å	9.7592(2)	9.675(1)		
c, Å	15.2608(4)	15.259(1)		
b, Å	8.2502(2)	8.25(1)		
β, град	148.2566(8)	147.95(1)		
<i>V</i> , Å ³	646.46(3)			
Ζ	4	4		
20, град	10-105			
R _{wp} , %	5.17			
$R_p, \%$	4.11			
$R_{exp}, \%$	4.72			
<i>R_B</i> , %	0.79			
χ^2	1.07			

Примечание. *a*, *b*, *c*, β – параметры ячейки; *V* – объем ячейки; факторы недостоверности: R_{wp} – весовой профильный, R_p – профильный, R_{exp} – ожидаемый, R_B – интегральный; χ^2 – качество подгонки.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 12 2021

ванием. Контроль фазового состава образцов осуществляли после каждой ступени синтеза соединения с использованием дифрактометра Bruker D8 Advance (Си K_{α} -излучение) с линейным детектором Vantec. Установлено, что полученные образцы содержат следовое количество примеси в виде Sm₂Ge₂O₇. Уточнение кристаллической структуры и определение параметров элементарной ячейки CuSm₂Ge₂O₈ проводили методом Ритвельда с помощью программы TOPAS 4.2 [9].

Дифференциальный термический анализ и измерение высокотемпературной теплоемкости $CuSm_2Ge_2O_8$ проводили на термоанализаторе STA 449 C Jupiter (Netzcsh, Германия) в атмосфере воздуха. При этом для измерения теплоемкости использовали специальные держатели TG + + DSC 6.226.1–72 + S и платиновые тигли с крышкой. Экспериментальные результаты обрабатывали с помощью пакета программ Netzsch Proteus Thermal Analysis. Математическую обработку данных проводили при помощи лицензионной программы Systat Sigma Plot 12. Методика экспериментов аналогична описанной в работах [10, 11]. Ошибка экспериментов не превышала 2%.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 приведена дифрактограмма полученного германата меди-самария. Почти все пики на рентгенограмме проиндицированы в моноклинной ячейке (пр. гр. Ст) с параметрами, близкими к таковым для $CuNd_2Ge_2O_8$ [4], поэтому структура этого кристалла была взята в качестве стартовой модели для уточнения, в которой позицию Nd заменили на ион Sm. Тепловые параметры всех атомов уточняли в изотропном приближении. Координаты x, z атома Ge2 не уточняли, это требуется для фиксации начала координат в группе Ст. Уточнение шло стабильно и привело к низким значениям *R*-факторов (табл. 1). Координаты атомов и основные длины связей в элементарной ячейке кристалла CuSm₂Ge₂O₈ представлены в табл. 2 и 3 соответственно.

Сравнение полученных нами параметров кристаллической структуры $CuSm_2Ge_2O_8$ с данными работы [2] показывает (табл. 1), что они в целом согласуются между собой.

Влияние температуры на теплоемкость $CuSm_2Ge_2O_8$ в интервале температур 350–1000 К иллюстрирует рис. 2. Из рисунка видно, что на кривой $C_p = f(T)$ имеется экстремум с $T_{max} = 498.5$ К ($\Delta H_{\phi n} = 506 \ Дж/моль, \Delta S_{\phi n} = 1 \ Дж/(моль K)$). Причиной его появления может быть термическая нестабильность соединения или фазовый переход. Данные о влиянии температуры на превращение Cu(II) \rightarrow Cu(I) в соединении CuSm₂Ge₂O₈ в литературе отсутствуют. Имеются многочисленные сведения о фазовых равновеси-

ях и термодинамике систем Cu-O и CuO-Cu₂O [12-18]. В единственной работе [1] есть информация о термической стабильности изоформульного соединения CuY₂Ge₂O₈ в атмосфере аргона (разложение наблюдается начиная с T = 1253 K). В последней работе отмечено, что для многих оксидных соединений, содержащих в своем составе CuO, разложение в возлушной атмосфере начинается при температурах на 100-200 К выше, чем в атмосфере аргона. Поэтому можно принять, что наличие экстремума на кривой $C_p = f(T)$ не связа-но с нестабильностью CuSm₂Ge₂O₈. В пользу последнего свидетельствует проведенное нами гравиметрическое исследование этого соединения. В интервале температур 320-1000 К изменение массы образцов не зарегистрировано. На кривой дифференциального термического анализа CuSm₂Ge₂O₈ имеется очень маленький размытый экстремум в области от 472 до 518 К ($\Delta H =$ = -0.15 кДж/моль). Следует отметить, что аналогичные результаты получены для соединения $CuLa_2Ge_2O_8$ [2].

