_____ ФИЗИКОХИМИЯ ___ РАСТВОРОВ

УДК 546.654:5+546.661:2+546.04

ОБРАЗОВАНИЕ КОМПЛЕКСОВ La³⁺, Ce³⁺, Eu³⁺, Gd³⁺ С ГИДРАЗОНАМИ ПИРИДОКСАЛЬ-5-ФОСФАТА В НЕЙТРАЛЬНОМ БУФЕРЕ ТРИС-НСІ

© 2021 г. Г. А. Гамов^{а,} *, М. Н. Завалишин^а

^аИвановский государственный химико-технологический университет, пр-т Шереметевский, 7, Иваново, 153000 Россия *e-mail: ggamov@isuct.ru

Поступила в редакцию 10.03.2021 г. После доработки 08.06.2021 г. Принята к публикации 09.06.2021 г.

Синтезированы гидразоны пиридоксаль-5-фосфата и гидразидов 4-гидроксибензойной, 3-гидроксинафталин-2-карбоновой кислот и L-тирозина. Исследовано комплексообразование ионов La³⁺, Ce³⁺, Eu³⁺, Gd³⁺ с этими гидразонами в нейтральном водном растворе (0.05 M буфер ТРИС-HCl, pH 7.2). Определен наиболее вероятный стехиометрический состав комплексов и условные константы их устойчивости при фиксированном значении pH. Рассмотрена возможность использования гидразонов пиридоксаль-5-фосфата для создания флуоресцентных сенсоров для биологических исследований или контрастных веществ для MPT.

Ключевые слова: лантанид(III), гидразон, пиридоксаль-5-фосфат, комплексообразование **DOI:** 10.31857/S0044457X21100056

ВВЕДЕНИЕ

Ионы лантанидов(III) благодаря своему электронному строению и люминесцентным свойствам находят широкое применение при создании биологических флуоресцентных проб и контрастных агентов для магнитно-резонансной томографии. Выбор иона позволяет регулировать область испускания флуоресцентной пробы: так, соединения Eu³⁺ дают красный свет, Tb³⁺ – зеленый, Sm³⁺ – оранжевый [1], Ce³⁺ – от фиолетовосинего до голубовато-зеленого [2, 3], в то время как соединения Yb, Nd, Er эмитируют в ближней ИК-области [1]. Для МРТ-диагностики оптимальным является использование соединений Gd³⁺ из-за наибольшего числа неспаренных электронов (конфигурация f^{7}) [4]. Для синтеза комплексов лантанидов(III) обычно используются полидентатные хелатирующие либо макроциклические N,O-донорные лиганды [5, 6]. При этом необходимо учитывать, что молекулы воды, остающиеся в координационной сфере металла, ухудшают люминесцентные свойства комплекса, но необходимы для использования его в качестве контрастного агента в МРТ [5]. Образующиеся комплексы должны иметь высокую устойчивость во избежание токсического действия катионов лантанидов [7].

Представляет интерес исследовать устойчивость комплексов некоторых лантанидов, а именно La³⁺, Ce³⁺, Eu³⁺ и Gd³⁺, с таким классом хелатирующих N,O-донорных лигандов, как гидразоны, производные пиридоксаль-5-фосфата, в нейтральном водном растворе. Ранее было показано, что такие гидразоны способны связывать ионы *d*-металлов в прочные координационные соединения [8–11] даже в фосфатном буфере, причем они могут конкурировать за ион металла даже с некоторыми белками-металлошаперонами [8]. Однако хелатирование ионов *f*-металлов может оказаться не таким эффективным, и тогда гидразоны пиридоксаль-5-фосфата не следует использовать для создания новых флуоресцентных проб либо контрастирующих агентов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Гидразоны, образованные пиридоксаль-5фосфатом (**PLP**) и гидразидами 4-гидроксибензойной (**4HBH**), 3-гидроксинафталин-2-карбоновой (**3HNH**) кислот и L-тирозина (**TYR**) (рис. 1), синтезировали аналогично [11] из реагентов, приобретенных в Sigma.

Водный раствор 1 ммоль пиридоксаль-5-фосфата объемом 25 мл, нагретый до 90°С, приливали к 25 мл водно-этанольного (1 : 1 об. %) раствора гидразида соответствующей кислоты, нагретого также до 90°С. Наблюдали моментальное образование кристаллического продукта, который отстаивали при комнатной температуре в тече-

Рис. 1. Структурные формулы гидразонов PLP-4HBH (а), PLP-3HNH (б), PLP-TYR (в) с нумерацией атомов, использованной для отнесения сигналов в спектрах ЯМР.

