## = КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ =

УДК 548.73+546.94

## ОСОБЕННОСТИ СТРОЕНИЯ МОНОМЕРНЫХ ОКТАЭДРИЧЕСКИХ МОНООКСОКОМПЛЕКСОВ *d*<sup>2</sup>-РЕНИЯ(V) [ReO(L<sup>n</sup><sub>тетра</sub>)(L<sub>моно</sub>)] С ЛИГАНДАМИ, СОДЕРЖАЩИМИ АТОМЫ КИСЛОРОДА И АЗОТА (20, 2N) ТЕТРАДЕНТАТНО-ХЕЛАТНЫХ ЛИГАНДОВ (ОБЗОР)

© 2021 г. В. С. Сергиенко<sup>а, b, \*</sup>, А. В. Чураков<sup>а</sup>

<sup>а</sup>Институт общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119191 Россия <sup>b</sup>Всероссийский институт научной и технической информации РАН, ул. Усиевича, 20, Москва, 125190 Россия

> \*e-mail: sergienko@igic.ras.ru Поступила в редакцию 10.07.2020 г. После доработки 22.07.2020 г. Принята к публикации 27.07.2020 г.

Изучены особенности строения 30 моноядерных октаэдрических монооксокомплексов  $d^2$ -Re(V) [ReO( $L_{\text{тетра}}^n$ )( $L_{\text{моно}}$ )] с тетрадентатно-хелатными (2O, 2N) ( $L_{\text{тетра}}^n$ ) и монодентатными ( $L_{\text{моно}}$ ) лигандами. В *транс*-позициях к кратносвязанным лигандам O(оксо) располагаются атомы O( $L_{\text{тетра}}^n$ ) либо монодентатные лиганды  $L_{\text{моно}}$  (H<sub>2</sub>O, OR<sup>-</sup>, Cl<sup>-</sup>). Рассмотрены случаи геометрической (*транс, цис*) изомерии в двух тройках комплексов [ReO( $L_{\text{тетра}}^n$ )( $L_{\text{моно}}$ )],  $L_{\text{моно}} = OR^-$  или Cl<sup>-</sup>.

*Ключевые слова:* кристаллическая структура, рентгеноструктурный анализ, мономерные октаэдрические монооксокомплексы, тетрадентатные *mpuc*(хелатные) (20, 2N) лиганды, монодентатные лиганды

DOI: 10.31857/S0044457X21010062

Особенности строения мономерных октаэдрических комплексов (**MOK**)  $d^0$ -.  $d^2$ -металлов V-VII групп (Nb, V, Mo, W, Re, Tc) с кратносвязанными лигандами О(оксо) подробно изучены в работах [1-7]. Для  $d^2$ -Re(V) методом PCA определена кристаллическая структура более пятисот соединений (см. Кембриджский банк структурных данных, версия 5.39, август 2018 г. [8]). Большинство этих комплексов – МОК ReO<sub>оксо</sub>O(Lig)<sub>транс</sub> – с атомами кислорода моно- и полидентатных лигандов в *транс*-позициях к оксолигандам. Ранее мы опубликовали ряд обзорных статей по МОК  $d^2$ -Re(V) с полидентатными лигандами – бидентатно-хелатными (O, O) [9], (O, S) и (O, C) [10], (O, P) [11], (O, N) [12, 13] и тридентатно-хелатными (O, N, O) [14], (O, S, O) и (S, O, S) [15], (O, P, O) и (O, P, N) [16], (O, N, S) [17]. Мы опубликовали также обзорные статьи по особенностям строения МОК с оксолигандами  $d^0$ -Re(VII) [18] и  $d^0$ -, d<sup>2</sup>-технеция(V, VII) [19].

Структурное проявление трансвлияния (СПТВ) кратносвязанного лиганда O(оксо) – удлинение противолежащей связи Re-L<sub>modec</sub> – ха-

рактеризуется параметром  $\Delta$  (разность длин одноименных связей [Re-L<sub>*mpahc*</sub>]-[Re-L<sub>*цuc*</sub>]) в том случае, если в структуре есть лиганды одного сорта и в *транс*-, и в *цис*-позициях к О(оксо).

В настоящей статье рассмотрены особенности строения мономерных октаэдрических монооксокомплексов [ReO( $L_{MOHO}$ )( $L_{TETDA}^{n}$ )], содержащих тетрадентатные *mpuc*(хелатные)  $L_{\text{тетра}}^{n}$ , а также монодентатные (L<sub>моно</sub>) лиганды. Ранее мы опубликовали обзорную статью, посвященную строению комплексов [ $\text{ReO}(L_{\text{моно}})(L_{\text{тетра}}^n)$ ], содержащих тетрадентатные *трис*(хелатные) лиганды L<sup>n</sup><sub>тетра</sub> типа ОХ<sub>3</sub>, X = O, N, P [20]. *Транс*-позиции к кратносвязанным оксолигандам занимают монодентатные лиганды L<sub>моно</sub> (в 8 случаях) либо атомы кислорода лигандов  $L_{\text{тетра}}^{n}$  (в 22 комплексах). Во всех 30 обсуждаемых соединениях атомы О и N лигандов L<sup>n</sup><sub>тетра</sub> попарно расположены в цис-позициях. Трициклические фрагменты  $\operatorname{Re}(\operatorname{L}^{n}_{\operatorname{тетра}})$  либо асимметричные (а), либо симметричные (б). Последние различаются числом мостиковых атомов углерода, связывающих иминные атомы азота (один или два). Две половинки единицы  $\operatorname{Re}(\operatorname{L}^{n}_{\operatorname{тетра}})$  в варианте (б) связаны зеркальной плоскостью *m*, проходящей через атом Re и либо через противолежащий атом C, либо через центр противолежащей связи C–C. В трициклических системах всех обсуждаемых комплексов три различных по составу и размерности металлоцикла сочленены по одной или двум связям Re–N. Основные длины связей в структурно исследованных комплексах приведены в табл. 1.

