_____ КООРДИНАЦИОННЫЕ ___ СОЕДИНЕНИЯ

УДК 546.561-31

ПОЛИГАЛОГЕНИДНЫЕ СОЛИ КОМПЛЕКСОВ МЕДИ(I) [Cu(CH₃CN)₄]Br₅ И [Cu(CH₃CN)₄]I₅: СИНТЕЗ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА

© 2021 г. А. Н. Усольцев^{а, *}, Н. А. Коробейников^а, М. Н. Соколов^{а, b}, С. А. Адонин^а

^аИнститут неорганической химии им. А.В. Николаева СО РАН, пр-т Академика Лаврентьева, 3, Новосибирск, 630090 Россия ^bKaзанский (Приволжский) федеральный университет, Химический институт им. А.М. Бутлерова, ул. Кремлевская, 29/1, Казань, 420008 Россия

> *e-mail: usoltsev@niic.nsc.ru Поступила в редакцию 24.03.2021 г. После доработки 16.04.2021 г. Принята к публикации 20.04.2021 г.

Полигалогенидные соли ацетонитрильных комплексных катионов меди(I) $[Cu(CH_3CN)_4]Br_5$ (1) и $Cu(CH_3CN)_4]I_5$ (2) получены реакциями бромида меди(II) и иодида меди(I) с соответствующим дигалогеном в растворе ацетонитрила и соответствующей галогеноводородной кислоты. Согласно данным рентгеноструктурного анализа, в обоих случаях полигалогенид-анионы образуют сложную супрамолекулярную структуру.

Ключевые слова: медь, полигалогениды, иод, бром, рентгеноструктурный анализ **DOI:** 10.31857/S0044457X21100202

введение

Хотя первые представители класса полигалогенидов были получены более 200 лет назад [1], данная область продолжает свое развитие и в настоящее время [2-8]. В последние годы был получен ряд важных и интересных результатов, в частности, выполнено структурное исследование полихлоридов [9-11]. Одновременно с этим наблюдается рост интереса к своего рода гибридным соединениям, содержащим в структуре одновременно галогенометаллат-анионы [12-14] и полигалогенидные фрагменты [15-20]. Помимо фундаментальных аспектов – развития представлений о галогенной связи [21-29] в координационной химии это связано с возможностью использования некоторых из них (полииодидсодержащих) в качестве компонентов фотовольтаических устройств [18, 20].

Ранее нами было показано [30, 31], что в случае *p*-элементов (Sb, Bi, Te) такие соединения (полигалоген-галогенометаллаты) могут быть получены по сравнительно простой схеме (галогенометаллатсодержащий раствор, дигалоген и галогенидная соль органического катиона). В настоящей работе нами представлены результаты, полученные в ходе попытки распространить данный подход на *d*-элементы и получить соответствующие комплексы меди. Структурно охарактеризованы два новых соединения: $[Cu(CH_3CN)_4]Br_5$ (1) и $[Cu(CH_3CN)_4]I_5$ (2). Рассмотрены особенности супрамолекулярной структуры в твердом теле.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез соединений 1, 2 проводили на воздухе. Реактивы марки "х. ч." получали из коммерческих источников и использовали без дополнительной очистки.

Синтез 1. Навеску 134 мг бромида меди(II) (0.6 ммоль) растворяли в смеси 3 мл ацетонитрила и 1 мл концентрированной бромоводородной кислоты при температуре 60°С. К горячему раствору добавляли избыток (\sim ×4) Br₂. При охлаждении и выдерживании при 6°С были получены оранжевые кристаллы 1, неустойчивые вне маточного раствора.

Синтез 2. Навеску 57 мг (0.3 ммоль) иодида меди(I) растворяли в смеси 3 мл ацетонитрила и 1 мл концентрированной иодоводородной кислоты при температуре 60°С. К раствору добавляли 152 мг (0.6 ммоль) I₂. При охлаждении и выдерживании при 6°С были получены черные кристаллы 2, неустойчивые вне маточного раствора.