При исследовании влияния температуры на параметры элементарной ячейки $CuLa_2Ge_2O_8$ выявлен плавный переход моноклинной структуры в орторомбическую, который заканчивается при 548 К [2]. В указанной работе отмечено, что объемно-центрированная орторомбическая ячейка легко получается из гранецентрированной моноклинной ячейки, а возможные моноклинные пространственные группы являются подгруппами орторомбических. Не исключено, что аналогичная картина наблюдается и в нашем случае для $CuSm_2Ge_2O_8$.

С учетом близости структур CuSm₂Ge₂O₈ до и после перехода зависимость $C_p = f(T)$ в области исследованных температур (350–1000 K) описана уравнением Майера–Келли [19]:

$$C_{p} = a + bT - cT^{-2}, (1)$$

которое для данного германата без учета фазового перехода имеет следующий вид (Дж/(моль К)):

$$C_p = (302.3 \pm 1.1) + (45.54 \pm 1.10) \times 10^{-3}T - (32.30 \pm 1.19) \times 10^{5}T^{-2}.$$
 (2)

Коэффициент корреляции для уравнения (2) равен 0.9973, максимальное отклонение экспериментальных точек от аппроксимирующей кривой — 0.96%.

С использованием полинома (2) и известных уравнений [20] для $CuSm_2Ge_2O_8$ рассчитаны его термодинамические свойства (табл. 4).

Поскольку имеющиеся в литературе сведения о теплоемкости $CuSm_2Ge_2O_8$ ограничены только температурами до 20 К [6], проведено сравнение наших результатов со значениями, рассчитанны-

Таблица 2. Атомные координаты и изотропные тепловые параметры ($Å^2$) кристалла $CuSm_2Ge_2O_8$

Атом	x	у	z	B _{iso}	
Sm1	0.479(13)	0.1199(6)	0.227(17)	0.2(3)	
Sm2	0.488(14)	0.1199(6)	0.742(18)	0.2(3)	
Gel	0.427(7)	0.5	0.431(9)	0.2(12)	
Ge2	0.509	0.5	0.0106	0.2(12)	
Ge3	0.490(13)	0.290(2)	0.504(19)	0.2(7)	
Cu1	0.494(14)	0.292(3)	0.962(18)	0.2(10)	
O1	0.21(3)	0.5	0.05(4)	0.3(5)	
O2	0.21(3)	0	0.38(4)	0.3(5)	
O3	0.23(4)	0	0.06(5)	0.3(5)	
O4	0.22(4)	0.5	0.39(5)	0.3(5)	
O5	0.14(3)	0.091(8)	0.63(3)	0.3(5)	
O6	0.15(3)	0.330(9)	0.16(3)	0.3(5)	
O 7	0.31(3)	0.404(8)	0.80(3)	0.3(5)	
O 8	0.32(3)	0.170(10)	0.34(4)	0.3(5)	
09	0.19(2)	0.237(5)	0.52(3)	0.3(5)	
O10	0.160(17)	0.236(4)	0.85(2)	0.3(5)	