50

#### СТРОЕНИЕ КОМПЛЕКСОВ $[ReO(L_{Tetpa}^{n})(L_{MOHO})]$ (n = 1-6) С МОНОДЕНТАТНЫМИ ЛИГАНДАМИ В *транс*-ПОЗИЦИЯХ К О(ОКСО)

В 8 структурах [ReO( $L_{Terpa}^{n}$ )( $L_{MOHO}$ )] монодентатные лиганды  $L_{MOHO}$  – нейтральный  $H_2O$  и однозарядные OR<sup>-</sup> (R = C<sub>6</sub>H<sub>4</sub>OMe, ReO<sub>3</sub>, Me), Cl<sup>-</sup> – находятся в *транс*-позициях к оксолигандам.

# Соединения, содержащие комплексы $[ReO(L_{mempa}^{n})(H_{2}O)]^{+}$ (n = 1, 2) с лигандами $H_{2}O$ в транс-позициях к оксолигандам

Известна структура двух соединений указанзаголовке состава: ного В  $[\text{ReO}(\text{L}^{1}_{\text{Terpa}})(\text{H}_{2}\text{O})]\{\text{B}(\text{C}_{6}\text{H}_{5})_{4}\}\cdot\text{CNCH}_{3}\cdot0.55\text{CH}_{2}\text{Cl}_{2}$ (I) [21] ( $L_{\text{тетра}}^{1} = N, N'-$ *бис*(салицилиден) этилендиамин  $OC_6H_4CHN(CH_2)_2$ ) и  $[ReO(L_{Tetroa}^2)(H_2O)]Cl$ (II) [22]  $(L_{\text{Tetpa}}^2 = \text{Acac}_2 \text{En} = \text{N}, \text{N'-этилен-} \textit{buc}(aue$ тилацетонимин) (OC(Me)CHC(Me)NCH<sub>2</sub>)<sub>2</sub>). В однозарядных комплексных катионах  $[\text{ReO}(\text{L}^{n}_{\text{тетра}})(\text{H}_{2}\text{O})]^{+}$ , где n = 1 (рис. 1) и 2, связи Re-O(H<sub>2</sub>O) в *транс*-позициях к O(оксо) сильно удлинены (соответственно до 2.276 и 2.247 Å) вследствие СПТВ кратносвязанного оксолиганда. Структура II сходна со структурой Тс-аналога [23]. В тетрадентатных *трис*(хелатных) лигандах фрагмента  $\operatorname{Re}(\operatorname{L}^n_{\operatorname{rerpa}})$  обеих структур пятичленный металлоцикл ReNC<sub>2</sub>N и два шестичленных металлоцикла ReNC<sub>3</sub>O попарно сочленены по связям Re–N.

## Соединение [ $ReO(L_{mempa}^3)(OC_6H_4OMe)$ ]<sub>2</sub>

Известна кристаллическая структура комплекса [ReO( $L_{Tetpa}^3$ )(OC<sub>6</sub>H<sub>4</sub>OMe)] (III) [24] (рис. 1) с атомом кислорода однозарядного лиганда OPhOMe<sup>-</sup> в *транс*-позиции к оксолиганду ( $L_{Tetpa}^3 = N,N'$ *бис*(салицилиден)пропан-1,3-диамин  $(OC_6H_4CHNCH_2)_2CH_2$ ). Определена кристалличееще ская структура двух комплексов [ReO(L<sup>4</sup><sub>тетра</sub>)(OR)] [24] сходного с III состава, отличающихся от него мостиковой единицей (С-С, а не С), связывающей атомы N(имин) лиганда  $(L_{Tetpa}^{4} = N, N' -$ *бис*(салицилиден) бутан - 1, 4-диамин  $(OC_6H_4CHNCH_2CH_2)_2)$ , а также заместителем R лиганда  $OR^-$  (R = Pr (IV), сольват 1 : 1 с  $CHCl_3$ ; R = *изо*-Pr (V), рис. 1). Принципиальным различием структур III и IV, V является конформационная и геометрическая изомерия. Во втором случае *транс*-положение к лиганду O(оксо) занимает не атом O(OR), как в структуре III, а атом кислорода лиганда L<sup>4</sup><sub>тетра</sub> (подробно об этом факте см. в следующей главе).