Рентгеноструктурный анализ (РСА). Дифракционные данные для монокристаллов 1 и 2 получены при 140 К на автоматическом дифрактометре Agilent Xcalibur, оснащенном двухкоординатным детектором Atlas S2 (графитовый монохроматор, $\lambda(MoK_{\alpha}) = 0.71073$ Å, ω -сканирование). Интегрирование, учет поглощения, определение параметров элементарной ячейки проводили с использованием пакета программ CrysAlisPro. Кристалличе-

Параметр	1	2
Брутто-формула	$C_8H_{12}CuI_5N_4$	C ₈ H ₁₂ Br ₅ CuN ₄
М, г/моль	862.26	627.31
Сингония, пр. гр.	Моноклинная, І2/а	Моноклинная, С2
<i>a</i> , <i>b</i> , <i>c</i> , Å	14.3059(5), 10.3807(4), 27.9907(9)	13.2873(13), 9.8992(7), 13.9419(12)
β, γ, град	90.771(3)	90.625(9)
<i>V</i> , Å ³	4156.4(3)	1833.7(3)
Ζ	8	4
<i>F</i> (000)	3056	1168
$ρ_{\rm выч}$, γ/cm ³	2.756	2.272
Область сканирования по θ, град	2.4-28.9	3.8–27.6
μ, мм ⁻¹	8.47	12.08
Размер кристалла, мм	$0.21 \times 0.17 \times 0.15$	0.27 imes 0.24 imes 0.21
N_{hkl} измеренных, независимых и с $I > 2\sigma(I)$	14240, 3947, 3454	4205, 2951, 2679
<i>R</i> _{int}	0.018	0.043
Диапазон индексов <i>hkl</i>	$h = -14 \rightarrow 17, \ k = -12 \rightarrow 12,$ $l = -32 \rightarrow 34$	$h = -13 \rightarrow 17, \ k = -12 \rightarrow 12,$ $l = -18 \rightarrow 18$
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.024, 0.055, 1.03	0.075, 0.210, 1.07
Остаточная электронная плотность (max/min), e/Å ³	1.05, -1.41	1.46, -1.46

Таблица 1. Детали рентгеноструктурных экспериментов для 1 и 2

ские структуры расшифрованы с использованием программы SHELXT и уточнены полноматричным MHK в анизотропном (за исключением атомов водорода) приближении с помощью программы SHELXL [32]. Позиции атомов водорода органических фрагментов рассчитаны геометрически и уточнены по модели "наездника". Кристаллографические данные и детали дифракционных экспериментов приведены в табл. 1. Полные таблицы межатомных расстояний и валентных углов, координаты атомов и параметры атомных смещений депонированы в Кембриджском банке структурных данных (ССDС 2072693 и 2072694; https://www.ccdc.cam.ac.uk/structures/).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Вопреки ожиданиям, вышеописанные реакции не ведут к образованию полигалоген-галогенокупратов, хотя единичные примеры таких соединений были описаны ранее [33]. Попытки добавить в реакционную смесь бромидные либо иодидные соли различных катионов – замещенные производные пиридиния – не привели к успеху (образование 1 или 2 подтверждали измерением параметров ячейки). Оба соединения отличаются низкой устойчивостью: при удалении маточного раствора происходит быстрое (менее чем за одну минуту), заметное невооруженным глазом разрушение кристаллов, что не позволяет провести их полноценное исследование методами, отличными от PCA.

В обеих структурах присутствуют катионы $[Cu(CH_3CN)_4]^+$, геометрические параметры которых (Cu–N = 1.990–1.998 Å (1) и 1.977–2.003 Å (2)) соответствуют таковым для данного фрагмента [34]. В случае 1 это свидетельствует об одноэлектронном восстановлении Cu(II), причины которого (в особенности с учетом присутствия избытка сравнительно сильного окислителя) остаются неясными.

Несмотря на схожий состав, **1** и **2** не изоструктурны (табл. 1 и рис. 1 и 2), что в значительной степени предопределяет отличия в системах супрамолекулярных контактов с участием атомов галогена. В структуре **1** присутствуют асимметричные трибромид-анионы (Br(1)–Br(2) = 2.445 Å, Br(2)–Br(3) = 2.662 Å, рис. 3), взаимодействующие с фрагментами {Br₂} (Br–Br = 2.348–2.350 Å) таким образом, что образуются бесконечные супрамолекулярные цепочки (рис. 1; Br(3)···Br(4) = = Br(5)···Br(6) = 3.222 Å, Br(3)···Br(7) = 3.176 Å; при этом сумма ван-дер-ваальсовых радиусов для двух атомов Br (Бонди) составляет 3.66 Å [35]).