ние 1 ч, фильтровали, промывали ледяной водой и ацетоном и высушивали на воздухе до постоянной массы. Выход продуктов составил 80–85%, их структура подтверждена методами ¹H, ¹³C ЯМР- и ИК-спектроскопии. Отнесение сигналов в спектре ЯМР выполнено на основании двумерных ¹H, ¹³C HSQC-экспериментов. Использовали следующие обозначения мультиплетности: s – синглет, d – дублет, t – триплет, ddd – дублет дублетов дублетов. В ИК-спектрах применяли следующие обозначения: ос – очень сильная, с – сильная, ср – средняя, сл – слабая.

Пиридоксаль-5-фосфат 4-гидроксибензокарбогидразон (PLP-4HBH). Бледно-желтые кристаллы. ¹Н ЯМР (D₂O, pD ~ 13), δ , млн. д.: 8.32s (1H, H₇), 7.44s (1H, H₆), 7.28d (³J = 8.7 Гц, 2H, H_{10,14}), 6.30d (³J = 8.7 Гц, 2H, H_{11,13}), 4.60d (³J = 4.0 Гц, 2H, H_{5'}), 2.05s (3H, H_{2'}). ¹³С ЯМР (D₂O, pD ~ 13), δ , млн. д.: 170.7 (C₈), 166.2 (C₃), 154.6 (C₂), 149.0 (C₁₂), 145.0 (C₇), 134.7 (C₆), 130.4 (C₅), 129.9 (C_{10,14}), 122.3 (C₉), 118.3 (C_{11,13}), 116.0 (C₄), 61.7 (C_{5'}), 17.8 (C_{2'}). ИК-спектр, см⁻¹: 3552 ос, 3477 ос, 3415 ос, 3236 ср v(NH, OH), 2961 сл v_{as}(CH), 1637 с амид-I, 1616 с, 1558 сл, 1479 сл, 1382 ср, 1278 ср, 1176 с, 1091 ср, 1020 ср. М [гидразон + H] 381.92 (расч. 382.07).

Пиридоксаль-5-фосфат 3-гидроксинафтоил-2гидразон (PLP-3HNH). Ярко-желтые кристаллы. ¹Н ЯМР (D₂O, pD ~ 13), δ, млн д.: 8.05s (1H, H₇), 7.93s (1H, H₆), 7.27d (${}^{3}J = 7.9$ Гц, 1H, H₁₆), 7.17s (1H, H₁₈), 7.05d (${}^{3}J = 7.9$ Гц, 1H, H₁₃), 6.89t (${}^{3}J = 7.3$ Гц, 1H, H₁₅), 6.71t (${}^{3}J = 7.3$ Гц, 1H, H₁₄), 6.62s (1H, H₁₁), 4.59d (${}^{3}J = 5.0$ Гц, 2H, H₅·), 1.93s (3H, H₂·). ${}^{13}C$ ЯМР (D₂O, pD ~ 13), δ , млн. д.: 162.8 (C₈), 157.8 (C₁₀), 149.12 (C₃), 147.6 (C₇), 137.3 (C₂), 137.2 (C₁₈), 132.0 (C₁₂), 130.5 (C₁₃), 130.7 (C₁₇), 128.4 (C₁₆), 127.5 (C₁₅), 120.6 (C₁₄), 112.3 (C₁₁), 121.3 (C₉), 124.2 (C₄), 124.4 (C₅), 130.4 (C₆). ИК, см⁻¹: 3550 ос, 3477 ос, 3411 ос v(NH, OH), 2924 сл v_{as}(CH), 1637 с амид-I, 1616 ос, 1530 сл, 1458 сл, 1383 ср, 1189 сл, 1093 сл, 1052 сл. M [гидразон-H] 430.03 (расч. 430.09).

Пиридоксаль-5-фосфат L-тирозиноилтидразон (PLP-TYR). Бледно-желтые кристаллы. ¹H NMR (D₂O, pD ~ 13), δ , млн д.: 8.30s (1H, H₇), 7.50s (1H, H₆), 6.90d (³J = 8.5 Гц, 2H, H_{12,16}), 6.53d (³J = 8.5 Гц, 2H, H_{13,15}), 4.09t (³J = 7.1 Гц, 1H, H₉), 2.75ddd (³J = = 21.8, ⁴J = 13.9, 7.1 Гц, 2H, H₁₀), 2.17s (3H, H₂). ¹³C NMR (D₂O, pD ~ 13), δ , млн. д.: 172.9 (C₈), 163.4 (C₁₄), 160.5 (C₃), 159.9 (C₂), 149.1 (C₇), 151.3, 130.9 (C₆), 130.5 (C_{12,16}), 131.4 (C₁₁), 131.3 (C₄), 117.2 (C_{13,15}), 125.2 (C₅), 62.3 (C₅), 56.7 (C₉), 37.2 (C₁₀), 18.7 (C₂). ИК, см⁻¹: 3550 ос, 3474 ос, 3412 ос v(NH, OH), 2929 сл v_{as}(CH), 1638 с амид-I, 1515 ср, 1382 ср, 1263 ср, 1069 сл. М [гидразон + H] 424.85 (расч. 425.11).