## Комплекс [ $ReO(L^2_{mempa})(OReO_3)$ ]

В структуре комплекса [ReO( $L^2_{Terpa}$ (OReO<sub>3</sub>)] (VI) [22] *транс*-позицию к оксолиганду занимает атом кислорода перренат-иона Re<sup>7+</sup>O<sub>4</sub>. Связь Re– O(OReO<sub>3</sub>)<sub>*транс*</sub> (2.271 Å), как и в структуре I, II, сильно удлинена. Мостиковая связь Re<sup>7+</sup>–O<sub>мост</sub> (1.747(6) Å) заметно длиннее (в среднем на 0.046 Å) концевых связей Re<sup>7+</sup>–O<sub>конц</sub> (1.687(9)–1.715 Å, средн. 1.701 ± 0.014 Å). Валентный угол Re<sup>5+</sup>ORe<sup>7+</sup> равен 146.5(4)°. Атом Re<sup>7+</sup> имеет тетраэдрическую координацию. Три сочлененных металлоцикла фрагмента Re( $L^2_{Terpa}$ ) в структуре VI аналогичны таковым в структурах I, II.

## Комплексы [ $ReO(L^n(_{mempa})(OR)$ ], где n = 5, 6; R = Me, Et

Определена структура комплекса [ReO(L<sup>5</sup><sub>тетра</sub>)(OMe)] (VII) [22] (рис. 1). Связь Re-O(OMe)<sub>*транс*</sub> (1.911 Å) не удлинена, а существенно укорочена по сравнению со связями Re- $O(L_{Tetpa}^n)_{uuc}$  (средн. 2.036 Å). В тетрадентатном *трис*(хелатном) лиганде фрагмента  $\operatorname{Re}(\operatorname{L}^{n}_{\operatorname{тетра}})$ структуры VII шестичленный металлоцикл ReNC<sub>3</sub>N и два шестичленных металлоцикла ReNC<sub>3</sub>O попарно сочленены по связям Re-N. Лиганд  $L_{Terpa}^5 = AcacPn = N, N'-пропилен-$ *бис*(аце-тилацетонимин) (OC(Me)CHC(Me)NCH<sub>2</sub>)<sub>2</sub>CH<sub>2</sub>близок по строению к лиганду  $L^2_{\text{тетра}}$ , отличаясь от последнего лишней центральной СН<sub>2</sub>-группой в мостике CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>, соединяющей иминные атомы азота. Неожиданно в кристаллической структуре [ $\text{ReO}(\text{L}_{\text{тетра}}^6)$ (OEt)] (VIII) [25] (рис. 1)

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 1 2021

| -хелат-          |       |
|------------------|-------|
| ratho-           |       |
| аденл            |       |
| с тетр           |       |
| [(оној           |       |
| pa)(L            |       |
| $O(L_{rer}^{n})$ |       |
| x [Re(           |       |
| лекса            |       |
| комп.            |       |
| ооксо            |       |
| х мон            |       |
| ески             |       |
| лидие            |       |
| х окта           |       |
| ерны             |       |
| монои            |       |
| Å) B N           |       |
| стры (           |       |
| іарамо           |       |
| ские і           |       |
| риче             |       |
| еоме             | z     |
| BHIME 1          | 20,2  |
| Осно             | цдами |
| ца 1.            | лиган |
| Табли            | НЫМИ  |