Рис. 1. Упаковка в кристалле 1.

Рис. 2. Упаковка в кристалле 2.

Строение анионной части **2** менее тривиально. В структуре присутствуют два типа трииодиданионов: симметричные (I–I = 2.906 Å; I(1), I(2) и I(3) на рис. 4) и асимметричные (I(4)–I(5) = = 2.982 Å, I(5)–I(6) = 2.835 Å). Фрагменты $\{I_2\}$ разупорядочены по двум позициям с заселенностями 0.35 и 0.65 соответственно, что приводит к появлению суперпозиции супрамолекулярных цепочек, аналогичных таковым в 1 (I \cdots I = 3.353– 3.568 Å). ПОЛИГАЛОГЕНИДНЫЕ СОЛИ

Рис. 3. Структура анионной части в соединении 1.

Рис. 4. Структура анионной части в соединении 2.

ЗАКЛЮЧЕНИЕ

Таким образом, можно отметить, что вышеописанная "типовая" схема непригодна для получения полигалоген-галогенокупратов. Можно предположить, однако, что она окажется эффективной при использовании полярных некоординирующих растворителей (например, нитрометана); соответствующие исследования в настоящее время ведутся нашей группой.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа поддержана грантом РНФ (18-73-10040).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Haller H., Riedel S. // Z. Anorg. Allg. Chem. 2014. V. 640. № 7. P. 1281. https://doi.org/10.1002/zaac.201400085
- 2. *Yushina I.D., Kolesov B.A., Bartashevich E.V.* // New J. Chem. 2015. V. 39. № 8. P. 6163. https://doi.org/10.1039/C5NJ00497G
- Matveychuk Y.V., Ilkaeva M.V., Vershinina E.A. et al. // J. Mol. Struct. 2016. V. 1119. P. 227. https://doi.org/10.1016/j.molstruc.2016.04.072
- *Reiss G.J.* // Z. Kristallogr. New Cryst. Struct. 2019. V. 234. № 4. P. 737. https://doi.org/10.1515/ncrs-2019-0082
- Reiss G.J. // Z. Kristallogr. New Cryst. Struct. 2019. V. 234. № 5. P. 899. https://doi.org/10.1515/ncrs-2019-0127
- *Reiss G.J.* // Z. Kristallogr. Cryst. Mater. 2017. V. 232. № 11. P. 789. https://doi.org/10.1515/zkri-2017-2071