Кроме того, синтезирован комплекс Gd³⁺ с гидразоном PLP-4HBH. К этанольно-диметилсульфоксидному раствору (1 : 1 об.) гидразона PLP-4HBH (0.3 ммоль, 0.1144 г) объемом 25 мл добавляли 5 мл раствора GdCl₃ · 6H₂O в ДМСО (0.15 ммоль, 0.0558 г) при комнатной температуре. Полученный раствор перемешивали в течение 3 ч, затем реакционную массу выливали в стакан с холодной дистиллированной водой. Выпавший желто-оранжевый осадок отфильтровывали, промывали дистиллированной водой, этанолом, ацетоном и высушивали до постоянной массы при 50°С. Продукт исследовали методом ИК-спектроскопии. см⁻¹: 3415 ос. 3236 ср v(OH). 2919 с v_{as}(CH), 2851 с v_s(CH), 1616 с, 1510 сл, 1454 сл, 1384 ср. 1272 ср. 1177 сл. 1081 сл.

По сравнению со свободным лигандом заметно уменьшение числа полос поглошения, особенно в области валентных колебаний ОН и NH и первой амидной полосы, а также смещение пиков, связанных с колебаниями связей С=С и C=N ароматических колец и мостикового фрагмента молекулы гидразона. Кроме того, уменьшается количество пиков, соответствующих валентным колебаниям связей Р=О и Р-О-С (Р-О-Н) при 1250-1280 и 1000-1100 см⁻¹ соответственно. В электронном спектре поглощения комплекса, растворенного в буфере 0.05 М ТРИС-НСІ (рН 7.2), появляется новая полоса при 395 нм. Основное светопоглошение свободного лиганда приходится на область 300-310 нм, в которой происходят переходы в единой $\pi - \pi - p - \pi$ -электронной системе. В масс-спектре не обнаруживается пиков, соответствующих комплексу стехиометрии 1:1 либо 1: 2, но присутствует набор пиков 719-725 ед., интенсивность которых пропорциональна природному содержанию стабильных изотопов гадолиния (¹⁵⁴Gd, ¹⁵⁵Gd, ¹⁵⁶Gd, ¹⁵⁷Gd, ¹⁵⁸Gd и ¹⁶⁰Gd). Вероятно, это набор линий соответствует продукту частичного разрушения комплекса Gd(PLP-4HBH)₂.

Соединения LaCl₃ · 7H₂O, Ce(NO₃)₃ · 6H₂O, Eu(NO₃)₃ · 6H₂O и GdCl₃ · 6H₂O марки "х. ч." (Редкийметалл.рф, Россия) использовали без предварительной очистки. Массовая доля кристаллогидрата лантанида варьировалась в пределах 99.0–99.4 мас. %. Буферные растворы с pH 7.2 были приготовлены на основе *трис*(гидроксиметил)аминометана (ТРИС, Sigma-Aldrich, США). Буфер доводили до нужного значения кислотности среды, контролируемого потенциометрически, стандартизованной 1 M HCl.

Все растворы были приготовлены на бидистиллированной воде ($\kappa = 1.7 \text{ мкСм/см}, \text{ pH 6.6}$).

Отметим, что реакция между альдегидом и гидразидом обратима, хотя и смещена в сторону образования гидразона, а пиридоксаль-5-фосфат образует устойчивые основания Шиффа и с буферным агентом (ТРИС) [12]. Спустя сутки в спектрах буферных растворов гидразонов наблюдались изменения, свидетельствующие об их распаде и образовании продуктов с ТРИС. По этой причине использовали только свежеприготовленные растворы.

Электронные спектры поглощения растворов гидразонов PLP-4HBH, PLP-3HNH и PLP-TYR, а также смесей гидразонов и катионов металлов ($C_{\rm hydr} = (4.0 \pm 0.7) \times 10^{-5}$ моль/л, $C_{{\rm Ln}^{3+}} = (1-27) \times 10^{-6}$ моль/л) в буферных растворах ТРИС-HCl (рH 7.2) были зарегистрированы на спектрофотометре Shimadzu UV 1800 в диапазоне длин волн 210–500 нм и оптических плотностей 0–1. Использовали кварцевые кюветы с толщиной поглощающего слоя 1 см. Погрешность определения длины волны не превышала 0.5 нм, точность измерения оптической плотности была равна ± 0.003 ед. Температуру поддерживали на уровне 298.2 \pm 0.1 К при помощи внешнего термостатирования.

