## \_\_\_\_\_ ФИЗИЧЕСКИЕ МЕТОДЫ \_\_\_\_ ИССЛЕДОВАНИЯ

УДК 544.431

# ВЗАИМОДЕЙСТВИЕ ИМИДАЗОЛА, 2-МЕТИЛИМИДАЗОЛА С СОЛЯМИ МЕДИ(II) И НЕКОТОРЫМИ КИСЛОТАМИ<sup>1</sup>

© 2021 г. Н. А. Скорик<sup>а, \*</sup>, К. А. Ильина<sup>a</sup>, В. В. Козик<sup>a</sup>

<sup>а</sup> Томский государственный университет, пр-т Ленина, 36, Томск, 634050 Россия \*e-mail: Skorikninaa@mail.ru Поступила в редакцию 05.03.2021 г. После доработки 11.05.2021 г. Принята к публикации 27.05.2021 г.

Определены составы билигандных соединений Cu(C<sub>3</sub>H<sub>4</sub>N<sub>2</sub>, C<sub>4</sub>H<sub>6</sub>N<sub>2</sub>)<sub>x</sub>(C<sub>7</sub>H<sub>5</sub>O<sub>2</sub><sup>-</sup>, C<sub>6</sub>H<sub>4</sub>NO<sub>2</sub><sup>-</sup>)<sub>2</sub> · *n*H<sub>2</sub>O, полученных при взаимодействии водных суспензий синтезированных малорастворимых бензоата Cu(C<sub>7</sub>H<sub>5</sub>O<sub>2</sub>)<sub>2</sub> · 3H<sub>2</sub>O и никотината Cu(C<sub>6</sub>H<sub>4</sub>NO<sub>2</sub>)<sub>2</sub> · H<sub>2</sub>O меди(II) с имидазолом, 2-метилимидазолом. Выполнен анализ моно- и билигандных солей, изучен процесс их термического разложения. Методом ИК-спектроскопии показано участие в образовании связи с ионом меди(II) пиридинового атома азота имидазола и атомов кислорода карбоксильных групп ароматических кислот. Методами растворимости, pH-потенциометрии и фотометрии определены состав и устойчивость бензоатного комплекса меди(II), константа растворимости соли Cu(C<sub>7</sub>H<sub>5</sub>O<sub>2</sub>)<sub>2</sub> · 3H<sub>2</sub>O при ионной силе *I* = 0.1. Получены сокристаллы/соли состава C<sub>3</sub>H<sub>4</sub>N<sub>2</sub> · C<sub>7</sub>H<sub>6</sub>O<sub>2</sub> (pH 8.0), C<sub>3</sub>H<sub>4</sub>N<sub>2</sub> · C<sub>6</sub>H<sub>5</sub>NO<sub>2</sub> (pH 7.4) и 3(C<sub>4</sub>H<sub>6</sub>N<sub>2</sub>) · C<sub>19</sub>H<sub>19</sub>O<sub>6</sub>N<sub>7</sub> · 2H<sub>2</sub>O (pH ~7) и исследованы с помощью термогравиметрического анализа. Для исходных веществ и продуктов их взаимодействия (системы имидазол–бензойная кислота, 2метилимидазол–фолиевая кислота) записаны дифрактограммы порошков.

*Ключевые слова:* синтез, медь(II), фолиевая и ароматические кислоты, имидазол, 2-метилимидазол, смешанолигандные соли, комплексы, сокристаллы/соли

DOI: 10.31857/S0044457X21110180

#### введение

В современной координационной химии широкое применение находят соединения многих жизненно важных биометаллов (железо, цинк, медь, кобальт и др.). Медь — один из важнейших микроэлементов, ее соединения играют важную роль в процессе жизнедеятельности животных и человека. В организме она может вступать во взаимодействие с несколькими лигандами, образуя смешанолигандные комплексы.

Такими лигандами, содержащими донорные атомы кислорода и азота, к которым катионы *d*металлов, в частности катион меди  $\text{Cu}^{2+}(d^9)$ , имеют сродство, являются ароматические кислоты (бензойная, никотиновая и др.) и некоторые азолы. Никотиновая (C<sub>6</sub>H<sub>5</sub>NO<sub>2</sub>, HNic) и бензойная (C<sub>6</sub>H<sub>5</sub>COOH, HBenz) кислоты, а также азолы физиологически активные лиганды в координационных соединениях.

Во многих работах показано, что комплексообразование органических соединений с ионами металлов позволяет повысить биологическую активность лигандов. Так, координационные соединения галогенидов кобальта(II) и меди(II) с 2,4-диметил-1,2,4-триазоло[1,5-а]бензимидазолом (L) состава  $[ML_2Cl_2]$  имеют бо́льшую цитотоксичность по сравнению с лигандом [1]. Все больше получают соединений подобного типа. Синтезирован и охарактеризован комплекс меди(II) состава  $[Cu(PIM)_2(Benz)_2]$ , где PIM — 2пропилимидазол, Benz<sup>-</sup> – анион бензойной кис-

лоты  $C_7H_5O_2^-$  [2]. Структурный анализ показал, что ион меди(II) в комплексе находится в искаженной октаэдрической координации с двумя атомами азота двух молекул 2-пропилимидазола и четырьмя атомами кислорода двух бензоатных лигандов. Обнаружены димерные колесные комплексы, в которых два иона меди(II) удерживаются вместе четырьмя бензоат-ионами [3]. Кроме того, эти комплексы включают 1-пропанол, воду, 1-бутанол и 1-пентанол: [Cu<sub>2</sub>(Benz)<sub>4</sub>(1-PrOH)<sub>2</sub>],  $[Cu_2(Benz)_4(H_2O)_2],$  $[Cu_2(Benz)_4(1-BuOH)_2],$ [Cu<sub>2</sub>(Benz)<sub>4</sub>(1-PentOH)<sub>2</sub>]. В работе [4] потенциометрически определены термодинамические характеристики реакций комплексообразования меди(II) и железа(III) с бензоат-ионами путем измерения в растворе констант образования при различных температурах. При ионной силе I = 1

<sup>&</sup>lt;sup>1</sup> Дополнительная информация для этой статьи доступна по doi 10.31857/S0044457X21110180

(NaClO<sub>4</sub>) и 25°С для бензоатных комплексов меди(II)  $\beta_1 = 58 \pm 6$  (lg $\beta_1 = 1.76$ ),  $\beta_2 = 230 \pm 60$ ; для железа(III)  $\beta_1 = (1.4 \pm 0.2) \times 10^3$ . В литературе приводятся также логарифмы константы устойчивости комплекса [CuBenz]<sup>+</sup>: 1.6 (25°С, I = 0.1) [5]; 1.5 (30°С, I = 0.4) [6].