Таблица 3. Основные длины связей в структуре $CuSm_2Ge_2O_8$

Связь	d, Å	Связь	d, Å	
Sm1-O3 $Sm1-O4^{i}$ $Sm1-O5^{ii}$ $Sm1-O6^{iii}$ $Sm1-O7^{iii}$ $Sm1-O9^{iii}$ $Sm1-O10^{ii}$ $Sm1-O10^{ii}$ Sm2-O2 Sm2-O5 $Sm2-O6^{v}$ $Sm2-O7^{iii}$ Sm2-O8 Sm2-O9 $Sm2-O10^{iii}$	$\begin{array}{c} 2.34(8)\\ 2.30(7)\\ 2.77(14)\\ 2.29(9)\\ 2.63(14)\\ 2.51(6)\\ 2.53(10)\\ 2.46(9)\\ 2.27(11)\\ 2.42(12)\\ 2.69(9)\\ 2.39(13)\\ 2.77(9)\\ 2.24(16)\\ 2.44(8)\\ 2.43(6)\end{array}$	$\begin{array}{c} Ge1-O4\\ Ge1-O5^{vi}\\ Ge2-O2^{vi}\\ Ge2-O3^{vi}\\ Ge2-O7^{ii}\\ Ge3-O5^{iii}\\ Ge3-O6\\ Ge3-O8\\ Ge3-O9^{iii}\\ Ge3-O10^{iii}\\ Ge3-O10^{iii}\\ Cu1-O6^{v}\\ Cu1-O7\\ Cu1-O8^{v}\\ Cu1-O9\\ Cu1-O10\\ Cu1-O10^{iii}\\ \end{array}$	1.74(5) 1.77(12) 1.72(16) 1.82(5) 1.79(12) 1.98(13) 1.85(14) 2.03(16) 1.89(3) 1.73(11) 2.05(15) 1.96(13) 1.82(18) 2.10(14) 2.66(4) 2.49(4)	
Ge1-01	1.74(17)			

Примечание. Элементы симметрии: (i) x + 1/2, y - 1/2, z; (ii) x, y, z - 1; (iii) x + 1/2, -y + 1/2, z; (iv) x + 1/2, y - 1/2, z + 1; (v) x + 1/2, -y + 1/2, z + 1; (vi) x + 1/2, y + 1/2, z.

ми по различным моделям: Неймана–Коппа (**HK**) [21, 22] (в этом случае учтены два варианта: расчет с использованием данных по теплоемкости оксидов CuO, Sm₂O₃, GeO₂ [21] (HK₁) или

Рис. 2. Влияние температуры на молярную теплоемкость $CuSm_2Ge_2O_8$ (1, 2) и $Sm_2Ge_2O_7$ (3); 1 – экспериментальные (линия – аппроксимирующая кривая), 2 – расчетные данные.

CuO [21] и Sm₂Ge₂O₈ [23] (HK₂)), инкрементный метод Кумока (**ИМК**) [24], групповых вкладов (**ГВ**) [25], Келлога (**Кел**) [26]. Согласно результатам, обобщенным в табл. 5, лучшее согласие с экспериментом дает метод Кумока.

Отметим, что модели НК, ИМК и Кел подробно описаны в монографиях [26–28]. В то же время метод групповых вкладов [25] не так часто используется на практике. Он основан на использовании уравнения:

$$C_p = a + bT + cT^{-2} + dT^2,$$
 (3)

коэффициенты a, b, c и d для конкретного соединения находят путем суммирования ионных вкладов составляющих ионов, образующих это соединение (значения коэффициентов a, b, c и d для ионов приведены в работе [25]). Анализ метода ГВ, предложенный для прогнозирования теплоемкости твердых оксидов [25], выполнен авторами [29]. Установлено, что для 113 оксидов средняя ошибка расчета С_р при 298 К равна 4.8%, а максимальная погрешность – 26.3%. На основании этого анализа в [29] сделано заключение, что метод групповых вкладов не всегда дает надежное прогнозирование температурной зависимости теплоемкости оксидов. Следует отметить, что метод ГВ может быть использован для расчета C_p = = f(T) сложных оксидов, когда другая дополнительная информация отсутствует.

На рис. 2 приведена зависимость $C_p = f(T)$ для Sm₂Ge₂O₇ [23]. Можно отметить, что в этом случае значения молярной теплоемкости меньше таковых для CuSm₂Ge₂O₈. Используя данные по температурной зависимости теплоемкости CuO [30] и Sm₂Ge₂O₇ [23], мы рассчитали $C_p = f(T)$ для CuSm₂Ge₂O₈ (рис. 2, кривая 2). Полученные значения близки к экспериментальным, за исключением области экстремума, обусловленного фазовым превращением. Последнее можно было ожидать априори, так как на кривых $C_p = f(T)$ для CuO и Sm₂Ge₂O₇ экстремумы отсутствуют.