Наиболее вероятный стехиометрический состав комплексов лантанидов(III) с гидразонами и условные константы устойчивости были рассчитаны по данным спектрофотометрического титрования при помощи программного обеспечения KEV [13].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

При титровании растворов гидразонов PLP-4HBH, PLP-3HNH и PLP-TYR растворами солей лантанидов(III) в среде ТРИС-НСІ в электронных спектрах поглощения наблюдаются типичные изменения. Интенсивность коротковолновой полосы поглощения, обусловленной переходом в электронной $\pi - \pi - p - \pi$ -системе, объединяющей молекулу гидразона, ослабевает, а в длинноволновой части спектра появляется новая полоса (рис. 2). Поскольку перенос заряда как от металла к лиганду, так и от лиганда к металлу в случае f-элементов является высокоэнергетическим [14], едва ли возникающий длинноволновый максимум поглощения обусловлен им. Более вероятно, что наблюдаемые спектральные изменения связаны с принятием определенной конформации, в которой гидразоны способны к хелатированию, а также с появлением вблизи молекул лиганда иона с высоким зарядом.

Аналогичные спектральные изменения отмечены при комплексообразовании ионов *d*-металлов с гидразонами, производными пиридоксаль-5-фосфата [8–11].

Первой задачей является определение стехиометрического соотношения, в котором взаимодействуют катионы и лиганды. Для этого необхо-

Рис. 2. Примеры спектрофотометрического титрования растворов: a - PLP-4HBH (3.39 × 10⁻⁵ моль/л)–La³⁺ ((0–2.63) × × 10⁻⁵ моль/л); b - PLP-3HNH (4.02 × 10⁻⁵ моль/л)–Ce³⁺ ((0–1.09) × 10⁻⁵ моль/л); b - PLP-TYR (3.77 × 10⁻⁵ моль/л)–Cu³⁺ ((0–9.95) × 10⁻⁶ моль/л); r - PLP-4HBH (3.93 × 10⁻⁵ моль/л)–Gd³⁺ ((0–1.02) × 10⁻⁵ моль/л) в 0.05 М буфере ТРИС-HCl (pH 7.2).

димо знать, как именно происходит координация металла.

Известно, что в гидратную оболочку ионов лантанидов(III) начала ряда входят девять молекул воды, в то время как для тяжелых представителей семейства характерно гидратное число 8 (ионы промежуточных элементов сушествуют в водном растворе в виде смеси нона- и октагидратов) [15]. В комплексах с ионами *d*-элементов исследуемые гидразоны являются тридентатными лигандами, как следует из результатов рентгеноструктурного анализа комплексов с аналогичными лигандами [16-18]. Они координируют катион переходного металла через атом кислорода в положении 3 остатка пиридоксаль-5-фосфата, иминный атом азота и атом кислорода карбонильной группы. Для комплексов лантанидов с гидразонами либо основаниями Шиффа аналогичной структуры также характерна координация металла через карбонильную (карбоксильную) группу [19–22], иминный атом азота [19–24] и боковую гидроксогруппу [19, 21-23] либо гетероатом азота [23, 24]. Однако в исследуемых в настоящей работе лигандах, в отличие от описанных в литературе [19–24], есть еще и фосфатная группа, также способная к комплексообразованию с лантанидами. Об ее участии в образовании координационных соединений можно косвенно судить по изменениям в области 1000–1400 см⁻¹ ИКспектра свободного лиганда и комплекса с Gd³⁺ (рис. 3).

Так, для свободного лиганда валентные колебания связи P=O [25] проявляются в виде двух полос при 1251 и 1278 см⁻¹, в то время как для комплекса Gd³⁺ в спектре обнаруживается один пик при 1272 см⁻¹. Полосы при 1020 и 1091 см⁻¹, которые могут быть отнесены к валентным колебаниям P–O–C (P–O–H) свободного лиганда [25], при комплексообразовании также сливаются в один пик при 1081 см⁻¹. Кроме того, в спектрах ³¹P ЯМР гидразона PLP-4HBH отмечено смещение резонанса в сильное поле при комплексообразовании с La³⁺ (от 3.35 до -2.54 млн. д.). Для сравнения в цинковом комплексе PLP-4HBH сигнал фосфора смещен незначительно (3.17 млн. д.).

Следовательно, учитывая высокое координационное число катионов f-элементов и дентатность лигандов, теоретически можно допустить образование комплексов состава LnL', LnL'₂ и LnL'₃.

Вследствие сильного гидролиза ионов лантанидов(III) даже в нейтральной среде (за исключением La³⁺) и образования малорастворимого соединения церия(III) с ТРИС, обнаруженного нами ранее [26], приходилось поддерживать трехчетырехкратный избыток лиганда по сравнению с ионами металлов. Это означает, что графический метод неприменим для определения стехиометрии комплекса [27]. Кроме того, в ряде случаев [28, 29] такие способы могут давать неверные результаты. По этой причине для определения наиболее вероятного стехиометрического состава комплекса при помощи программного обеспечения KEV [13] экспериментальные спектральные данные описывали при помощи трех моделей, предполагающих образование частиц LnL', LnL', и LnL₃. Из этих моделей наиболее правдоподобной признана имеющая физический смысл и обеспечивающая удовлетворительные статистические критерии. Например, при описании данных эксперимента рис. 2а предположение об образовании комплекса состава LaL' приводило к