Имидазол и многие его производные, обладая основными свойствами, взаимодействуют с органическими и неорганическими кислотами и образуют соли – ионные жидкости или твердые вещества, которые находят применение. Так, кетоконазол С<sub>26</sub>H<sub>28</sub>Cl<sub>2</sub>N<sub>4</sub>O<sub>4</sub> (КТZ) (синтетический имидазольный противогрибковый препарат) выбран в качестве противоиона для приготовления ионных жидкостей с лимонной и винной кислотами [7]. при этом была повышена растворимость твердой формы KTZ. Подтверждено образование водородной связи между имидазольной функциональной группой КТZ и карбоксильной группой оксикарбоновых кислот. Ионные комплексы, содержащие в качестве катионных компонентов моно-, ди- и триэтаноламины, а в качестве анионных компонентов ароматические карбоновые кислоты, в том числе никотиновую [8], обладают доказанной повышенной биологической активностью по сравнению с отдельно взятыми исходными компонентами, что обусловлено особенностями их структуры. Авторами работы [9] были синтезированы различные ионные жидкости, сочетающие катионы имидазолия, аммония и фосфония с анионами ароматических аминокислот, например фенилаланина. Их уникальные свойства обусловлены образованием π-взаимодействий между катионом имидазолия и ароматическими кольцами анионов, что подтверждено данными ЯМР. Сокристаллизацией имидазола и его производных с рядом органических кислот получено пять молекулярных солей, например состава HIm<sup>+</sup> · (3,5-dba<sup>-</sup>), где HIm<sup>+</sup>, 3,5-dba<sup>-</sup> – имидазолий-катион и 3,5-дигидроксибензоат-анион соответственно [10]. Показано, что азот имидазола протонируется, тогда как органические кислоты ионизируются. В работе [11] новый сокристалл (HNicPY) трехатомного фенола пирогаллола С<sub>6</sub>Н<sub>6</sub>О<sub>3</sub> (РҮ) был выращен с цвиттер-ионной формой никотиновой кислоты, изучены его структурные, термические, противораковые характеристики и растворимость. Рентгеноструктурный анализ монокристалла подтверждает, что структурная молекулярная упаковка кристалла стабилизируется водородными связями N-H…O и O-H…O.

Цель настоящей работы — синтез, изучение состава и свойств моно- и билигандных соединений меди(II) в виде солей и монолигандных комплексов в растворе с ароматическими кислотами (бензойной, никотиновой) и некоторыми азолами (имидазолом, 2-метилимидазолом), а также получение и изучение свойств продуктов взаимодействия указанных азолов и органических кислот.

#### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исследовали соединения меди(II) с биологически активными лигандами — бензойной и никотиновой (молекулярная (а) и цвиттер-ионная (б) формы) кислотами



и азолами в виде твердых моно- и билигандных солей, а также сокристаллов/солей указанных кислот и фолиевой кислоты с имидазолом  $C_3H_4N_2$ 



(атом азота N<sub>(3)</sub> имидазола способен протонироваться (lg $B_1 = 7.69$  [12],  $B_1$  – константа протонизации) и координировать ионы металлов) и 2-метилимидазолом C<sub>4</sub>H<sub>6</sub>N<sub>2</sub>





Последний образует соли иного состава и менее устойчивые комплексы в растворе по сравнению с имидазолом вследствие присутствия заместителя в молекуле [13].

Термическую стабильность синтезированных соединений изучали на приборе марки Netzsch STA 449 С. Оптическую плотность растворов определяли на фотоколориметре КФК-2-УХЛ 4.2 при толщине поглощающего слоя *l* = 10 мм. Величину рН в растворах измеряли на рН-метре рН-673, стеклянный электрод которого калибровали по буферным растворам с рН в интервале 3.56-6.86. ИК-спектры солей в таблетках из КВг регистрировали на спектрометре ThermoNicollet NEXUS FTIR в области частот 4000-400 см<sup>-1</sup>. Синтезированные соединения анализировали методом автоматического элементного CHNSанализа на анализаторе Euro EA 3000 с применением микровесов Sartorius MSE 3.6P-000-DM, для дифракции рентгеновских лучей на порошке использовали рентгеновский дифрактометр Shimadzu XRD 6000 с Cu X-ray трубкой. Использовали имидазол фирмы Sigma, соли металлов и орга-

