= ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ —

УДК 544.31

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА Sm₂Hf₂O₇

© 2021 г. А. В. Гуськов^{а, *}, П. Г. Гагарин^а, В. Н. Гуськов^а, А. В. Тюрин^а, К. С. Гавричев^а

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия *e-mail: a.gus@igic.ras.ru

Поступила в редакцию 12.04.2021 г. После доработки 26.04.2021 г. Принята к публикации 27.04.2021 г.

Гафнат самария со структурой пирохлора синтезирован обратным осаждением с конечным отжигом образца при 1823 К и идентифицирован с помощью рентгенофазового и химического анализа, а также электронной микроскопии. Методами релаксационной и адиабатической калориметрии выполнены измерения молярной теплоемкости в интервале температур 4–347 К и рассчитаны температурные зависимости энтропии, приращения энтальпии и приведенной энергии Гиббса. Определен общий вид аномалии Шоттки в области низких температур.

Ключевые слова: гафнат самария, пирохлоры, калориметрия, термодинамические функции **DOI:** 10.31857/S0044457X2110007X

введение

Среди многочисленных соединений лантаноидов пирохлоры $Ln_2M_2O_7$ (M = Zr, Hf) выделяются высокой химической стойкостью и отсутствием фазовых переходов вплоть до температур разупорядочения и превращения в дефектный флюорит при 1800-2700 К [1-4]. Эти свойства и относительно низкая теплопроводность [5] вызывают интерес исследователей к пирохлорам Ln₂M₂O₇ как веществам, перспективным для разработки керамических материалов для термобарьерных (Thermal Barrier Coatings, TBC) и коррозионно-защитных (Environmental Barrier Coatings, EBC) покрытий для газотурбинных энергетических установок [6-9]. Эти вещества могут применяться также в качестве компонентов твердых электролитов для твердооксидных топливных элементов (Solid Oxide Fuel Cells, SOFC) [10, 11], сцинтилляторов [12–14], диэлектриков [15] и др. Устойчивость к ионизирующему излучению позволяет использовать их в атомной промышленности [16, 17]. Практическое применение требует исследований совместимости этих веществ с другими материалами и коррозионно-активными средами, что представляется объемной и затратной задачей, существенно ограничить которую можно с помощью математического моделирования фазовых и химических процессов [8]. Это возможно в том случае, если известны термодинамические функции и энтальпии образования участвующих в процессах вешеств.

Одним из перспективных двойных оксидов со структурой пирохлора является гафнат самария

Sm₂Hf₂O₇. Образование гафната самария со структурой пирохлора (Fd3m) и его разупорядочение при высоких температурах с переходом в структурный тип дефектного флюорита (*Fm3m*) впервые были обнаружены в работе [18]. Более детальные исследования системы Sm₂O₃-HfO₂ [19] подтвердили существование пирохлора $Sm_2Hf_2O_7$ в широкой концентрационной области (22-43 мол. % Sm₂O₃ при 1550-2573 К). Определена зависимость параметра флюоритной ячейки (или 1/2 параметра пирохлорной ячейки) от состава: a (Å) = 5.128 + 0.0045x (15 < x < 40, x – мол. % сесквиоксида самария в системе Sm₂O₃-HfO₂). Установлено [20], что параметр кристаллической решетки стехиометрического гафната самария равен 10.556 Å, область гомогенности при температуре 2373 К составляет 31-38 мол. % Sm₂O₃ и параметр решетки а в области гомогенности изменяется от 10.506 до 10.628 Å соответственно. По данным [21], параметр решетки стехиометрического Sm₂Hf₂O₇ равен 10.568 Å и энтальпия образования

из элементов ΔH_f° (298.15 K) = -4139.2 кДж моль⁻¹. Необходимо отметить, что гафнат самария, как и другие цирконаты и гафнаты лантаноидов, способен образовывать наноразмерную метастабильную низкотемпературную фазу со структурой разупорядоченного флюорита (*Fm3m*), которая в результате отжига при температурах выше 1300–1800 К необратимо превращается в кристаллическую устойчивую фазу структурного типа пирохлора (*Fd3m*) [22–24], пригодную для термодинамических исследований. Термодинамиче-

Рис. 1. Дифрактограмма образца $\text{Sm}_2\text{Hf}_2\text{O}_7$. Структурный тип пирохлора (*Fd3m*), a = 10.580 Å.