 $lg\beta'_{1} = 5.41$ со стандартной погрешностью 5.70 лог. ед., что явно неудовлетворительно. Предположение

об образовании комплекса LaL'₂ с $\lg\beta'_2 = 10.58 \pm$ ± 0.32 дает намного лучший результат. Модель, согласно которой образуется LaL₃, возвращает еще меньшую величину стандартного отклонения ($\lg\beta'_3 = 13.39 \pm 0.15$), однако для обеспечения хорошего описания экспериментальных оптических плотностей расчетными молярные коэффишиенты светопоглошения комплексной частицы в диапазонах длин волн 280-316 и 338-354 нм должны быть отрицательными, что не имеет физического смысла. Следовательно, наиболее адекватной является модель образования бис-лигандного комплекса лантанта(III). Аналогичные расчеты были проведены для всех сочетаний металл-лиганд. Отметим, что также были протестированы стехиометрические модели, предполагавшие одновременное образование комплексов состава ML и ML₂, а также ML₂ и ML₃. При этом расчет возвращал значение $\lg\beta'_2$, близкое к тому, что было рассчитано в модели, учитывающей образование только ML₂, а выход другого комплек-

са был пренебрежимо мал $(lg\beta'_1)$ либо $lg\beta'_3$ были также малы). Таким образом, предположение об

Рис. 3. ИК-спектр гидразона PLP-4HBH и его комплекса с Gd^{3+} в KBr.

образовании единственного комплекса состава

LaL₂ является оптимальным способом описания экспериментальных данных в выбранных концентрационных условиях. Оставшиеся места в координационной сфере катионов занимают молекулы воды, что негативно сказывается на флуоресцентных свойствах комплексов, однако положительно влияет на возможность использования комплекса Gd^{3+} в качестве контрастного вещества для MPT [5]. Вероятно, образование комплекса с тремя молекулами гидразона затруднено из-за стерического фактора, связанного с необходимостью разместить вокруг центрального иона три объемные молекулы.

Как и в предыдущих работах [8–11], определяли условные константы устойчивости комплексов ионов *f*-металлов с гидразонами при постоянной величине pH, обеспечиваемой применением буферного раствора. При этом можно пренебречь протолитическими равновесиями лиганда и металлокомплекса. Помимо целевого процесса образования LnL'_2 (LnL', LnL'_3 при тестировании иных моделей) в стехиометрическую схему закладывались процессы, представленные в табл. 1.

Константы гидролиза (K_h) второй и третьей ступени приведены в литературе только для La³⁺, поэтому для Ce³⁺, Eu³⁺, Gd³⁺ принимали $K_{h1} = K_{h2} =$ $= K_{h3}$ по аналогии с [26]. При этом в конце титрования выход гидролизованных форм катионов европия, наиболее подверженного гидролизу, составлял ~4% (в том числе 0.5% Eu(OH)₃), а при попытках продолжить титрование лиганда раствором соли металла помутнение смеси становилось заметно невооруженным глазом через 1–2 добавки. Помутнение раствора ограничивало максимальную общую концентрацию металла и при титровании раствором церия(III), но уже по

Процесс	$\lg K$	Литература	
$H^+ + TPИC \leftrightarrow HTPИC^+$	8.09	[26]	
$\operatorname{Ln}^{3+} + n\operatorname{H}_2\operatorname{O} \leftrightarrow \operatorname{Ln}(\operatorname{OH})_n^{3-n} + n\operatorname{H}^+$	-9.06 (Ln = La, n = 1), -17.86 (Ln = La, n = 2), -27.23 (Ln = La, n = 3), -8.34 (Ln = Ce, n = 1), -7.79 (Ln = Eu, n = 1), -8.20 (Ln = Gd, n = 1)	[30 c. 257, 259, 262, 282, 286]	
$Ln^{3+} + ТРИС \leftrightarrow LnTРИС^{3+}$	2.53 (Ln = La), 2.59 (Ln = Ce), 2.61 (Ln = Eu), 2.67 (Ln = Gd)	[26]	

Таблица 1. Побочные процессы, протекающие в системе, содержащей 0.05 M буфер ТРИС-HCl, ионы La^{3+} , Ce^{3+} , Eu^{3+} , Gd^{3+} и гидразоны PLP-4HBH, PLP-3HNH и PLP-TYR

причине образования малорастворимого комплекса с ТРИС, выход которого не превышал 20%. Выход комплекса с ТРИС для Gd^{3+} , который наиболее сильно реагирует с компонентом буферного раствора, составлял ~26% в конце титрования. Выход металлокомплексов гидразонов составлял 40—70% от общей концентрации катиона в конце титрования.