1598

#### ВЗАИМОДЕЙСТВИЕ ИМИДАЗОЛА

| Соелинение                                                   | N, %  |       | C, %  |       | Н, % |      | M, CuO, % |       | H <sub>2</sub> O, % |       |
|--------------------------------------------------------------|-------|-------|-------|-------|------|------|-----------|-------|---------------------|-------|
| Cocdimentie                                                  | Н     | В     | Н     | В     | Н    | В    | Н         | В     | Н                   | В     |
| $Cu(C_7H_5O_2)_2 \cdot 3H_2O$                                | -     | _     | 46.86 | 46.70 | 4.57 | 4.45 | 22.0      | 22.11 | 15.9                | 15.01 |
| $Cu(C_6H_4NO_2)_2 \cdot H_2O$                                | 8.40  | 8.60  | 43.10 | 44.20 | 3.00 | 3.07 | 23.7      | 23.24 | 5.1                 | 5.53  |
| $Cu(C_{3}H_{4}N_{2})_{6}(C_{7}H_{5}O_{2})_{2} \cdot 2H_{2}O$ | 20.99 | 22.39 | 53.38 | 51.18 | 5.03 | 5.06 | 9.8       | 10.60 | 4.7                 | 4.80  |
| $Cu(C_4H_6N_2)_2(C_7H_5O_2)_2 \cdot 2H_2O$                   | 13.18 | 11.07 | 54.05 | 52.17 | 6.09 | 5.14 | 15.9      | 15.72 | 7.3                 | 7.11  |
| $Cu(C_{3}H_{4}N_{2})_{4}(C_{6}H_{4}NO_{2})_{2}\cdot 2H_{2}O$ | _     | _     | _     | _     | _    | _    | 12.2      | 12.91 | 6.9                 | 5.84  |
| $3(C_4H_6N_2)\cdot C_{19}H_{19}O_6N_7\cdot 2H_2O$            | 22.49 | 25.15 | 51.57 | 51.40 | 6.03 | 5.67 | _         | _     | _                   | _     |
| $C_3H_4N_2\cdot C_6H_5NO_2$                                  | 20.94 | 21.97 | 56.78 | 56.49 | 5.02 | 4.71 | _         | _     | _                   | _     |
| $C_3H_4N_2\cdot C_7H_6O_2$                                   | 14.01 | 14.72 | 62.77 | 63.16 | 5.53 | 5.30 | —         | _     | _                   | _     |

Таблица 1. Данные анализа моно- и билигандных солей меди(II) с бензойной и никотиновой кислотами, азолами и некоторых сокристаллов/солей (н, в – найдено, вычислено)

Таблица 2. Анализ термограмм моно- и билигандных солей меди(II) и сокристалла/соли фолиевой кислоты с 2метилимидазолом

| Характер эффекта                                             | Температурный интервал °С | Потеря<br>(от начал | і массы<br>вьной), % | Соответствующий процесс              |  |  |  |  |
|--------------------------------------------------------------|---------------------------|---------------------|----------------------|--------------------------------------|--|--|--|--|
|                                                              | initephan, e              | найдено вычислено   |                      |                                      |  |  |  |  |
| $Cu(C_7H_5O_2)_2 \cdot 3H_2O$                                |                           |                     |                      |                                      |  |  |  |  |
| Группа эндоэффектов                                          | 40-130                    | 15.0                | 15.01                | Потеря воды                          |  |  |  |  |
| Экзоэффект                                                   | 130-450                   | 65.3                | 67.33                | Удаление бензоат-иона,               |  |  |  |  |
|                                                              |                           | 22.0                | 22.11                | образование оксида CuO               |  |  |  |  |
| $Cu(C_{3}H_{4}N_{2})_{6}(C_{7}H_{5}O_{2})_{2} \cdot 2H_{2}O$ |                           |                     |                      |                                      |  |  |  |  |
| Эндоэффект                                                   | 51-180                    | 4.7                 | 4.80                 | Потеря воды                          |  |  |  |  |
| Группа эндо-,                                                | 180-400                   | 72.6                | 70.60                | Удаление (6Im + Benz <sup>-</sup> )  |  |  |  |  |
| экзоэфектов                                                  | 400-580                   | 17.7                | 16.15                | Удаление Benz <sup>-</sup> ,         |  |  |  |  |
|                                                              |                           | 9.8                 | 10.60                | образование оксида СиО               |  |  |  |  |
| $Cu(C_4H_6N_2)_2(C_7H_5O_2)_2 \cdot 2H_2O$                   |                           |                     |                      |                                      |  |  |  |  |
| Эндоэффект                                                   | 51-200                    | 7.3                 | 7.12                 | Потеря воды                          |  |  |  |  |
| Группа эндо-,                                                | 200-570                   | 62.2                | 64.10                | Потеря (2Benz <sup>-</sup> + metIm), |  |  |  |  |
| экзоэффектов                                                 |                           | 19.2                | 16.22                | потеря metIm,                        |  |  |  |  |
|                                                              |                           | 15.9                | 15.72                | образование оксида СиО               |  |  |  |  |
| $3(C_4H_6N_2) \cdot C_{19}H_{19}O_6N_7 \cdot 2H_2O$          |                           |                     |                      |                                      |  |  |  |  |
| Эндоэффект                                                   | 25-118                    | 5.8                 | 4.97                 | Потеря воды                          |  |  |  |  |
| Группа эндоэффектов                                          | 118-360                   | 33.7                | 34.04                | Потеря 3metIm                        |  |  |  |  |
| Экзоэффект                                                   | 360-800                   | 60.6                | 60.99                | Потеря Н <sub>3</sub> Fol            |  |  |  |  |

нические кислоты марки "х. ч." или "ч. д. а.". Все реагенты и растворители применяли без дополнительной очистки.

Для получения билигандных солей с ароматическими кислотами, имидазолом и 2-метилимидазолом предварительно были получены исходные соли – бензоат и никотинат меди(II). Синтез никотината меди(II) Си( $C_6H_4NO_2$ )<sub>2</sub> ·  $H_2O$  осуществляли из концентрированного водного раствора хлорида меди(II) и раствора частично нейтрализованной никотиновой кислоты при мольном соотношении компонентов 1 : 2 : 1.5:

$$\begin{aligned} \mathrm{CuCl}_2 + \left( 2\mathrm{C}_6\mathrm{H}_5\mathrm{NO}_2 + 1.5\mathrm{NaOH} \right) \rightarrow \\ & \rightarrow \mathrm{Cu}\left( \mathrm{C}_6\mathrm{H}_4\mathrm{NO}_2 \right)_2 \downarrow . \end{aligned}$$

Растворами NaOH, HCl доводили pH смеси до ~4.0. После кристаллизации соль фильтровали, промывали холодной водой и сушили на воздухе.