| Nē   | Комплекс                                                                                                                                                                  | Re=O                 | Re-L <sub>uuc</sub>                                                                                                                   | Re–L <sub>транс</sub>                          | Δ     | Источник |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------|----------|
| Ι    | $[\text{ReO}(\text{L}_{\text{rerpa}}^{1})(\text{H}_{2}\text{O})]\{\text{B}(\text{C}_{6}\text{H}_{5})_{4}\} \\ \cdot \text{CNCH}_{3} \cdot 0.55\text{CH}_{2}\text{Cl}_{2}$ | 1.664(3)             | $1.988(2) \pm 0.012 \text{ O}(\text{L}_{\text{rerpa}}^{\text{l}})$ $2.046(3) \pm 0.005 \text{ N}(\text{L}_{\text{rerpa}}^{\text{l}})$ | 2.276(3) O(H <sub>2</sub> O)                   |       | [21]     |
| Π    | [ReO(L <sup>2</sup> <sub>rerpa</sub> )(H <sub>2</sub> O]Cl                                                                                                                | 1.682(5)             | $2.025(5) \pm 0.003 \text{ O(L}_{\text{Terpa}}^2)$<br>$2.007(6) \pm 0.002 \text{ N(L}_{\text{Terpa}}^2)$                              | 2.247(5) O(H <sub>2</sub> O)                   |       | [22]     |
| Ш    | [ReO(L <sup>3</sup> <sub>rerpa</sub> )(OPhOMe)]                                                                                                                           | 1.703                | $1.997 \pm 0.007 \text{ O}(\text{L}_{\text{rerpa}}^3)$<br>$2.106 \pm 0.003 \text{ N}(\text{L}_{\text{rerpa}}^3)$                      | 1.989 O(OPhOMe)                                |       | [24]     |
| N    | $[\text{ReO}(\text{L}^4_{\text{rerpa}})(\text{OPr})]\cdot\text{CHCl}_3$                                                                                                   | 1.687                | 1.955 O(OPr) 2.012 O( $L_{Terpa}^{4}$ )<br>2.115 ± 0.014 N( $L_{Terpa}^{4}$ )                                                         | 2.013 $O(L_{rerpa}^4)$                         | 0.001 | [24]     |
| >    | $[\text{ReO}(\text{L}^4_{\text{rerpa}})(\text{O} \cdot u30\text{-}\text{Pr})]$                                                                                            | 1.688                | 1.948 O(O · <i>u</i> 30-Pr) 1.999 O( $L_{rerpa}^{4}$ )<br>2.113 ± 0.014 N( $L_{rerpa}^{4}$ )                                          | $2.020 \text{ O}(\mathrm{L}^4_\mathrm{Terpa})$ | 0.021 | [24]     |
| IV   | $[ReO(L_{rerpa}^2)(ReO_4)]$                                                                                                                                               | 1.682(7)             | $2.028(6) \pm 0.009 \text{ O(L}_{	ext{rerpa}}^2)$<br>$2.007(7) \pm 0.011 \text{ N(L}_{	ext{rerpa}}^2)$                                | 2.271(7) O(OR¢O <sub>3</sub> )                 |       | [22]     |
| Ν    | [ReO(L <sup>5</sup> <sub>rerpa</sub> )(OMe)]                                                                                                                              | 1.705(5)             | $2.036(5) \pm 0.007 \text{ O}(\text{L}_{\text{Terpa}}^{5})$<br>$2.127(5) \pm 0.005 \text{ N}(\text{L}_{\text{Terpa}}^{5})$            | 1.911(5) O(OMe)                                |       | [22]     |
| ΛIII | $[\text{ReO}(L_{\text{rerpa}}^{6})(\text{OEt})]$                                                                                                                          | 1.684                | 1.946 O(OEt) 1.974 O( $L_{rerpa}^{6}$ )<br>2.123 ± 0.022 N( $L_{rerpa}^{6}$ )                                                         | 2.006 O(L <sup>6</sup> <sub>Terpa</sub> )      | 0.032 | [25]     |
| IX   | $[ReO(L_{rerpa}^{5})CI]$                                                                                                                                                  | $1.689(5) \pm 0.008$ | $\begin{array}{l} 2.006(5)\pm 0.015~{\rm O(L_{rerpa}^5)}\\ 2.108\pm 0.013~{\rm N(L_{rerpa}^5)} \end{array}$                           | 2.466(2) ± 0.002 CI                            |       | [22]     |

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 1 2021

| т аолица т |                                           |                      |                                                                                                                                                    |                                               |          |          |
|------------|-------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------|----------|
| Ž          | Комплекс                                  | Re=0                 | Re-L <sub>uuc</sub>                                                                                                                                | Re-L <sub>транс</sub>                         | $\nabla$ | Источник |
| ×          | [ReO(L <sup>7</sup> rerpa)CI]             | 1.664(8)             | $1.988(4) \pm 0.005 \text{ O(L}_{	ext{rerpa}}^7)$<br>$2.046(4) \pm 0.032 \text{ N(L}_{	ext{rerpa}}^7)$                                             | 2.518(3) CI                                   |          | [26]     |
| IX         | [ReO(L <sup>8</sup> <sub>rerpa</sub> )Cl] | 1.721(9)             | $1.986(5) \pm 0.013 \text{ O(}L_{\text{Terpa}}^{8}\text{)}$ $2.051(7) \pm 0.009 \text{ N(}L_{\text{Terpa}}^{8}\text{)}$                            | 2.494(3) CI                                   |          | [26]     |
| IIX        | [ReO(L <sup>9</sup> rerpa)CI]             | 1.695(1)             | 2.008(1) $O(L_{rerpa}^{9})$<br>2.077(1) $\pm$ 0.001 $N(L_{rerpa}^{9})$<br>2.3814(4) CI                                                             | 1.994(1) O(L <sup>9</sup> <sub>rerpa</sub> )  | -0.014   | [26]     |
| IIIX       | [ReO(L <sup>10</sup><br>,CI]              | 1.679(5)             | 1.976(5) $O(L_{rerpa}^{10})$<br>2.066(7) $\pm$ 0.011 $N(L_{rerpa}^{10})$<br>2.393(2) Cl                                                            | 1.994(5) O(L <sup>10</sup><br>Terpa)          | 0.018    | [27]     |
| XIX        | [ReO(L <sup>11</sup><br>retpa)Cl]         | 1.680(3)             | $1.981(3) O(L_{rerpa}^{11})$ $2.094(4) \pm 0.002 N(L_{rerpa}^{11})$ $2.390(1) CI$                                                                  | 1.995(3) O(L <sup>11</sup> <sub>Terpa</sub> ) | 0.014    | [27]     |
| X          | [ReO(L <sup>12</sup> )Cl]                 | 1.688(6)             | 1.983(6) $O(L_{rerpa}^{12})$<br>2.133(7) $\pm$ 0.014 $N(L_{rerpa}^{12})$<br>2.387(2) Cl                                                            | 1.977(5) O(L <sup>12</sup> <sub>Terpa</sub> ) | -0.006   | [28]     |
| IVX        | [ReO(L <sup>13</sup><br>)Cl]              | 1.683(3)             | 2.003(3) O( $L_{rerpa}^{13}$ )<br>2.093(4) $\pm$ 0.012 N( $L_{rerpa}^{13}$ )<br>2.420(1) Cl                                                        | 1.997(3) O(L <sup>13</sup> <sub>Terpa</sub> ) | -0.006   | [29]     |
| IIVX       | [ReO(L <sup>14</sup><br>Terpa)CJ]         | $1.689(2) \pm 0.001$ | $\begin{array}{l} 1.986(2)\pm 0.001~{\rm O(L_{rerpa}^{14})}\\ 2.146(3)\pm 0.015~{\rm N(L_{rerpa}^{14})}\\ 2.3906(9)\pm 0.066~{\rm CI} \end{array}$ | $1.964(2) \pm 0.001$<br>O( $L_{rerpa}^{14}$ ) | -0.022   | [30]     |