Помимо процессов, указанных в табл. 1, принимали во внимание возможность образования хлоридных либо нитратных комплексов лантанидов(III). Однако константы устойчивости этих координационных соединений малы [31–33], выход в условиях эксперимента был исчезающе мал,

поэтому процессы образования LnCl²⁺ и LnNO₃²⁺ были исключены из расчетной схемы.

Рассчитанные условные константы устойчи-

вости комплексов LnL₂ приведены в табл. 2. Погрешности в табл. 2 представляют собой полуширину доверительного интервала при доверительной вероятности 0.95 и размере выборки в 3–4 эксперимента.

Как следует из данных табл. 2, природа лиганда практически не сказывается на устойчивости комплекса, за исключением соединения Eu³⁺ с

Таблица 2. Условные константы устойчивости ком-

плексов lg β'_2 La³⁺, Ce³⁺, Eu³⁺, Gd³⁺ с гидразонами PLP-4HBH, PLP-3HNH и PLP-TYR в водном растворе при T = 298.2 K и pH 7.2 (0.05 М ТРИС-HCl)

Катион	PLP-4HBH	PLP-3HNH	PLP-TYR
La ³⁺	10.48 ± 0.13	10.55 ± 0.25	10.56 ± 0.14
Ce ³⁺	10.05 ± 0.04	9.88 ± 0.29	9.87 ± 0.06
Eu ³⁺	10.39 ± 0.05	10.29 ± 0.07	10.77 ± 0.21
Gd^{3+}	10.44 ± 0.11	10.37 ± 0.11	10.41 ± 0.09

PLP-TYR, которое на ~0.5 лог. ед. более устойчиво, чем комплексы с другими гидразонами. Ион церия(III) образует наименее устойчивые комплексы со всеми хелатирующими гидразонами.

Из зависимости условных констант устойчивости от радиуса иона лантанида (рис. 4) видно, что комплексы Ln^{3+} с PLP-4HBH и PLP-3HNH подчиняются закономерности, обратной той, что была отмечена авторами [34] в ряду La^{3+} — Ce^{3+} — Eu^{3+} — Gd^{3+} при комплексообразовании с циклическим триамином в среде ДМСО. В этом случае комплекс церия наиболее устойчив, и при переходе к европию и гадолинию константа равновесия уменьшается.

Аномально высокое значение константы устойчивости комплекса Eu³⁺–PLP-TYR нарушает данную закономерность.

Значения условных констант устойчивости относительно невысоки, что существенно ограничивает возможности применения комплексов лантанидов(III) с гидразонами в живых тканях в качестве флуоресцентных сенсоров или контрастирующих агентов для МРТ. Причина заключается в содержащихся в плазме крови фосфатионах (при физиологическом значении рН 7.4

они находятся преимущественно в виде HPO₄²⁻ и

 $H_2PO_4^-$, общая концентрация у здорового человека составляет 0.8—1.4 ммоль/л [35]). Лантаниды образуют не только комплексы с гидрофосфат- и дигидрофосфат-ионами [36], но и малорастворимое соединение состава LnPO₄ с ПР порядка 10⁻²⁵— 10⁻²⁶ [36]. На этом, в частности, основано медицинское применение карбоната лантана(III) для понижения уровня фосфатов в крови при нарушении деятельности почек [4].

Расчеты показывают, что при физиологической концентрации фосфат-ионов 1 ммоль/л и pH 7.4 неизбежно разрушение исследованных

Рис. 4. Зависимость условной константы устойчивости *бис*-комплексов La³⁺, Ce³⁺, Eu³⁺, Gd³⁺ с гидразонами PLP-4HBH, PLP-3HNH, PLP-TYR от радиуса катиона.

комплексов лантанидов с гидразонами с концентрацией 0.05 ммоль/л и образование LnPO₄. Для сохранения хотя бы 10%-ного выхода комплексной частицы необходима константа устойчивости

порядка $\lg\beta'_2 \sim 24.5$, величина $\lg\beta'_2 \sim 26$ гарантирует сохранение половины комплексных частиц, а

 $\lg\beta'_2 \sim 28.5$ соответствует связыванию 90% ионов лантанидов(III) в комплекс. Таким образом, можно заключить, что гидразоны пиридоксаль-5-фосфата являются неудачными лигандами для ионов Ln³⁺ с точки зрения применения в биологии или медицине.

Результаты расчетов согласуются с экспериментальными данными. Добавление к раствору комплекса Gd(III)—PLP-4HBH в 0.05 М ТРИС-HCl (pH 7.2) небольшого количества фосфатного буфера (0.09 М, pH 7.4) приводит к немедленному выпадению желтовато-белого осадка, а спектр отфильтрованного раствора совпадает со спектром свободного лиганда, записанным в среде 0.05 М ТРИС-HCl (pH 7.2) (рис. 5).