Синтез бензоата меди(II)  $Cu(C_7H_5O_2)_2 \cdot 3H_2O$  проводили при pH 4.7–4.9 аналогично синтезу никотината меди(II). Выделенные соли меди имеют насыщенную окраску: бензоат меди(II) – фиолетовую, никотинат меди(II) – голубую. По-мимо элементного анализа (табл. 1) проводили гравиметрический анализ путем нагревания солей при температуре 125–130°C в течение 2 ч для определения содержания в них кристаллизационной воды, для определения содержания СиО соли прокаливали при 900°C. Состав бензоата меди(II) подтвержден также термогравиметрическим анализом (табл. 2).

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 11 2021



**Рис. 1.** Изомолярная серия системы CuCl<sub>2</sub>–NaBenz  $(C_{Cu}^{\circ} = C_{Benz}^{\circ} = 3 \times 10^{-2} \text{ моль/л}, V_{oбщ} = 6 \text{ мл}, \text{ pH 4.4}, I = 0.1, \lambda_{эф} = 800 \text{ нм}, I = 10 \text{ мм}).$ 

Ранее нами была определена константа растворимости никотината меди(II) Cu(C<sub>6</sub>H<sub>4</sub>NO<sub>2</sub>)<sub>2</sub> · H<sub>2</sub>O, lg $K_S = -9.78$  (I = 0.3) [14]. Поскольку величина  $K_S$ для бензоата меди в литературе не обнаружена, для ее определения изучена растворимость соли Cu(C<sub>7</sub>H<sub>5</sub>O<sub>2</sub>)<sub>2</sub> · 3H<sub>2</sub>O в 0.1 моль/л растворах (H, Na)NO<sub>3</sub>. Суспензии соли в сосудах с притертыми пробками при встряхивании выдерживали до установления равновесия (постоянство значения рH). В насыщенных растворах измеряли pH, определение равновессной концентрации иона меди(II) проводили иодометрическим методом, предварительно установив, что бензоат-анион не влияет на иодометрическое определение ме-

**Таблица 3.** Данные по растворимости, расчета константы растворимости  $K_S$  соли  $Cu(C_7H_5O_2)_2 \cdot 3H_2O$  и константы устойчивости  $\beta_1$  комплекса [CuBenz]<sup>+</sup>  $(K_{h1}(Cu^{2^+}) = 3.1 \times 10^{-8}, \lg B_1 = 4.01, I = 0.1)$ 

|      | , e i                 | ,                                          |
|------|-----------------------|--------------------------------------------|
| рН   | $C_{ m Cu}$ , моль/л  | $-\lg K_S$ $(Cu(C_7H_5O_2)_2 \cdot 3H_2O)$ |
| 4.43 | $5.00 \times 10^{-3}$ | 6.75                                       |
| 4.53 | $4.90 \times 10^{-3}$ | 6.73                                       |
| 4.17 | $5.40 \times 10^{-3}$ | 6.81                                       |
| 3.76 | $6.60 \times 10^{-3}$ | 6.94                                       |
| 3.03 | $1.88 \times 10^{-2}$ | 6.71                                       |
| 3.17 | $1.55 \times 10^{-2}$ | 6.72                                       |
|      |                       |                                            |

ди(II). По данным растворимости бензоата меди(II) (табл. 3) с использованием программы "Растворимость" [15] рассчитана константа растворимости  $K_S$  соли Cu(C<sub>7</sub>H<sub>5</sub>O<sub>2</sub>)<sub>2</sub> · 3H<sub>2</sub>O, являющаяся константой гетерогенного равновесия:

$$\operatorname{CuBenz}_{2(r)} \leftrightarrows \operatorname{CuBenz}_{2(p)} \leftrightarrows \operatorname{Cu}_{p}^{2+} + 2\operatorname{Benz}_{p}^{-}$$

с учетом образования в насыщенных растворах при pH 4.4–3.0 комплекса [CuBenz]<sup>+</sup>, гидролиза иона Cu<sup>2+</sup> по первой ступени, протонизации бензоат-иона (lg $B_1$  = 4.01 [16]). Константа устойчивости комплекса [CuBenz]<sup>+</sup> (lg $\beta_1$  = 1.62), доминирующего в системе CuCl<sub>2</sub>–NaBenz при pH 4.4, рассчитана также по данным изомолярной серии (рис. 1) по формуле:

$$\beta_{1} = ([CuBenz]^{+})/([Cu^{2+}] \times [Benz^{-}]) = = (C_{K}\omega f)/\{(C_{Cu} - C_{K})(C_{Benz} - C_{K})\},\$$

где  $C_{\rm K}$ ,  $\omega$ , f – концентрация комплекса в равновесном растворе, функции гидролиза катиона  ${\rm Cu}^{2+}$  и протонизации аниона бензойной кислоты соответственно:  $C_{\rm K} = \{(D - D_{\rm Cu})C_{\rm Cu}\}/(D_{\infty} - D_{\rm Cu})$ при  $C_{\rm Cu} < C_{\rm Benz}$ ,  $\omega = 1 + (K_{h1}/h)$ , где  $h = [{\rm H}^+]$ ,  $K_{h1}$  – константа гидролиза иона  ${\rm Cu}^{2+}$  по первой ступени,  $f_{\rm Benz} = 1 + B_1h$ ; [Benz–] =  $(C_{\rm Benz} - C_{\rm K})/f_{\rm Benz}$ , [ ${\rm Cu}^{2+}$ ] =  $(C_{\rm Cu} - C_{\rm K})/\omega$ .

Результаты расчета по программе "Растворимость":  $\lg\beta_1$  (оптим.) = 1.52,  $\beta_1 = 33.1$ ,  $\lg\overline{K}_s = -6.78$ , стандартное отклонение  $s^2 = 9 \times 10^{-3}$ .