ские свойства гафната самария изучены в работе [25], где на основе выполненного методом калориметрии сброса измерений приращения энтальпии в области 730–1672 К были рассчитаны термодинамические функции в интервале температур 298–1700 К, но низкотемпературная теплоемкость в области 0–300 К до сих пор остается не исследованной.

Цель настоящей работы — измерение молярной теплоемкости двойного высокотемпературного оксида $Sm_2Hf_2O_7$, расчет энтропии, приращения энтальпии и приведенной энергии Гиббса в широком интервале температур (4–347 K), а также оценка вида аномалии Шоттки.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Гафнат самария получали совместным осаждением стехиометрической смеси гидроксидов гафния и самария в растворе аммиака (25-28 мас. % NH₄OH, ос. ч., ООО "Химмед") из водных растворов хлоридов гафния и самария, полученных растворением сесквиоксида самария (99.99 мас. %) и диоксида гафния (99.99 мас. %, ООО "Ланхит") в соляной кислоте (35-38 мас. %, ос. ч. 20-4, ООО "Ланхит"). Для расчетов стехиометрических отношений компонентов использовали моляльные концентрации и весовой метод смешивания исходных компонентов аналогично [26]. Полученный осадок обезвоживали при 368 К (95°С) и ступенчато отжигали с окончательным прокаливанием на воздухе при 1823 К. Полученный образец идентифицировали методом рентгенофазового анализа (РФА) на дифрактометре Bruker D8 Advance (Си K_{α} -излучение, $\lambda = 1.5418$ Å, Ni-фильтр, LYNXEYE детектор, геометрия на отражение) в интервале углов $2\theta = 10^{\circ} - 80^{\circ}$. Состав и чистоту образца определяли с помощью химического анализа (оптико-эмиссионный спектрометр с индуктивно связанной плазмой Agilent 725). Морфологию образца исследовали на электронном микроскопе Gross Beam Zeiss NVision 40. Теплоемкость измеряли на низкотемпературном (16-347 К) адиабатическом калориметре БКТ-3 (Termis, Russia) с программным обеспечением НЕАТ с использованием в качестве криогенных жидкостей жидких гелия и азота. Масса образца составляла 3.65924 ± 0.00005 г. Молекулярную массу гафната самария (769.6958 г/моль) рассчитывали из значений атомных масс элементов, рекомендованных в [27]. Измерения молярной теплоемкости в интервале температур 4-17 К проводили с помощью автоматизированного комплекса для измерения физических свойств Quantum Design PPMS-9. Образец для измерений был приготовлен в соответствии с рекомендациями [28]: порошок гафната самария смешивали с медной стружкой в медном стаканчике диаметром 3 мм, края которого были загнуты вовнутрь, и прессовали в таблетку высотой ~1 мм. Сглаживание экспериментальных данных по температурной зависимости теплоемкости проводили по методике [29].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Для проведения термических и термодинамических исследований был приготовлен образец гафната самария, имеющий, по данным химического анализа, состав $Sm_2Hf_{1.97}O_{6.93}$ (величина индекса при кислороде рассчитана исходя из соотношения оксидов металлов). Как показано ранее [30], такое отклонение от стехиометрического состава не может оказать существенного влияния на величину молярной теплоемкости для состава с идеальной стехиометрией. Дифракционные исследования (рис. 1) показали отсутствие посторонних фаз и хорошую закристаллизованность образца структурного типа пирохлора (Fd3m), которая подтверждается электронной микроскопией (рис. 2).

Рассчитанное значение параметра кубической решетки a = 10.580 Å удовлетворительно соответствует величинам, приведенным в [19–23], близко к величинам 10.574 [31] и 10.5769 Å [32]. Оценка по Дебаю–Шереру размеров областей когерентного рассеяния по ширине дифракционных отражений показала, что их размеры превышают 100 нм и находятся вне интервала существования наноразмерных частиц.

Температурную зависимость молярной теплоемкости гафната самария при низких температурах определяли методами релаксационной (RC, в интервале 4.1–18.7 К, 27 точек) и адиабатической калориметрии (AC, в области 16.6–347.1 К, 117 точек). Экспериментальные данные приведены в

Рис. 2. Микрофотография поверхности образца гафната самария.