ЗАКЛЮЧЕНИЕ

Исследовано комплексообразование ионов La³⁺, Ce³⁺, Eu³⁺, Gd³⁺ с гидразонами, производными пиридоксаль-5-фосфата и гидразидов 4-гидроксибензойной, 3-гидроксинафталин-2-карбоновой кислот и L-тирозина, в водном растворе при pH 7.2 (0.05 M TPИC-HCl) и T = 298.2 К. Установлено, что все координационные соединения имеют стехиометрию 1 : 2. По данным спектрофотометрического титрования определены условные констан-

Рис. 5. Электронные спектры поглощения: 1 - гидразона PLP-4HBH в 0.05 М буфере ТРИС-HCl (pH 7.2); 2 - раствора комплекса Gd³⁺–PLP-4HBH, отфильтрованного после добавления фосфат-ионов; 3 - комплекса Gd³⁺–PLP-4HBH в 0.05 М буфере ТРИС-HCl (pH 7.2).

ты устойчивости комплексов при фиксированном значении рН среды. Природа гидразона не оказывает существенного влияния на устойчивость комплексов, за исключением соединения Eu³⁺-PLP-TYR, устойчивость которого выше, чем комплексов европия(III) с другими лигандами, на 0.5 лог. ед. Среди исследованных катионов наименее устойчивые комплексы образует Ce³⁺. Координационные соединения лантанидов(III) с гидразонами пиридоксаль-5-фосфата непригодны для использования в качестве флуоресцентных сенсоров для исследования живых тканей. так как содержат в своем составе молекулы воды, что ухудшает люминесцентные свойства. Кроме того, относительно низкая устойчивость комплексов приводит к их разрушению в присутствии фосфат-ионов в физиологической концентрации.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в НИИ термодинамики и кинетики химических процессов Ивановского государственного химико-технологического университета. Синтез лигандов осуществлен в рамках государственного задания Министерства науки и высшего образования РФ (проект № FZZW-2020-0009). Измерения ЯМР- и ИК-спектров проведены при поддержке Совета по грантам при Президенте РФ (проект № 14.Z56.20.2026-МК) на оборудовании, входящем в состав ЦКП ИГХТУ и ИХР РАН. Константы устойчивости определены при поддержке РФФИ (проект № 19-33-90160).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Abbas Z., Singh P., Dasari S. et al. // New J. Chem. 2020. V. 44. P. 15685. https://doi.org/10.1039/d0nj03261a
- Harada T., Takamoku K., Nishiyama K. // J. Mol. Liq. 2017. V. 226. P. 35. https://doi.org/10.1016/j.molliq.2016.07.072
- *Iimori T., Sugawa H., Uchida N. //* J. Phys. Chem. B. 2020. V. 124. P. 8317.
- https://doi.org/10.1021/acs.jpcb.0c04958 4. Bucker P., Richter H., Radbruch A. et al. // J. Trace El-
- em. Med. Biol. 2021. V. 63. Art. 126665. https://doi.org/10.1016/j.jtemb.2020.126665
- Heffern M.C., Matosziuk L.M., Meade T.J. // Chem. Rev. 2014. V. 114. P. 4496. https://doi.org/10.1021/cr400477t
- Aulsebrook M.L., Graham B., Grace M.R. et al. // Coord. Chem. Rev. 2018. V. 375. P. 191. https://doi.org/10.1016/j.ccr.2017.11.018
- 7. *Rogosnitzky M., Branch S.* // BioMetals. 2016. V. 29. P. 365.
 - https://doi.org/10.1007/s10534-016-9931-7
- Gamov G.A., Zavalishin M.N., Khokhlova A.Y. et al. // J. Coord. Chem. 2018. V. 20. P. 3304. https://doi.org/10.1080/00958972.2018.1512708
- 9. Zavalishin M.N., Gamov G.A., Khokhlova A.Yu. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 1. Р. 119. https://doi.org/10.1134/S0036023620010209 [Завалишин М.Н., Гамов Г.А., Хохлова А.Ю. и др. // Журн. неорган. химии. 2020. Т. 65. № 1. С. 117. https://doi.org/10.31857/S0044457X20010201]
- Gamov G.A., Zavalishin M.N., Khokhlova A.Yu. et al. // Russ. J. Gen. Chem. 2018. V. 88. № 7. Р. 1436. [Гамов Г.А., Завалишин М.Н., Хохлова А.Ю. и др. // Журн. общей химии. 2018. Т. 88. № 7. С. 1144. https://doi.org/10.1134/S0044460X18070144] https://doi.org/10.1134/S1070363218070149
- Gamov G.A., Zavalishin M.N., Aleksandriyskii V.V. et al. // Russ. J. Gen. Chem. A. 2019. V. 89. № 2. Р. 230. [Гамов Г.А., Завалишин М.Н., Александрийский В.В. и др. // Журн. общей химии. 2019. Т. 89. № 2. С. 230. https://doi.org/10.1134/S0044460X19020100] https://doi.org/10.1134/S1070363219020105
- Davis M.D., Edmondson D.E., McCormick D.B. // Monatsh. Chem. 1982. V. 113. P. 999. https://doi.org/10.1007/BF00799241
- 13. *Meshkov A.N., Gamov G.A.* // Talanta. 2019. V. 198. P. 200.
- https://doi.org/10.1016/j.talanta.2019.01.107
- Bunzli J.G., Eliseeva S.V. // Lanthanide Luminescence. Photophysical, Analytical and Biological Aspects. Heidelberg: Springer, 2011. P. 15. https://doi.org/10.1007/4243_2010_3
- Rudolph W.W., Irmer G. // J. Solut. Chem. 2020. V. 49. P. 316. https://doi.org/10.1007/s10953-020-00960-w