Смешанолигандные соли меди(II) на основе анионов ароматических кислот и азолов синтезировали из ранее полученных малорастворимых солей  $CuL_2 \cdot nH_2O$ , имидазола и 2-метилимидазола:

$$CuL_2 \cdot nH_2O + xIm(metIm) \rightarrow$$
  
 
$$\rightarrow Cu(Im, metIm)_xL_2 \downarrow.$$

Синтез бензоата *гексакис*-имидазолмеди(II) Cu(C<sub>3</sub>H<sub>4</sub>N<sub>2</sub>)<sub>6</sub>(C<sub>7</sub>H<sub>5</sub>O<sub>2</sub>)<sub>2</sub> · 2H<sub>2</sub>O проводили из водного раствора при взаимодействии бензоата меди(II) CuBenz<sub>2</sub> · 3H<sub>2</sub>O с имидазолом при мольном соотношении CuL<sub>2</sub> : Im = 1 : 5 (pH 8.3) по реакции:

$$Cu(C_7H_5O_2)_2 + 5C_3H_4N_2 \rightarrow \rightarrow Cu(C_3H_4N_2)_6(C_7H_5O_2)_2 \downarrow$$

Для этого к водной суспензии бензоата меди(II) (3 мл  $H_2O$ ) постепенно добавляли навески сухого имидазола до полного растворения осадка исходной соли и образования новой фазы, что достигалось при мольном соотношении компонентов 1 : 5 и выдерживании смеси в течение 3 сут, после чего отфильтрованный осадок промывали эфиром и высушивали. Синтез бензоата *бис*-2-метилимидазолмеди(II)  $Cu(C_4H_6N_2)_2(C_7H_5O_2)_2 \cdot 2H_2O$  из водной суспензии бензоата меди(II) и 2-метилимидазола при мольном соотношении компонентов 1 : 4 (pH 8.7) проводили так же, как и

синтез бензоата гексакис-имидазолмеди(II). Синникотината *тетракис*-имидазолмеди(II) тез  $Cu(C_3H_4N_2)_4(C_6H_4NO_2)_2 \cdot 2H_2O$  осуществляли из водного раствора при взаимодействии никотината меди(II) CuNic<sub>2</sub> · H<sub>2</sub>O с имидазолом (pH 7.9). Для этого к водной суспензии никотината меди(II) (3 мл H<sub>2</sub>O) постепенно добавляли навески сухого имилазола до полного растворения осалка исходной соли и образования новой фазы, что наблюдалось при мольном соотношении 1 : 4. Спустя 3 сут кристаллы отфильтровывали, промывали эфиром и высушивали на воздухе. Для билигандных солей проводили элементный и гравиметрический анализ (табл. 1), их состав также полтвержден и термогравиметрическим методом (табл. 2).

Синтез сокристалла/соли  $C_3H_4N_2 \cdot C_6H_4NO_2$ (ImHNic) осуществляли внесением навески имидазола в водную суспензию (3–4 мл H<sub>2</sub>O) никотиновой кислоты, мольное соотношение HNic : Im = = 1 : 2, pH<sub>смеси</sub> 7.4:

$$C_6H_5NO_2 + 2C_3H_4N_2 \rightarrow C_3H_4N_2 \cdot C_6H_4NO_2 \downarrow .$$

При длительном выдерживании смеси формировалась новая фаза, которую фильтровали, промывали диэтиловым эфиром и сушили на воздухе.

При синтезе сокристалла/соли  $C_3H_4N_2 \cdot C_7H_6O_2$ (ImHBenz) к водной суспензии бензойной кислоты (3 мл H<sub>2</sub>O) постепенно добавляли сухой имидазол до установления мольного соотношения 1 : 3 (pH 8.0). Происходило растворение осадка кислоты и образование новой фазы:

$$C_7H_6O_2 + 3C_3H_4N_2 \rightarrow C_3H_4N_2 \cdot C_7H_6O_2 \downarrow$$
.

Спустя несколько суток осадок отфильтровывали, промывали эфиром, высушивали на воздухе.

Оба полученных соединения представляют собой малорастворимые твердые вещества. Состав синтезированных сокристаллов/солей  $C_3H_4N_2$ .

 $\cdot$   $C_6H_4NO_2$  и  $C_3H_4N_2$   $\cdot$   $C_7H_6O_2$  установлен элементным анализом (табл. 1). Для синтезированных продуктов сняты термограммы на воздухе. На рис. 2 приведена термограмма сокристалла/соли  $C_3H_4N_2$   $\cdot$   $\cdot$   $C_6H_4NO_2$ . Для соединения  $C_3H_4N_2$   $\cdot$   $C_7H_6O_2$  получена дифрактограмма порошка (рис. 3).

При синтезе сокристалла/соли  $3(C_4H_6N_2) \cdot C_{19}H_{19}O_6N_7 \cdot 2H_2O$  (3(2-metIm)  $\cdot H_3Fol \cdot 2H_2O$ ) к водной суспензии фолиевой кислоты (3 мл H<sub>2</sub>O) постепенно добавляли сухой 2-метилимидазол, создавая мольное соотношение H<sub>3</sub>Fol : 2-metIm = = 1 : 3 (pH<sub>смеси</sub> ~ 7). После растворения осадка фолиевой кислоты из водного раствора проводили выделение новой фазы ацетоном. Осадок отфильтровывали, промывали ацетоном, высушивали на воздухе, проводили элементный и термогравиметрический анализ (табл. 1, 2), получена дифрактограмма порошка (табл. S1).

#### РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Синтез билигандных солей меди(II) проводили из малорастворимых бензоата ( $\lg K_s = -6.78$ ) и никотината ( $\lg K_s = -9.78$ ) меди(II) и азолов (имидазола и 2-метилимидазола) при рН в интервале 7.9–8.7. Согласно [17], в указанном интервале рН доминирует нейтральная молекула имидазола, координирующаяся катионом меди(II) за счет неподеленной пары электронов *sp*<sup>2</sup>-гибридной орбитали атома азота N<sub>(3)</sub>.