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 10 2021

- Reiss G.J. // Z. Naturforsch., Sect. B: J. Chem. Sci. 2015. V. 70. № 10. P. 735. https://doi.org/10.1515/znb-2015-0092
- Reiss G.J., Leske P.B. // Z. Kristallogr. New Cryst. Struct. 2014. V. 229. № 4. P. 452. https://doi.org/10.1515/ncrs-2014-0193
- 9. Brückner R., Haller H., Steinhauer S. et al. // Angew. Chem. Int. Ed. 2015. V. 54. № 51. P. 15579. https://doi.org/10.1002/anie.201507948
- 10. Sonnenberg K., Pröhm P., Schwarze N. et al. // Angew. Chem. Int. Ed. 2018. V. 57. № 29. P. 9136. https://doi.org/10.1002/anie.201803486
- 11. Brückner R., Haller H., Ellwanger M. et al. // Chem. A Eur. J. 2012. V. 18. № 18. P. 5741. https://doi.org/10.1002/chem.201103659
- 12. Buikin P.A., Ilyukhin A.B., Laurinavichyute V.K. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 2. P. 133. https://doi.org/10.1134/S0036023621020042
- Buikin P.A., Rudenko A.Y., Ilyukhin A.B. et al. // Russ. J. Coord. Chem. 2020. V. 46. № 2. P. 111. https://doi.org/10.1134/S1070328420020049
- Yelovik N.A., Shestimerova T.A., Bykov M.A. et al. // Russ. Chem. Bull. 2017. V. 66. № 7. P. 1196. https://doi.org/10.1007/s11172-017-1872-y
- Hausmann D., Feldmann C. // Inorg. Chem. 2016.
 V. 55. № 12. P. 6141. https://doi.org/10.1021/acs.inorgchem.6b00663
- Eich A., Köppe R., Roesky P.W. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. № 9. P. 1292. https://doi.org/10.1002/ejic.201900018
- 17. Eich A., Köppe R., Roesky P.W. et al. // Z. Anorg. Allg. Chem. 2018. V. 644. № 5. P. 275. https://doi.org/10.1002/zaac.201700409
- Shestimerova T.A., Yelavik N.A., Mironov A.V. et al. // Inorg. Chem. 2018. V. 57. № 7. P. 2765. https://doi.org/10.1021/acs.inorgchem.8b00265
- 19. Shestimerova T.A., Mironov A.V., Bykov M.A. et al. // Molecules. 2020. V. 25. № 12. https://doi.org/10.3390/molecules25122765
- Shestimerova T.A., Golubev N.A., Yelavik N.A. et al. // Cryst. Growth Des. 2018. V. 18. № 4. P. 2572. https://doi.org/10.1021/acs.cgd.8b00179
- Bokach N.A., Suslonov V.V., Eliseeva A.A. et al. // CrystEng-Comm. 2020. V. 22. № 24. P. 4180. https://doi.org/10.1039/c6ra90077a

- 22. *Ding X., Tuikka M.J., Hirva P. et al.* // CrystEngComm. 2016. V. 18. № 11. P. 1987. https://doi.org/10.1039/C5CE02396C
- 23. Novikov A.S., Ivanov D.M., Bikbaeva Z.M. et al. // Cryst. Growth Des. 2018. V. 18. № 12. P. 7641. https://doi.org/10.1021/acs.cgd.8b01457
- 24. *Torubaev Y.V., Skabitskiy I.V., Rusina P. et al.* // CrystEng-Comm. 2018. V. 20. № 16. P. 2258. https://doi.org/10.1039/C7CE02185B
- 25. Torubaev Y.V., Lyssenko K.A., Popova A.E. // Russ. J. Coord. Chem. 2019. V. 45. № 11. P. 788. https://doi.org/10.1134/S1070328419110095
- Torubaev Y.V., Skabitsky I.V. // Z. Krist. Cryst. Mater. 2020. V. 235. № 12. P. 599. https://doi.org/10.1515/zkri-2020-0064
- 27. Torubaev Y.V., Skabitskiy I.V., Pavlova A.V. et al. // New J. Chem. 2017. V. 41. № 9. P. 3606. https://doi.org/10.1039/C6NJ04096A
- 28. *Torubaev Y.V., Skabitsky I.V., Saratov G.A. et al.* // Mendeleev Commun. 2021. V. 31. № 1. P. 58. https://doi.org/10.1016/j.mencom.2021.01.017
- Torubaev Y.V., Skabitsky I.V. // CrystEngComm. 2020.
 V. 22. № 40. P. 6661. https://doi.org/10.1039/d0ce01093f
- Usoltsev A.N., Adonin S.A., Novikov A.S. et al. // CrystEng-Comm. 2017. V. 19. № 39. P. 5934. https://doi.org/10.1039/C7CE01487B
- Adonin S.A., Gorokh I.D., Novikov A.S. et al. // Dalton. Trans. 2018. V. 47. № 8. P. 2683. https://doi.org/10.1039/c7dt04779g
- 32. *Sheldrick G.M., IUCr* // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
- Okrut A., Feldmann C. // Inorg. Chem. 2008. V. 47. № 8. P. 3084. https://doi.org/10.1021/ic7021038
- 34. Dehnhardt N., Böth A., Heine J. // Dalton. Trans. 2019.
 V. 48. № 16. P. 5222. https://doi.org/10.1039/C9DT00575G
- 35. Mantina M., Chamberlin A.C., Valero R. et al. // J. Phys. Chem. A. 2009. V. 113. № 19. P. 5806. https://doi.org/10.1021/jp8111556