табл. 1. Анализ полученной температурной зависимости показал, что аномалии, характерные для структурных превращений, отсутствуют во всем температурном интервале 4.1–347.1 К.

В области самых низких температур (4-25 К), представленной на рис. 3, наблюдается пологий минимум на кривой теплоемкости при ~6 К. Его присутствие свидетельствует о существовании магнитного превращения при температурах <4 K, характерного для однотипных соединений самария Sm₂Zr₂O₇ и Sm₂Ti₂O₇ [33, 34]. В силу малых значений температуры вклад магнитных преврашений в прирашение энтальпии незначителен и сравним с общей неопределенностью величины приращения энтальпии при температуре 298.15 К, тогда как энтропия может достигать существенной величины ~11.5 Дж моль⁻¹ К⁻¹ (2*R*ln2) [34]. Реальная температурная зависимость теплоемкости в этой области (0-4 К) нуждается в экспериментальных измерениях, к сожалению, недоступных для наших исследований.

Результаты экспериментальных измерений молярной теплоемкости гафната самария были сглажены с помощью уравнения:

$$C_p(T) = \sum a_i (\ln(T/400))^i.$$
 (1)

На рис. 3 эта зависимость показана кривой 4, она адекватно описывает экспериментальные результаты выше 16 К. Для дальнейших расчетов проведена корректировка сглаженных данных с учетом значений теплоемкости в интервале температур 4–18 К (точки 2 на рис. 3). В табл. 2 приведены результаты расчетов термодинамических функций гафната самария в области температур 4–347 К без учета значений функций ниже 4 К.

Отличительной особенностью поведения теплоемкости кристаллических соединений лантаноидов (за исключением лантана и лютеция) является существование аномалии Шоттки, возникающей в

Рис. 3. Температурная зависимость молярной теплоемкости $\text{Sm}_2\text{Hf}_2\text{O}_7$ (пирохлор) в интервале температур 4–25 К: \overline{I} – адиабатическая и 2– релаксационная калориметрия, 3– уравнение (3), 4– аппроксимация по уравнению (1).

результате взаимодействия 4*f*-неспаренных электронов с электрическим полем кристалла [35, 36]. В общем виде при отсутствии структурных превращений общая величина теплоемкости может быть записана в виде:

$$C_p = C_{\text{lat}} + C_{\text{exc}} = C_{\text{lat}} + C_{\text{mag}} + C_{\text{Sch}},$$
 (2)

где C_{lat} – решеточная (фононная), $C_{\text{exc}} = C_{\text{mag}} + C_{\text{Sch}}$ – избыточная теплоемкость, C_{mag} – магнитная составляющая и C_{Sch} – вклад аномалии Шоттки. Как правило, магнитные превращения в соединениях лантаноидов происходят в области очень низких температур (<10 K), тогда как заметный вклад аномалии Шоттки обычно наблюдается выше 30 К. Исключением является гафнат гадолиния, где оба эффекта имеют значимые величины теплоемкости ниже 10 К [26, 36], и поведение его теплоемкости выше этой температуры аналогично диамагнитным соединениям лантаноидов. Для оценки вклада решеточной теплоемкости мы воспользовались предложенным в [37] соотношением:

$$C_{\text{lat}} = (1 - f)C_p(\text{La}_2\text{Hf}_2\text{O}_7) + fC_p(\text{Gd}_2\text{Hf}_2\text{O}_7),$$
 (3)

где f — относительное изменение мольного объема: $f = [V_m(Sm_2Hf_2O_7) - V_m(La_2Hf_2O_7)]/[V(Gd_2Hf_2O_7) - V_m(La_2Hf_2O_7)]$ (рис. 3). Подробный анализ использования уравнения (3) для общего случая приведен в [38]. Для расчетов использованы значения молярной теплоемкости для гафнатов лантана и гадолиния при температурах выше 25 K, взятые из работ [26, 39].