Таблица 1. Продолжение

## СЕРГИЕНКО, ЧУРАКОВ

| Kon                                                                                         | иплекс   | Re=O          | Re-L <sub>uuc</sub>                                                                                                                                                    | Re-L <sub>транс</sub>                         | $\nabla$ | Источник |
|---------------------------------------------------------------------------------------------|----------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------|----------|
| $[\text{ReO}(L_{\text{rerpa}}^{14})\text{CI}]\cdot\text{CHCI}_{3}\cdot\text{H}_{2}\text{O}$ | 1.0      | 593(5)        | 1.989(4) O( $L_{rerpa}^{14}$ )<br>2.150(5) $\pm$ 0.012 N( $L_{rerpa}^{14}$ )<br>2.382(2) Cl                                                                            | 1.957(4) O(L <sup>14</sup> <sub>rerpa</sub> ) | -0.032   | [31]     |
| $[\text{ReO}(L_{\text{rerpa}}^{15a})\text{CI}]\cdot\text{CHCI}_{3}$ 1.6                     | 1.6      | 89(5)         | 1.983(4) O( $L_{rerpa}^{15a}$ )<br>2.208(5) $\pm$ 0.030 N( $L_{rerpa}^{15a}$ )<br>2.374(2) Cl                                                                          | 1.933(4) O(LL <sup>15a</sup>                  | -0.050   | [31]     |
| [ReO(L <sup>156</sup> )Cl] 1.68                                                             | 1.68     | 37(3)         | 1.977(2) O( $L_{rerpa}^{156}$ )<br>2.229(3) $\pm$ 0.040 N( $L_{rerpa}^{156}$ )<br>2.369(1) CI                                                                          | 1.958(2) O(L <sup>156</sup> )                 | -0.019   | [31]     |
| [ReO(L <sup>16</sup><br>1.67                                                                | 1.672    | 1(7)          | 1.993(7) O( $L_{rerpa}^{16}$ )<br>2.153(10) $\pm$ 0.017 N( $L_{rerpa}^{16}$ )<br>2.342(3) CI                                                                           | 2.001(7) O(L <sup>16</sup> <sub>Terpa</sub> ) | 0.008    | [32]     |
| $[\text{ReO}(L_{\text{rerpa}}^{17})\text{CI}] \cdot 3\text{CHCI}_3$ 1.693                   | 1.693    | (2)           | 1.992(2) O( $L_{rerpa}^{17}$ )<br>2.068(2) $\pm$ 0.006 N( $L_{rerpa}^{17}$ )<br>2.4401(6) CI                                                                           | $2.009(2) O(L_{rerpa}^{17})$                  | 0.017    | [33]     |
| [ReO(L <sup>17</sup> <sub>Terpa</sub> )(NCS)] 1.689                                         | 1.689    | 9(4)          | 2.014(3) O( $L_{rerpa}^{17}$ )<br>2.069(4) $\pm$ 0.004 N( $L_{rerpa}^{17}$ )<br>2.087(4) N(NCS)                                                                        | 1.992(3) O(L <sup>17</sup> <sub>Terpa</sub> ) | -0.022   | [33]     |
| [ReO(L <sup>18</sup> / <sub>Terpa</sub> )(NCS)] 1.695(5)                                    | 1.695(5) | $) \pm 0.001$ | $\begin{array}{l} 2.046(5)\pm 0.007 \ O(L_{\mathrm{rerpa}}^{18}) \\ 2.056(6)\pm 0.019 \ N(L_{\mathrm{rerpa}}^{18}) \\ 2.086(6)\pm 0.001 \ N(\mathrm{NCS}) \end{array}$ | $2.006(5) \pm 0.003$ $O(L_{rerpa}^{18})$      | -0.040   | [34]     |