Поскольку в синтезированных солях удаление воды, деструкция аниона ароматической кислоты, азола и образование оксида меди(II) происходят в различных температурных интервалах (табл. 2), можно представить стадии термического распада солей на воздухе, например, бензоата *гексакис*-имидазолмеди(II) CuIm<sub>6</sub>Benz<sub>2</sub> · 2H<sub>2</sub>O (н – найдено, в – вычислено):

$$\begin{aligned} & \text{CuIm}_{6}\text{Benz}_{2} \cdot 2\text{H}_{2}\text{O}\frac{\underline{\Im}\text{H}\underline{\partial}\sigma\underline{\Im}\underline{\Phi}. 51-180^{\circ}\text{C}}{-2\text{H}_{2}\text{O}\left(\text{H}.4.7;\text{B}.4.80\%\right)} > \text{CuIm}_{6}\text{Benz}_{2} > \\ & \underline{\Im}\text{H}\underline{\partial}\sigma, \ \Im\text{K}309\underline{\Phi}. 180-580^{\circ}\text{C}} \\ & -\left(6\text{Im} + \text{Benz}^{-}\right)(\text{H}.72.6;\text{B}.70.60\%); -\text{Benz}^{-}\left(\text{H}.17.7;\text{B}.16.15\%\right) + \text{CuO}\left(\text{H}.9.8;\text{B}.10.60\%\right) \end{aligned}$$

Термогравиметрические исследования синтезированных соединений также важны для понимания их термической стабильности, которая наравне с другими свойствами является характеристикой химических соединений.

Для доказательства образования связи между катионом меди(II) и определенными функциональными группами анионов кислот и имидазола сняты и проанализированы ИК-спектры поглощения кислот, азола и синтезированных солей. Полосы при 3500–3100 см<sup>-1</sup> подтверждают наличие кристаллизационных молекул воды в полученных солях, в области 825-937 см<sup>-1</sup> обнаружены полосы поглощения, принадлежащие деформационным колебаниям  $\delta$ (С–Н) пиридинового кольца. В ИК-спектрах солей Сu(C<sub>7</sub>H<sub>5</sub>O<sub>2</sub>)<sub>2</sub> · 3H<sub>2</sub>O, Cu(C<sub>6</sub>H<sub>4</sub>NO<sub>2</sub>)<sub>2</sub> · H<sub>2</sub>O, Cu(C<sub>3</sub>H<sub>4</sub>N<sub>2</sub>)<sub>6</sub>(C<sub>7</sub>H<sub>5</sub>O<sub>2</sub>)<sub>2</sub> · 2H<sub>2</sub>O, Cu(C<sub>3</sub>H<sub>4</sub>N<sub>2</sub>)<sub>4</sub>(C<sub>6</sub>H<sub>4</sub>NO<sub>2</sub>)<sub>2</sub> · 2H<sub>2</sub>O, Cu(C<sub>4</sub>H<sub>6</sub>N<sub>2</sub>)<sub>2</sub>(C<sub>7</sub>H<sub>5</sub>O<sub>2</sub>)<sub>2</sub> · 2H<sub>2</sub>O, Haблюдаются ин-



**Рис. 2.** Кривые ТГА, ДТГ (пунктирная линия) и ДСК сокристалла/соли C<sub>3</sub>H<sub>4</sub>N<sub>2</sub> · C<sub>6</sub>H<sub>4</sub>NO<sub>2</sub> (атмосфера воздуха).



Рис. 3. Дифрактограммы бензойной кислоты (1), порошков имидазола (2) и соединения Im · HBenz (3). Обозначения: \* – пики, отсутствующие на дифрактограммах исходных веществ; ■, ▲ – пики, соответствующие бензойной кислоте и имидазолу.

тенсивные полосы с максимумами поглощения в области 1589—1538 и 1494—1370 см<sup>-1</sup>, отвечающие валентным асимметричным и симметричным колебаниям депротонированных карбоксильных групп анионов ароматических кислот, а полосы

поглощения при 1688.5 см<sup>-1</sup> (HBenz) и 1699.7 см<sup>-1</sup> (HNic), относящиеся к валентным колебаниям связи C=O неионизированной карбоксильной группы, исчезают. Смещение в спектрах солей полосы поглощения валентных колебаний связи

C=N имидазола при 1448.7 см<sup>-1</sup> подтверждает участие в связи с ионом меди(II) пиридинового атома азота  $N_{(3)}$  [18].

Устойчивость монобензоатного комплекса меди(II), образование которого в растворе учтено при расчете константы растворимости соли  $Cu(C_7H_5O_2)_2 \cdot 3H_2O$ , изучали несколькими методами. Значение константы устойчивости комплекса [CuBenz]<sup>+</sup>, определенное с использованием метода изомолярной серии (lg $\beta_1 = 1.62$ ), удовлетворительно совпадает с результатами

рН-потенциометрического определения ( $C_{Cu}^{\circ}$  =

 $= C_{\rm HBenz}^{\circ} = 1 \times 10^{-2}$  моль/л;  $C_{\rm NaOH} = 8.403 \times 10^{-3}$  моль/л; lg $\beta_1 = 1.66$ ), с данными метода растворимости (lg $\beta_1 = 1.52$ , табл. 3) и удовлетворительно согласуется с литературными данными [5, 6]. Бензоатный комплекс меди состава 1 : 1 [CuBenz]<sup>+</sup> имеет невысокую устойчивость (lg $\beta_1 = 1.52 - 1.66$ ). Простейший ароматический карбоксилат-ион – бензоат-ион – образует слабые комплексы с большинством ионов металлов в водном растворе, так как для этого лиганда сильна конкуренция со стороны молекул воды [19]. Бензоат-ион, содержащий донорный атом кислорода, является довольно жестким лигандом, поэтому связывание в бензоатных комплексах обычно рассматривается в рамках электростатических взаимодействий.