- Muraskova V., Szabo N., Pizla M. et al. // Inorg. Chim. Acta. 2017. V. 461. P. 111. https://doi.org/10.1016/j.ica.2017.02.014
- Back F, Oliveira G., Roman D. et al. // Inorg. Chim. Acta. 2014. V. 412. P. 6. https://doi.org/10.1016/j.ica.2013.12.008
- Murphy T.B., Johnson D.K., Rose N.J. et al. // Inorg. Chim. Acta. 1982. V. 66. P. 67. https://doi.org/10.1016/S0020-1693(00)85778-3
- Puntus L., Zhuravlev K., Lyssenko K. et al. // Dalton Trans. 2007. P. 4079. https://doi.org/10.1039/b706020c
- Di Y., Cui X., Liu Y. et al. // Polyhedron. 2019. V. 171. P. 571. https://doi.org/10.1016/j.poly.2019.07.036
- 21. *Madanhire T., Davids H., Pereira M.C. et al.* // Polyhedron. 2020. V. 184. Art. 114560. https://doi.org/10.1016/j.poly.2020.114560
- 22. Ayers K.M., Schley N.D., Ung G. // Chem Commun. 2019. V. 55. P. 8446. https://doi.org/10.1039/c9cc03934a
- Huang W., Zheng Z., Wu D. // Inorg. Chem. Commun. 2017. V. 84. P. 40. https://doi.org/10.1016/j.inoche.2017.07.011
- 24. Xie J., Shen S., Chen R. et al. // Oncol. Lett. 2017. V. 13. P. 4413.
- https://doi.org/10.3892/ol.2017.6018
 25. Jin Y., Ma Y., Weng Y. et al. // J. Ind. Eng. Chem. 2014. V. 20. P. 3446.
 - http://doi.org/10.1016/j.jiec.2013.12.033
- Gamov G.A., Zavalishin M.N., Pimenov O.A. et al. // Inorg. Chem. 2020. V. 59. Iss. 23. P. 17783. https://doi.org/10.1021/acs.inorgchem.0c03082
- 27. *Filipsky T., Riha M., Hrdina R. et al.* // Bioorg. Chem. 2013. V. 49. P. 1. https://doi.org/10.1016/j.bioorg.2013.06.002
- Ulatowski F., Dabrowa K., Balakier T. et al. // J. Org. Chem. 2016. V. 81. P. 1746. https://doi.org/10.1021/acs.joc.5b02909
- 29. Hibbert D.B., Thordarson P. // Chem. Commun. 2016. V. 52. P. 12792. https://doi.org/10.1039/C6CC03888C
- Brown P.L., Ekberg C. Hydrolysis of Metal Ions. Wiley-VCH Verlag GmbH & Co., 2016. P. 952.
- 31. Arisaka M., Takuwa N., Suganuma H. // Bull. Chem. Soc. Jpn. 1999. V. 72. № 10. P. 2235. https://doi.org/10.1246/bcsj.72.2235
- 32. *Hasegawa Y., Takashima K., Watanabe F. //* Bull. Chem. Soc. Jpn. 1997. V. 70. № 5. P. 1047. https://doi.org/10.1246/bcsj.70.1047
- Andersson S., Eberhardt K., Ekberg C. et al. // Radiochim. Acta. 2006. V. 94. P. 469. https://doi.org/10.1524/ract.2006.94.8.469
- Zanonato P.L., Di Bernardo P., Melchior A. et al. // Inorg. Chim. Acta. 2020. V. 503. Art. 119392. https://doi.org/10.1016/j.ica.2019.119392
- Cundy T., Reid I.R., Grey A. // Clinical Biochemistry: Metabolic and Clinical Aspects. 2014. P. 604. https://doi.org/10.1016/B978-0-7020-5140-1.00031-6
- 36. *Liu X., Byrne R.H.* // Geochim. Cosmochim. Acta. 1997. V. 61. № 8. P. 1625. https://doi.org/10.1016/S0016-7037(97)00037-9

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 10 2021