## ОСОБЕННОСТИ СТРОЕНИЯ МОНОМЕРНЫХ ОКТАЭДРИЧЕСКИХ

Таблица 1. Продолжение

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 1 2021

| No                                                                                                                                               | Комплекс                                                                                                                                                                                                                                                                                                                                                   | Re=O                                                                                                                                                                                                                          | Re-L <sub>uuc</sub>                                                                                                                                                                                                        | Re-L <sub>mpanc</sub>                                                                                                                                                                                                              | ν                                                                                                                                                                                                                                                          | Источник                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| XXX                                                                                                                                              | [ReO(L <sup>19</sup><br>)(NCS)]                                                                                                                                                                                                                                                                                                                            | $1.691(2) \pm 0.001$                                                                                                                                                                                                          | $\begin{array}{l} 2.039(2)\pm 0.004~{\rm O(L_{rerpa}^{19})}\\ 2.029(3)\pm 0.004~{\rm N(L_{rerpa}^{19})}\\ 2.100(3)\pm 0.002~{\rm N(NCS)} \end{array}$                                                                      | $2.051(2) \pm 0.002$ $O(L_{rerpa}^{19})$                                                                                                                                                                                           | 0.012                                                                                                                                                                                                                                                      | [34]                                                                                                                                                        |
| ΙΛΧΧ                                                                                                                                             | [ReO(L <sup>18</sup><br>Terpa)(CN)]                                                                                                                                                                                                                                                                                                                        | 1.696(5)                                                                                                                                                                                                                      | $\begin{array}{c} 2.039(4) \ O(L_{rerpa}^{18}) \\ 2.081(6) \pm 0.003 \ N(L_{rerpa}^{18}) \\ 2.131(8) \ C(CN) \end{array}$                                                                                                  | 2.038(4) O(L <sup>19</sup> <sub>Terpa</sub> )                                                                                                                                                                                      | -0.001                                                                                                                                                                                                                                                     | [34]                                                                                                                                                        |
| ΙΙΛΧΧ                                                                                                                                            | [ReO(L <sup>20</sup><br>                                                                                                                                                                                                                                                                                                                                   | 1.714(5)                                                                                                                                                                                                                      | 1.922(5) $O(L_{rerpa}^{20})$<br>2.177(6) $N1(L_{rerpa}^{20})$<br>( <i>mpanc</i> $\kappa$ P) 2.292(6) $N2(L_{rerpa}^{20})$<br>( <i>mpanc</i> $\kappa$ O) 2.235(6) $\pm$ 0.058<br>$N(L_{rerpa}^{20})$<br>2.472(2) $P(PPh_3)$ | 1.929(6) O(L <sup>20</sup><br>Terpa)                                                                                                                                                                                               | 0.007                                                                                                                                                                                                                                                      | [36]                                                                                                                                                        |
| III/XXX                                                                                                                                          | $[\text{ReO}(\text{L}^{19}_{\text{rerpa}})(\text{PEt}_3)](\text{PF}_6)$                                                                                                                                                                                                                                                                                    | $1.690(5) \pm 0.003$                                                                                                                                                                                                          | $\begin{array}{l} 2.025(5)\pm 0.004~{\rm O(L_{rerpa}^{19})}\\ 2.047(6)\pm 0.023~{\rm N(L_{rerpa}^{19})}\\ 2.485(2)~{\rm P(PEt_3)} \end{array}$                                                                             | $2.079(2) \pm 0.001$ $O(L_{rerpa}^{19})$                                                                                                                                                                                           | 0.054                                                                                                                                                                                                                                                      | [38]                                                                                                                                                        |
| XIXX                                                                                                                                             | $[\text{ReO}(\text{L}^{18}_{\text{rerpa}})(\text{PPh}_3)](\text{PF}_6)\cdot\text{CH}_2\text{Cl}_2$                                                                                                                                                                                                                                                         | 1.688(3)                                                                                                                                                                                                                      | 2.026(3) $O(L_{rerpa}^{18})$<br>2.086(3) $\pm$ 0.007 $N(L_{rerpa}^{18})$<br>2.5252(9) $P(PPh_3)$                                                                                                                           | 1.998(2) O(L <sup>18</sup><br>Tetpa)                                                                                                                                                                                               | -0.028                                                                                                                                                                                                                                                     | [38]                                                                                                                                                        |
| XXX                                                                                                                                              | $[\text{ReO}(L_{\text{rerpa}}^{18})(\text{PPhEt}_2)](\text{PF}_6) \cdot 0.5\text{CH}_3\text{OH}$                                                                                                                                                                                                                                                           | $1.691(3) \pm 0.001$                                                                                                                                                                                                          | $\begin{array}{l} 2.028(3)\pm 0.004 \ O(L_{\rm rerpa}^{18})\\ 2.087(3)\pm 0.004 \ N(L_{\rm rerpa}^{18})\\ 2.485(1)\pm 0.007 \ P(PPhE_{12}) \end{array}$                                                                    | $2.015(3) \pm 0.005$ $O(L_{rerpa}^{18})$                                                                                                                                                                                           | -0.013                                                                                                                                                                                                                                                     | [38]                                                                                                                                                        |
| $\begin{aligned} & \frac{V_{CJOBH ble}}{M} \in \\ & n = 5 - (OC) \\ & \{O[C_6H_2(m_2) \\ OC_6H_4CHN \\ Pr)N[CH_2(l) \\ [OC(Me)CF] \end{aligned}$ | обозначения лигандов $L_{\text{тегра}}^{n}$ : $n = 1 - (1.5603)$ в созначения лигандов $L_{\text{тегра}}^{n}$ : $n = 1 - (1.5606)$ с(Me) CHC(Me) NCH <sub>2</sub> ) <sub>2</sub> CH <sub>2</sub> : $n = 6 - (1.5606)$ (Me) CH <sub>2</sub> | $C_{6}H_{4}CH NCH_{2})_{2}; n = 2$<br>$C_{6}H_{4}CH N(CH_{2})_{2}; n = 2$<br>$C_{6}H_{4}CH N(CH_{2})_{2}S; n$<br>$OC_{6}H_{2}(I_{2}CHNCH_{2})_{2}CN$<br>$CH_{2}NCH_{2}(NC_{5}H_{4}); n = 6$<br>$h_{4}CHNCH_{2}OC_{6}H_{4}CHI$ | $- (OC(Me)CHC(Me)NCH2)2; n = 3 - (= 7 - {O[C6H2(mpemBu)2]CHN2)C6le2; n = 11 - (OC6H4CHNCH2)2CM15 - (OC6H4CH)2NCH2CH2NR2, R = MVCMe2; n = 18 - [OC(Me)CHC(Me)NC$                                                            | $\begin{array}{l} OC_{6}H_{4}CHNCH_{2})_{2}CH_{2}; n\\ H_{8}; n = 8 - \{O[C_{6}H_{2}(mperty_{2})], n\\ 2; n = 12 - (OC_{6}H_{4}(mpertex_{2})], n\\ e(n = 15a), R = Et (n = 156)\\ H_{2} 1_{2}CH_{2}; n = 19 - [OC(n)] \end{array}$ | <i>n</i> = 4 - (OC <sub>6</sub> H <sub>4</sub> C<br><i>m</i> - 8u) <sub>2</sub> JCHN <sub>4</sub> C<br><i>m</i> CH <sub>2</sub> CH <sub>2</sub> CHN <sub>2</sub> CH<br><i>n</i> CH <sub>2</sub> CH <sub>2</sub> CCN<br><i>n</i> = 16 - OC(=<br>Me)CHC(Me)N | $\begin{aligned} HNCH_2CH_2)_2; \\ DC_6H_4; & n = 9 \\ f_2)_2; & n = 13 \\ OD_2(CH)_2 \cdot u_{30} \\ CH_2]_2; & n = 20 \\ CH_2]_2; & n = 20 \end{aligned}$ |