Температурная зависимость полученной разности приведена на рис. 4 (кривая I) и близка к приведенным в [34] расчетным значениям аномалии Шоттки для Sm₂Zr₂O₇ и Sm₂Ti₂O₇ (кривые 2 и

		1		1					
<i>Т</i> , К	C_p , Дж моль $^{-1}$ К $^{-1}$	<i>Т</i> , К	$C_p,$ Дж моль $^{-1}$ К $^{-1}$	<i>Т</i> , К	$C_p,$ Дж моль $^{-1}$ К $^{-1}$	<i>Т</i> , К	$C_p,$ Дж моль ⁻¹ К ⁻¹		
Релаксационная калориметрия									
4.13	0.946	6.09	0.753	9.17	1.105	14.73	2.910		
4.36	0.807	6.45	0.767	9.79	1.232	15.63	3.297		
4.60	0.854	6.84	0.781	10.96	1.566	16.55	3.888		
4.87	0.812	7.25	0.824	11.62	1.741	17.60	4.486		
5.14	0.781	7.69	0.854	12.34	1.953	18.70	4.897		
5.44	0.758	8.15	0.914	13.08	2.251				
5.75	0.754	8.65	0.999	13.88	2.554				
а по									
16.68	3.862	64.64	68.26	109.8	118.8	220.4	201.3		
17.74	4.455	66.40	70.34	110.5	118.7	224.8	203.8		
18.72	5.636	68.16	73.22	113.4	121.9	229.1	206.3		
19.75	6.654	69.92	74.87	114.3	123.0	233.5	208.8		
20.81	7.579	71.89	77.41	117.1	125.4	237.9	211.3		
22.57	9.538	74.08	80.32	118.1	126.2	242.4	213.9		
24.32	11.62	76.26	82.92	122.0	129.8	246.7	216.4		
26.07	13.90	78.45	85.41	132.2	138.6	251.0	218.5		
27.81	16.13	80.65	88.03	137.8	144.4	255.2	221.5		
29.55	18.60	82.86	91.32	141.4	146.8	259.5	223.5		
31.28	20.91	84.56	93.03	145.0	149.4	263.7	225.1		
33.01	23.61	85.08	93.23	148.5	153.0	267.9	226.3		
34.73	25.82	87.24	96.03	152.1	154.8	272.1	228.7		
36.46	28.24	87.34	95.78	155.7	158.5	276.2	229.0		
38.18	31.04	89.58	98.37	159.2	161.0	280.3	232.0		
39.91	33.27	89.65	98.67	162.8	163.8	284.4	233.6		
41.63	35.87	92.08	101.3	166.4	166.1	288.4	233.2		
43.35	38.27	94.47	103.8	169.9	169.0	292.4	236.0		
45.06	41.05	94.74	103.6	173.5	171.3	296.4	236.1		
46.82	43.18	96.93	106.3	177.2	174.2	300.3	237.4		
48.55	45.81	97.18	106.5	180.7	175.9	304.7	238.9		
50.35	48.15	97.31	105.7	184.3	177.9	311.0	240.5		
52.07	50.59	99.35	109.0	187.9	181.0	318.4	242.8		
53.80	52.83	99.66	108.8	191.5	183.4	325.7	244.2		
55.53	55.46	99.72	108.9	195.0	185.8	332.9	246.2		
57.25	58.02	102.42	111.8	198.6	188.1	340.0	247.6		
59.00	60.52	102.64	112.0	202.6	190.7	347.1	248.3		
62.77	66.36	102.89	112.2	207.1	193.4				
64.64	68.26	106.09	114.8	211.5	196.1				
66.40	70.34	106.65	114.9	216.0	198.7				

2021

Таблица 1. Экспериментальная зависимость молярной теплоемкости Sm₂Hf₂O₇ (пирохлор) от температуры по данным релаксационной и адиабатической калориметрии, p = 101.3 кПа