ЗАКЛЮЧЕНИЕ

Синтезировано сложное оксидное соединение $CuSm_2Ge_2O_8$ и определена его кристаллическая

Таблица 4. Сглаженные значения теплоемкости и термодинамические свойства $CuSm_2Ge_2O_8$

Т, К	<i>С_р,</i> Дж/(моль К)	<i>H</i> °(<i>T</i>) − <i>H</i> °(350 K), кДж/моль	<i>S</i> °(<i>T</i>) − <i>S</i> °(350), Дж/(моль К)	<i>−∆G/Т</i> *, Дж/(моль К)	
350	291.9	_	_	_	
400	300.0	14.82	39.55	2.50	
450	306.8	30.00	75.32	8.65	
500	312.1	45.48	107.9	16.94	
550	316.6	61.20	137.9	26.63	
600	320.6	77.14	165.6	37.03	
650	324.2	93.26	191.4	47.92	
700	327.5	109.6	215.6	59.03	
750	330.7	126.0	238.3	70.30	
800	333.6	142.6	259.7	81.45	
850	336.5	159.4	280.0	92.47	
900	339.2	176.3	299.3	103.1	
950	341.9	193.3	317.8	114.3	
1000	344.5	210.5	335.4	123.9	

* $\Delta G/T = [H^{\circ}(T) - H^{\circ}(350 \text{ K})]/T - [S^{\circ}(T) - S^{\circ}(350)].$

Ур. (2)	HK ₁	Δ, %	HK ₂	Δ, %	ИМК	Δ, %	ГВ	Δ, %	Кел	$\Delta, \%$
279.5	262.0	-6.2	264.0	-5.5	273.4	-2.2	265.9	-4.9	262.5	-6.1

Таблица 5. Сопоставление полученных данных по теплоемкости CuSm₂Ge₂O₈ при 298 K (уравнение (2)) с рассчитанными значениями (Дж/(моль K))

структура. Исследовано влияние температуры в интервале 350–1000 К на молярную теплоемкость германата меди-самария. На температурной зависимости молярной теплоемкости $C_p = f(T)$ установлено наличие экстремума с максимумом при $T_{\rm max} = 498.5$ К, связанного с фазовым переходом. По экспериментальным данным рассчитаны основные термодинамические функции (зависимости энтропии, приращения энтальпии и энергии Гиббса от температуры) германата меди-самария.

БЛАГОДАРНОСТЬ

Авторы выражают благодарность Красноярскому региональному центру коллективного пользования ФИЦ КНЦ СО РАН. Работа выполнена при частичной финансовой поддержке в рамках государственного задания на науку ФГАОУ ВО "Сибирский федеральный университет", номер проекта FSRZ-2020-0013.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Lambert U., Eysel W. // Powder Diff. 1986. V. 1. № 2. P. 45.
- Lambert U., Eysel W. // Powder Diff. 1986. V. 1. № 3. P. 256.
- Baran E.J., Cascales C. // J. Raman Spectrosc. 1999. V. 30. P. 77.
- Campa J.A., Gutiérez-Puebla E., Monge M.A. et al. // J. Solid State Chem. 1995. V. 120. P. 254.
- Cho H., Kratochvilova M., Sim H. et al. // Phys. Rev. B. 2017. V. 95. P. 144404-1. https://doi.org/10.1103/PhysRevB.95.144404
- Cho H., Kratochvilova M., Lee N. et al. // Phys. Rev. B. 2017. V. 96. P. 224427-1. https://doi.org/10.1103/PhysRevB.96.224427
- Becker U.W., Felsche J. // J. Less-Common. Metals. 1987. V. 128. P. 269.
- Денисова Л.Т., Каргин Ю.Ф., Иртюго Л.А. и др. // Журн. неорган. химии. 2020. Т. 65. № 5. С. 581. [Denisova L.T., Kargin Yu.F., Irtyugo L.A. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 5. Р. 631.] https://doi.org/10.1134/S0036023620050071