54

Таблица 1. Окончание

## СЕРГИЕНКО, ЧУРАКОВ

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 №1

Nº 1 2021



**Рис. 1.** Строение комплексов  $[\operatorname{ReO}(\operatorname{L}^{1}_{\operatorname{terpa}})(\operatorname{H}_{2}\operatorname{O})]^{+}$  (I),  $[\operatorname{ReO}(\operatorname{L}^{2}_{\operatorname{terpa}})(\operatorname{H}_{2}\operatorname{O})]^{+}$  (III),  $[\operatorname{ReO}(\operatorname{L}^{4}_{\operatorname{terpa}})(\operatorname{OPr})]$  (V),  $[\operatorname{ReO}(\operatorname{L}^{5}_{\operatorname{terpa}})(\operatorname{OMe})]$  (VII),  $[\operatorname{ReO}(\operatorname{L}^{6}_{\operatorname{terpa}})(\operatorname{OEt})]$  (VIII),  $\operatorname{ReO}(\operatorname{L}^{7}_{\operatorname{terpa}})\operatorname{Cl}]$  (X),  $\operatorname{ReO}(\operatorname{L}^{9}_{\operatorname{terpa}})\operatorname{Cl}]$  (XII).

лиганд OEt занимает не *транс*-, а *цис*-позицию к оксолиганду, в *транс*-положении к которому расположен атом  $O(L^6_{Tetpa})$  (подробно об этом см. следующий раздел).

Комплексы [ $ReO(L_{mempa}^{n})Cl$ ], n = 5, 7, 8

В трех комплексах с общей формулой  $[\text{ReO}(\text{L}^{n}_{\text{тетра}})\text{Cl}]$  (n = 5, 7, 8) *транс*-позиции к ли-гандам O(оксо) занимают хлоролиганды.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 1 2021

В соединении [ReO( $L_{Terpa}^{5}$ )Cl] (IX) [22] в обеих независимых молекулах сходного строения по линиям O=Re–Cl имеет место статистическая неупорядоченность в двух позициях (92 : 8 и 94 : 6). Связи Re–Cl<sub>транс</sub> (средн. 2.466 ± 0.002 Å) удлинены вследствие СПТВ кратносвязанных лигандов. Известна кристаллическая структура двух соеди-

нений [ReO( $L_{reтpa}^{n}$ )Cl] [26] с иминофенолятными лигандами {O[C<sub>6</sub>H<sub>2</sub>(*трет*-Bu)<sub>2</sub>]CHN}<sub>2</sub>R, различающихся мостиковыми связками – циклоалкильной C<sub>6</sub>H<sub>8</sub> (**X**, *n* = 7, рис. 1) и фенильной C<sub>6</sub>H<sub>4</sub> (**XI**, *n* = 8). Определена также кристаллическая структура комплекса, сходного с X, XI, состава [ReO( $L_{reтpa}^{9}$ )Cl] с алкильной связкой R = CMe<sub>2</sub> (**XII**, рис. 1). Для этих трех структур, как и для описанных выше структур II–IV, характерна конформационная и геометрическая изомерия – в соединении VII *транс*-положение к оксолиганду

занимает не Cl<sup>-</sup>, а атом кислорода лиганда  $L^6_{terpa}$ .