<i>Т</i> , К	C_{n}° ,	$S^{\circ}(T) - S^{\circ}(4 \text{ K}),$	$H^{\circ}(T) - H^{\circ}(4 \text{ K}),$	$\Phi^{\circ}(T)^*,$
	Дж моль ¹ К ⁻¹	$Дж$ моль $^{-1} K^{-1}$	Дж моль $^{-1}$	Дж моль $^{-1}$ K $^{-1}$
4	0.9596	0	0	0
5	0.849	0.205	0.904	0.02399
6	0.795	0.356	1.726	0.0683
7	0.798	0.479	2.522	0.1188
8	0.861	0.590	3.351	0.1710
9	0.983	0.698	4.273	0.2235
10	1.168	0.811	5.349	0.2765
11	1.415	0.934	6.640	0.3304
12	1.726	1.070	8.210	0.3860
13	2.102	1.223	10.12	0.4442
14	2.544	1.395	12.45	0.5056
15	3.055	1.587	15.25	0.5709
16	3.634	1.803	18.59	0.641
17	4.284	2.042	22.55	0.716
20	6.746	2.899	38.50	0.928
25	12.62	5.020	86.50	1.457
30	19.18	7.890	165.8	2.228
35	26.15	11.37	279.0	3.233
40	33.36	15.33	427.7	4.453
45	40.67	19.68	612.8	5.865
50	47.93	24.34	834.0	7.446
60	61.99	34.33	1384	11.03
70	75.17	44.89	2071	15.07
80	87.38	55.73	2884	19.43
90	98.69	66.69	3816	24.04
100	109.2	77.60	4856	28.8
110	119.0	88.50	5997	33.7
120	128.3	99.30	7234	38.7
130	137.1	109.9	8562	43.8
140	145.5	120.4	9975	48.8
150	153.5	130.7	11475	53.9
160	161.2	140.8	13045	59.0
170	168.6	150.8	14695	64.1
180	175.7	160.7	16415	69.2
190	182.6	170.4	18 205	74.2
200	189.2	179.9	20065	79.3
210	195.5	189.3	21985	84.3
220	201.5	198.5	23975	89.2
230	207.3	207.6	26015	94.2
240	212.7	216.5	28115	99.1
250	217.8	225.3	30275	103.9
260	222.6	234.0	32475	108.8
270	227.0	242.4	34725	113.5
280	231.1	250.8	37015	118.3
290	234.8	258.9	39345	123.0
298.15	237.5 ± 1.2	265.5 ± 3.2	41265 ± 230	126.8 ± 1.4
300	238.1	267.0	41705	127.7
310	241.0	274.8	44105	132.3
320	243.4	282.5	46525	136.8

Таблица 2. Термодинамические функции Sm₂Hf₂O₇ (пирохлор) в области 4–347 K (без учета значений функций ниже 4 K), p = 101.3 кПа

* $\Phi^{\circ}(T) = [S^{\circ}(T) - S^{\circ}(4 \text{ K})] - [H^{\circ}(T) - H^{\circ}(4 \text{ K})]/T.$

Рис. 4. Разность $\Delta C_p = C_p - C_{\text{lat}}$ (уравнение (3)) для $\text{Sm}_2\text{Hf}_2\text{O}_7$ (*1*) и расчетные значения вклада аномалии Шоттки из работы [34] для $\text{Sm}_2\text{Zr}_2\text{O}_7$ (*2*) и $\text{Sm}_2\text{Ti}_2\text{O}_7$ (*3*).

3 соответственно). Отметим, что в работе [34] расчеты выполнены для формулы $SmXO_{3.5}$ (X = Ti, Zr) и приведены в графическом виде.

Выполненная оценка аномального вклада Шоттки как разности мольной теплоемкости $Sm_2Hf_2O_7$ и решеточного вклада, рассчитанного на основе уравнения (3) и решеточных теплоемкостей гафнатов лантана и гадолиния [26, 39], показала, что она имеет существенные значения уже начиная с 10 K, за счет чего аномальный вклад в энтропию имеет значительную величину уже при очень низких температурах.