Устойчивость монолигандных комплексов меди(II) с анионами ароматических кислот уменьшается при переходе от [CuNic]<sup>+</sup> к [CuBenz]<sup>+</sup> (lg $\beta_1$  = 3.22 [14], 1.62), что находится в соответствии с увеличением силы ароматических кислот HNic, HBenz (lg $B_1$  = 4.84, 4.01).

Получение билигандных твердых солей можно объяснить:

- сродством иона Cu<sup>2+</sup> ( $d^9$ ) (ион с почти заполненным d-подуровнем) как к донорным атомам азота, так и к атомам кислорода используемых лигандов: имидазола, его производных и анионов ароматических кислот;

— взаимным влиянием лигандов во внутренней сфере за счет  $\pi$ — $\pi$ -взаимодействия колец лигандов — ароматических кислот и азолов; возможным образованием между ними водородных связей; различной кислотно-осно́вной природой лигандов.

Молярное соотношение компонентов в синтезированных сокристаллах/солях никотиновой и бензойной кислот с имидазолом, равное 1 : 1, отвечает основности взаимодействующих веществ. В сокристалле/соли фолиевой кислоты с 2-метилимидазолом 3(2-metIm)  $\cdot$  H<sub>3</sub>Fol  $\cdot$  2H<sub>2</sub>O молярное соотношение компонентов равно 3 : 1 (pH синтеза ~7), молекула фолиевой кислоты ведет себя как трехосновная кислота. Такое же молярное соотношение было найдено в синтезированном нами соединении фолиевой кислоты с имидазолом 3Im  $\cdot$  H<sub>3</sub>Fol  $\cdot$  2H<sub>2</sub>O (pH синтеза 7.3) [20]. В работах [21, 22] обсуждается вопрос, связанный с образованием сокристалла или соли в зависимости от величины  $\Delta p K_a = p K_a$  (основание) –  $p K_a$  (кислота) взаимодействующих кислоты и основания. Предполагается, что при  $\Delta p K_a < 3.75$  происходит взаимодействие СООН … N с образованием сокристаллов, тогда как при  $\Delta p K_a > 3.75$  наблюдается перенос протона от кислоты к основанию и образование соли. В указанных работах показано образование сокристаллов при значении  $\Delta p K_a$  в диапазоне (-1)–2, а при значении  $p K_a > 3.4$  – образование солей, хотя и указывается, что в диапазоне  $\Delta p K_a 0$ –3 существует неоднозначность. Прогнозы, сделанные на основе подобных оценок, далеко не всегда согласуются с экспериментальными данными.

Данные ИК-спектроскопии указывают на то, что для двух полученных нами сокристаллов/солей отсутствуют полосы недиссоциированных карбоксильных групп R–C(O)–H бензойной и никотиновой кислот (1688.5, 1699.7 см<sup>-1</sup>), а присутствуют полосы поглощения ионизированных карбоксильных групп (1598.6, 1581.7 см<sup>-1</sup>), что может свидетельствовать о переносе протона от кислоты к имидазолу. Эти данные ИК-спектроскопии находятся в соответствии с изменением величины  $\Delta pK_a = pK_a$  (основание Im,  $pK_a = 7.69$ ) –  $pK_a$ (кислота):

| Кислота           | HNic | HBenz |  |  |
|-------------------|------|-------|--|--|
| $pK_{a1}$         | 4.84 | 4.01  |  |  |
| $\Delta p K_{a1}$ | 2.85 | 3.68  |  |  |

Разница в  $pK_a$  исходных компонентов ( $\Delta pK_a > 2.5$ ) может служить косвенным доказательством образования сокристаллов/солей Im · HNic, Im · HBenz. На дифрактограмме двойной системы Im–HBenz присутствуют новые рефлексы ( $2\theta = 29.23^{\circ}$ , 33.20°, 35.80°) по сравнению с рефлексами исходных компонентов (рис. 3), что также может быть подтверждением образования нового соединения. По данным РФА, двойная система 3(2-теtIm)– $H_3$ Fol имеет аморфную структуру, в отличие от ее компонентов – 2-метилимидазола и фолиевой кислоты, имеющих кристаллическую структуру. В связи с этим можно предположить, что хотя новые рефлексы на дифрактограмме соединения  $3(2-\text{metIm}) \cdot H_3$ Fol отсутствуют, кардинальное изменение структуры двойной системы (аморфное строение), возможно, связано с образованием нового вещества.

Анализ термограмм сокристаллов/солей Im · HNic, Im · HBenz указывает на присутствие на кривой ДСК (рис. 2) двух ярко выраженных эндотермических пиков, обусловленных плавлением и сублимацией продуктов деструкции: для  $C_3H_4N_2 \cdot C_6H_5NO_2 t_{\pi\pi} = 104.5^{\circ}C$ , интервал температуры деструкции ~(120–270°C); для  $C_3H_4N_2 \cdot C_7H_6O_2 t_{\pi\pi} = 96^{\circ}C$ , интервал температуры деструкции ~(100– 217°С). Таким образом, соединения имеют температуры плавления ~100°С, отличные от температур плавления исходных компонентов ( $t_{пл}$ (Im) ~ 90°С;  $t_{пл}$ (HNic) ~ 237°С;  $t_{пл}$ (HBenz) ~ 123°С), что является характерным свойством любых ионных жидкостей, находящихся в жидком или твердом состоянии. Температуры плавления сокристаллов/солей Im · HNic, Im · HBenz лежат между температурами плавления исходных компонентов – имидазола и ароматической кислоты.

Анализ дифрактограмм, ИК-спектров и термогравиметрических данных для соединений  $C_3H_4N_2\cdot C_6H_5NO_2, C_3H_4N_2\cdot C_7H_6O_2$  (плавление, совместная сублимация продуктов деструкции),  $3(C_4H_6N_2) \cdot C_{19}H_{19}O_6N_7 \cdot 2H_2O$  (ступенчатые процессы потери воды, 2-метилимидазола, фолиевой кислоты) позволяют первые два соединения отнести к солям имидазолия (HIm<sup>+</sup>Nic<sup>-</sup>, HIm<sup>+</sup>Benz<sup>-</sup>), а соединение  $3(C_4H_6N_2) \cdot C_{19}H_{19}O_6N_7 \cdot 2H_2O - \kappa$  сокристаллам. Сокристаллы могут включать два или несколько компонентов в стехиометрическом соотношении, могут быть образованы за счет водородных связей, π-связывания, комплексообразования по типу гость-хозяин и ван-дер-ваальсовых взаимодействий, ионных взаимодействий с частичным или полным переносом протона от кислоты к основанию.