- 9. *Bruker AXS* TOPAS V4: General profile and structure analysis software for powder diffraction data. User's Manual. Bruker AXS, Karlsruhe, Germany, 2008.
- 10. Денисова Л.Т., Иртюго Л.А., Белоусова Н.В. и др. // Журн. физ. химии. 2019. Т. 93. № 3. С. 476. [Denisova L.T., Irtyugo L.A., Belousova N.V. et al. // Russ. J. Phys. Chem. A. 2019. V. 93. № 3. Р. 598.] https://doi.org/10.1134/S003602441903004X https://doi.org/10.1134/S004445371903004X
- Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф. и др. // Неорган. материалы. 2017. Т. 53. № 1. С. 71. [Denisova L. T., Irtyugo L.A., Beletskii V.V. et al. // Inorg. Mater. 2017. V. 53. № 1. Р. 93.] https://doi.org/10.1134/S0020168517010046 https://doi.org/10.7868/S0002337X17010043
- 12. Lubu A. // J. Thermal. Analysis. 1970. V. 2. P. 445.
- Hallstedt B., Risold D., Gauckler L.J. // J. Phase Equilibria. 1994. V. 15. № 5. P. 483.
- 14. *Моисеев Г.К., Ватолин Н.А.* // Журн. физ. химии. 1998. Т. 72. № 9. С. 1554.
- Kosenko A.V., Emel'chenko G.A. // J. Phase Equilibria. 2001. V. 22. P. 12. https://doi.org/10.1007/s11669-001-0050-x
- 16. Buch A.A., Shkuratov V.Ya., Kuz'menko A.B. et al. // Crystallogr. Rep. 2002. V. 47. № 2. P. 335. https://doi.org/10.1134/1.1466514
- Hallstedt B., Gauckler L.J. // Calphad: Comput. Phase Diagram. Thermochem. 2003. V. 27. P. 177. https://doi.org/10.1016/S0364-5916(03)00050-6
- Schramm L., Behr G., Löser W. et al. // J. Phase Equilib. Diff. 2005. V. 26. № 6. P. 605. https://doi.org/10.1007/s11669-005-0005-8
- Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932. V. 54. № 8. P. 3243. https://doi.org/10.1021/ja01347a029
- Чудненко К.В. Термодинамическое моделирование в геохимии: теория, алгоритмы, программное обеспечение, приложения. Новосибирск: Академическое изд-во "Гео", 2010. 287 с.
- Leitner J., Chuchvalec P., Sedmidubský D. et al. // Thermochim. Acta. 2003. V. 395. P. 27. https://doi.org/10.1016/S0040-6031(02)00176-6
- Leitner J., Voñka P., Sedmidubský D. et al. // Thermochim. Acta. 2010. V. 497. P. 7. https://doi.org/10.1016/j.tca.2009.08.002
- 23. Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф. и др. // Неорган. материалы. 2018. Т. 54. № 2. С. 193. [Denisova L.T., Irtyugo L.A., Beletskii V.V. et al. // Inorg. Mater. 2018. V. 54. № 2. Р. 167.]

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 12 2021

https://doi.org/10.1134/S0020168518020048 https://doi.org/10.7868/S0002337X18020100

- Кумок В.Н. Прямые и обратные задачи химической термодинамики. Новосибирск: Наука, 1987. 108 с.
- Mostafa A.T.M.G., Eakman J.M., Montoya M.M. et al. // Ind. Eng. Chem. Res. 1996. V. 35. P. 343. https://doi.org/10.1021/ie9501485
- 26. Кубашевский О., Олкокк С.Б. Металлургическая термохимия. М.: Металлургия, 1982. 392 с.
- 27. Морачевский А.Г., Сладков И.Б., Фирсова Е.Г. Термодинамические расчеты в химии и металлургии. СПб.: Лань, 2018. 2018 с.
- 28. Моисеев Г.К., Ватолин Н.А., Маршук Л.А. и др. Температурные зависимости приведенной энергии Гиббса некоторых неорганических веществ (альтернативный банк данных ACTPA. OWN). Екатеринбург: УрО РАН, 1987. 230 с.
- 29. Leitner J., Sedmidubský D., Chuchvalec P. // Ceramics Silikáty. 2002. V. 46. № 1. P. 29.
- Leitner J., Sedmidubský D., Doušova B. et al. // Thermochim. Acta. 2000. V. 348. P. 49. https://doi.org/10.1016/S0040-6031(00)00352-X