ЗАКЛЮЧЕНИЕ

Молярная теплоемкость гафната самария структурного типа пирохлора измерена в интервале температур 4–347 К. термодинамические функции рассчитаны без учета значений ниже 4 К. Величины функций при 298.15 К составляют $C_{nm}^{\circ}(298.15 \text{ K}) = 235.5 \pm 1.2 \text{ Дж моль}^{-1} \text{ K}^{-1},$ $S^{\circ}(298.15 \text{ K}) - S^{\circ}(4.0 \text{ K}) = 265.5 \pm 3.2 \text{ Дж моль}^{-1} \text{ K}^{-1},$ $\Phi^{\circ}(298.15 \text{ K}) = 126.8 \pm 1.4 \ Дж моль^{-1} \ \mathrm{K}^{-1}$ и $H^{\circ}(298.15 \text{ K}) - H^{\circ}(4.0 \text{ K}) = 41265 \pm 230 \text{ Дж моль}^{-1}.$ Определен общий вид аномалии Шоттки и показано, что аномалия вносит существенный вклад в теплоемкость во всем измеренном интервале температур. Полученные результаты могут быть использованы для термодинамического моделирования фазовых равновесий с участием гафната самария и разработки технологий синтеза керамических материалов на его основе.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено при финансовой поддержке Российского научного фонда (грант № 18-13-00025), https://rscf.ru/project/18-13-00025, с использованием оборудования ЦКП ИОНХ РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Michel D., Perez Y., Jorba M., Collongues R. //* Mater. Res. Bull. 1974. V. 9. P. 1457.
- Rushton M.J.D., Grimes R.W., Stanek C.R., Owens S. // J. Mater. Res. 2004. V. 19. P. 1603. https://doi.org/10.1557/JMR.2004.0231
- Durán P. // Ceramurgia Int. 1977. V. 3. P. 137. https://doi.org/10.1016/0390-5519(77)90059-x
- Jiang C., Stanek C.R., Sickafus K.E., Uberuaga B.P. // Phys. Rev. 2009. V. B79. P. 104203. https://doi.org/10.1103/PhysRevB.79.104203
- Pan W., Phillpot S.R., Wan C. et al. // MRS Bull. 2012. V. 37. P. 917. https://doi.org/10.1557/mrs.2012.234
- Vaβen R., Jarligo M.O., Steinke T. et al. // Surf. Coat. Technol. 2010. V. 205. P. 938. https://doi.org/10.1016/j.surfcoat.2010.08.151
- 7. Clarke D.R., Phillpot S.R. // Mater. Today. 2005. V. 8. P. 22. https://doi.org/10.1016/s1369-7021(05)70934-2
- Poerschke D.L., Jackson R.W., Levi C.G. // Annu. Rev. Mater. Res. 2017. V. 47. P. 297. https://doi.org/10.1146/annurev-matsci-010917-105000
- 9. Liang P., Dong S., Zeng J. et al. // Ceram. Int. 2019. V. 45. P. 22432. https://doi.org/10.1016/j.ceramint.2019.07.235
- Yamamura H. // Solid State Ionics. 2003. V. 158. P. 359. https://doi.org/10.1016/s0167-2738(02)00874-3
- Shlyakhtina A.V., Shcherbakova L.G. // Solid State Ionics. 2011. V. 192. P. 200. https://doi.org/10.1016/j.ssi.2010.07.013
- 12. Ji Y., Jiang D., Shi J. // J. Mater. Res. 2005. V. 20. P. 567. https://doi.org/10.1557/jmr.2005.0073
- Lecoq P., Korzhik M. // IEEE Trans. Nuclear Sci. 2002. V. 49. P. 1651. https://doi.org/10.1109/tns.2002.801487
- 14. Brixner L.H. // Mater. Res. Bull. 1984. V. 19. P. 143. https://doi.org/10.1016/0025-5408(84)90084-9
- Navrotsky A., Ushakov S.V. Thermodynamics of oxide systems relevantto alternative gate dielectrics. // Materials Fundamentals of Gate Dielectrics / Eds. Demkov A., Navrotsky A. New York: Springer, 2005. P. 57.
- Risovany V.D., Zakharov A.V., Muraleva E.M. et al. // J. Nucl. Mater. 2006. V. 355. P. 163. https://doi.org/10.1016/j.jnucmat.2006.05.029