#### ЗАКЛЮЧЕНИЕ

Проведен синтез и анализ малорастворимых бензоата и никотината меди(II), определена константа растворимости бензоата меди(II)  $Cu(C_7H_5O_2)_2 \cdot 3H_2O$  с учетом комплексообразования, устойчивость монобензоатного комплекса [CuBenz]<sup>+</sup> методами растворимости, фотометрии, рН-потенциометрии; определены условия выделения, состав и свойства смешанолигандных солей, образующихся в системах CuL<sub>2(т)</sub>-Im(metIm), где L – анион бензойной или никотиновой кислоты (Benz<sup>-</sup>, Nic<sup>-</sup>). Синтезированы сокристаллы/соли с ароматическими кислотами и имидазолом, а также фолиевой кислоты с 2-метилимидазолом. Образование продуктов взаимодействия ароматических кислот и имидазола с участием π-связывания между ними может служить косвенным доказательством их совместимости с образованием билигандных солей меди(II).

#### конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

#### ДОПОЛНИТЕЛЬНЫЕ МАТЕРИАЛЫ

**Таблица S1.** Данные дифракции рентгеновских лучей на порошках двойной системы 3(2-metIm)—H<sub>3</sub>Fol и ее составляющих.

### СПИСОК ЛИТЕРАТУРЫ

- Dyukova I.I., Lavrenova L.G., Kuz'menko T.A. et al. // Inorg. Chim. Acta. 2019. V. 486. P. 406. https://doi.org/10.1016/j.ica.2018.10.064
- 2. Xian Peng, Guang-hua Cui, De-jie Li et al. // J. Mol. Struct. 2010. V. 967. № 1–3. P. 54. https://doi.org/10.1016/j.molstruc.2009.12.038
- Katzsch F., Münch A.S., Mertens F.O.R.L. et al. // J. Mol. Struct. 2014. V. 1064. P. 122. https://doi.org/10.1016/j.molstruc.2014.01.080
- 4. Betül Başaran, Efraim Avşar, Ayten Göçmen et al. // Thermochim. Acta. 1994. V. 247. № 2. P. 407. https://doi.org/10.1016/0040-6031(94)80140-1
- Yasuda M., Yamasaki K., Ohtaki H. // Bull. Chem. Soc. Jpn. 1960. V. 33. P. 1067.
- Bunting J.W., Thong K.M. // Can. J. Chem. 1970. V. 48. P. 1654.
- Fatemeh Keramatnia, Abolghasem Jouyban, Hadi Valizadeh et al. // Fluid Phase Equilibria. 2016. V. 425. P. 108. https://doi.org/10.1016/j.fluid.2016.05.016
- 8. Даин И.А., Логинов С.В., Рыбаков В.Б и др. // Бутлеровские сообщения. 2017. Т. 52. № 11. С. 1.
- 9. Saki Fujiwara, Takahiro Ichikawa, Hiroyuki Ohno. // J. Mol. Liq. 2016. V. 222. P. 214. https://doi.org/10.1016/j.molliq.2016.07.030
- Xuchong Chen, Shouwen Jin, Huan Zhang et al. // J. Mol. Liq. 2017. V. 1144. P. 514. https://doi.org/10.1016/j.molstruc.2017.05.041
- Arockia Jeya Yasmi Prabha E., Suresh Kumar S., Athimoolam S., Sridhar B. // J. Mol. Struct. 2017. V. 1129. P. 113. https://doi.org/10.1016/j.molstruc.2016.09.047
- 12. Grimmett M.R. // Adv. Heterocycl. Chem. 1981. V. 27. P. 241.
- Zaitseva S.V., Zdanovich S.A., Koifman O.I. // Macroheterocycles. 2012. V. 5. № 1. P. 81. https://doi.org/10.6060/mhc2012.111149z
- 14. Добаркина В.А., Скорик Н.А. // Журн. неорган. химии. 2001. Т. 46. № 12. С. 1994.
- 15. Скорик Н.А., Чернов Е.Б. Расчеты с использованием персональных компьютеров в химии комплексных соединений. Томск: Изд-во ТГУ, 2009. 90 с.
- Кумок В.Н., Скорик Н.А. Лабораторные работы по химии комплексных соединений. Томск: Изд-во ТГУ, 1983. 140 с.
- 17. *Раджобов У.* Автореф. дис. ... д-ра хим. наук. Душанбе, 2011. 41 с.
- Сулайманкулов К.С., Щыйтыева Н., Малабаева А.М., Бердалиева Ж.И. // Хим. журн. Казахстана. 2016. № 3. С. 76.
- Betiil Basaran, Efraim Avsar, F. Bedia Erim, Ayten Gijgmen // Thermochim. Acta. 1991. V. 186. P. 145.
- 20. *Скорик Н.А.* // Журн. неорган. химии. 2015. Т. 6. № 11. С. 1531. [*Skorik N.A.* // Russ. J. Inorg. Chem. 2015. V. 60. № 11. Р. 1402. https://doi.org/10.1134/S0036023615110145] https://doi.org/10.7868/S0044457X15110148
- 21. *Tanise R.Sh., Kapildev K.A., Peddy V. et al.* // Cryst. Growth. Des. 2008. V. 8. № 12. P. 4533.
- Manin A.N., Drozd K.V., Churakov A.V., Perlovich G.L. // Cryst. Growth Des. 2018. V. 18. P. 5254. https://doi.org/10.1021/acs.cgd.8b00711