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 10 2021

- Ewing R.C., Weber W.J., Lian J. // J. Appl. Phys. 2004.
 V. 95. P. 5949. https://doi.org/10.1063/1.1707213
- Isupova E.N., Glushkova V.B., Keler K.E. // Izv. Akad. Nauk SSSR. Neorg. Mater. 1968. V. 4. Р. 1330. [Исупова Е.Н., Глушкова В.Б., Келер К.Е. // Изв. АН СССР. Неорган. материалы. 1968. Т. 4. С. 1330.]
- 19. *Duran P.* // J. Am. Ceram Soc. 1979. V. 62. P. 9. https://doi.org/10.1111/j.1151-2916.1979.tb18794.x
- Shevchenko A.V., Lopato L.M., Nazarenko L.V. // Izv. Acad. Nauk SSSR. Neorg. Mater. 1984. V. 20. Р. 1862. [Шевченко А.В., Лопато Л.М., Назаренко Л.В. // Изв. АН СССР. Неорган. материалы. 1984. Т. 20. С. 1862.]
- Paputsky Yu.N., Krzizanovskaya V.A., Glushkova V.B. // Izv. Akad. Nauk SSSR. Neorg. Mater. 1974. V. 10. P. 1551. [Папутский Ю.Н., Кржижановская В.А., Глушкова В.Б. // Изв. АН СССР. Неорган. материалы. 1974. Т. 10. С. 1551.]
- 22. Арсеньев П.А., Глушкова В.Б., Евдокимов А.А. и др. Соединения редкоземельных элементов. Цирконаты, гафнаты, ниобаты, танталаты, антимонаты. М.: Наука, 1985. 261 с.
- 23. *Andrievskaya E.R.* // J. Eur. Ceram. Soc. 2008. V. 28. P. 2363.
 - https://doi.org/10.1016/jeurceramsoc.2008.01.009
- Popov V.V., Menushenkov A.P., Yaroslavtsev A.A. et al. // J. Alloys Compd. 2016. V. 689. P. 669. https://doi.org/10.1016/i.jallcom.2016.08.019
- Kandan R., Prabhakara Reddy B., Panneerselvam G., Mudali U.K. // J. Therm. Anal. Calorim. 2017. V. 131. P. 2687. https://doi.org/10.1007/s10973-017-6802-6
- Guskov V.N., Tyurin A.V., Guskov A.V. et al. // Ceram. Int. 2020. V. 46. P. 12822 https://doi.org/10.1016/j.ceramint.2020.02.052
- 27. Wieser M.E. // Pure Appl. Chem. 2006. V. 78. P. 2051. https://doi.org/10.1351/pac200678112051
- Shi Q., Snow C.L., Boerio-Goates J., Woodfield B.F. // J. Chem. Thermodyn. 2010. V. 42. P. 1107. https://doi.org/10.1016/j.jct.2010.04.008

- Ryumin M.A., Nikiforova G.E., Tyurin A.V. et al. // Inorg. Mater. 2020. V. 56. Р. 97. [Рюмин М.А., Никифорова Г.Е., Тюрин А.В. и др. // Неорган. материалы. 2020. Т. 56. С. 102.] https://doi.org/10.1134/S00201685200101148
- Gagarin P.G., Guskov A.V., Guskov V.N. et al. // Ceram. Int. 2021. V. 47. P. 2892. https://doi.org/10.1016/j.ceramint.2020.09072
- Shlyakhtina A.V., Knotko A.V., Boguslavskii M.V. et al. // Solid State Ionics. 2007. V. 178. P. 59. https://doi.org/10.1016/j.ssi.2006.11.001
- Kutty K.V.G., Rajagopalan S., Mathews C.K., Varadaraju U.V. // Mater. Res. Bull. 1994. V. 29. P. 759. https://doi.org/10.1016/0025-5408(94)90201-1
- Gagarin P.G., Tyurin A.V., Guskov V.N. et al. // Inorg. Mater. 2017. V. 53. Р. 619. [Гагарин П.Г., Тюрин А.В., Гуськов В.Н. и др. // Неорган. материалы. 2017. Т. 53. С. 632.] https://doi.org/10.1134/S0020168517060048
- 34. Singh S., Saha S., Dhar S.R. et al. // Phys. Rev. B: Condens. Matter Mater. Phys. 2008. V. 77. P. 054408. https://doi.org/10.1103/PhysRevB.77.054408
- 35. Westrum E.F. // J. Therm. Anal. 1985. V. 30. P. 1209. https://doi.org/10.1007/bf01914288
- Durand A.M., Klavins P., Corruccini L.R. // J. Phys. Condens. Matter. 2008. V. 20. P. 235208. https://doi.org/10.1088/0953-8984/20/23/235208
- Chirico R.D., Westrum E.F. // J. Chem. Thermodyn. 1980. V. 12. P. 71. https://doi.org/10.1016/0021-9614(80)90118-4
- Gavrichev K.S., Tyurin A.V., Guskov V.N. et al. // Russ. J. Inorg. Chem. 2020. V. 65. Р. 655. [Гавричев К.С., Тюрин А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2020. Т. 65. С. 651.] https://doi.org/10.1134/S0036023620050083
- Guskov V.N., Gagarin P.G., Guskov A.V. et al. // Russ. J. Inorg. Chem. 2019. V. 64. Р. 1436. [Гуськов В.Н., Гагарин П.Г., Гуськов А.В. и др. // Журн. неорган. химин. 2019. Т. 64. С. 1210.] https://doi.org/10.1134/S0036023619110068