## КОНФОРМАЦИОННАЯ И ГЕОМЕТРИЧЕСКАЯ ИЗОМЕРИЯ В КОМПЛЕКСАХ [ $\text{ReO}(\text{L}^n_{\text{тетра}})(\text{OR})$ ] И [ $\text{ReO}(\text{L}^n_{\text{тетра}})$ Сl]

Как было сказано выше, в двух тройках комплексов  $[\text{ReO}(L^n_{\text{тетла}})(\text{OR})]$  (III–V) и

 $[\text{ReO}(L_{\text{тетра}}^{n})\text{Cl}]$  (X–XII) имеет место конформационная и геометрическая изомерия. В симметричных комплексах III (n = 3, R = PhOMe), X (n = 7) и XI (n = 8) в *транс*-позициях к O(оксо) расположены лиганды L<sub>моно</sub> – соответственно O(OPhOMe) в III и Cl в X, XI. В то же время в асимметричных комплексах IV (n = 4, R = Pr), V (n = 4, R =  $u_{30}$ -Pr) и XII (n = 9) *транс*-положения к оксолигандам занимают атомы кислорода лигандов L<sup>n</sup><sub>тетра</sub>, а лиганды L<sub>моно</sub> расположены в *транс*-позициях к атомам N(L<sup>n</sup><sub>тетра</sub>). Отметим, что хлоролиганды в *транс*-позициях к оксолигандам в структуре X и XI, как и в IX, расположены на увеличенных вследствие СПТВ кратносвязанных лигандов расстояниях Re-Cl<sub>*mpahc*</sub> - 2.518 и 2.494 Å соответственно. При этом связи Re-Cl<sub>транс</sub> заметно длиннее (соответственно на 0.137 и 0.103 Å), чем Re-Cl<sub>uuc</sub> (2.381 Å) в структуре XII. Иначе обстоит

дело с соотношением расстояний Re–O( $L_{\text{тетра}}^{n}$ ) и Re–O(OR) в *транс*- и *цис*-положениях в рассматриваемых структурах III–VIII. Связь Re– O(OPhOMe)<sub>*транс*</sub> (1.989 Å) в структуре III ненамного длиннее связей Re–O(OR)<sub>*цис*</sub> (на 0.034 и 0.041 Å) в III (1.955 Å, R = Pr) и IV (1.948 Å, R = = *изо*-Pr). Аналогичным образом связи Re– О( $L_{\text{тетра}}^{n}$ )<sub>*тетра*</sub>)<sub>*тетра*</sub> в структурах IV, V, VIII и XII (соответственно 2.013, 2.020, 2006 и 1.994 Å, средн. 2.008 ± 0.014 Å) сопоставимы по длине со связями Re–O( $L_{\text{тетра}}^{n}$ ) в структурах III–V, VIII, X–XII (1.974–2.012 Å, средн. 1.995 ± 0.021 Å). Можно говорить о конформационной и геометрической изомерии и в двух комплексах [ReO( $L_{\text{тетра}}^{n}$ )(OR)], n = 5, R = Me (VII) и n = 6, R = Et (VIII). В первом из них (симметричном) лиганд ОМе расположен в *транс*-позиции к оксолиганду, во втором (асимметричном) лиганд ОЕt занимает *цис*-положение к O(оксо). Связь Re–O(OMe)<sub>*тепра*</sub> (1.911 Å) в структуре VII не длиннее, а короче, чем Re–O(OEt)<sub>*цис*</sub> (1.946 Å) в структуре VIII.

В структурах III, IV и V лиганды  $L_{Tетра}^3$  и  $L_{Tетра}^4$ , координируя атомы металла, замыкают центральные металлоциклы – шестичленный ReNC<sub>3</sub>N в III и семичленные ReNC<sub>4</sub>O в IV, V – и сопряженные с ними по связям Re–N два периферийных шестичленных хелатных цикла ReNC<sub>3</sub>O. В структурах X, XI и XII лиганды  $L_{Tетрa}^7$ ,  $L_{Tетрa}^8$  и  $L_{Tетрa}^9$ , связываясь с атомами рения, формируют центральные металлоциклы – пятичленный ReNC<sub>2</sub>N в X и шестичленный ReNC<sub>3</sub>O в XI, XII, а также во всех трех структурах сопряженные с ними по связям Re–N два периферийных хелатных цикла ReNC<sub>3</sub>O.

В тетрадентатном *mpuc*(хелатном) лиганде фрагмента  $\operatorname{Re}(\operatorname{L}^{n}_{\operatorname{тетра}})$  структуры VII шестичленный  $\operatorname{ReNC}_{3}\operatorname{N}$  и два шестичленных металлоцикла  $\operatorname{ReNC}_{3}\operatorname{O}$  попарно сочленены по связям  $\operatorname{Re-N}$ . В структуре VIII во фрагменте  $\operatorname{Re}(\operatorname{L}^{6}_{\operatorname{reres}})$  ( $\operatorname{L}^{6}_{\operatorname{reres}}$  =

структуре VIII во фрагменте  $\text{Re}(\text{L}_{\text{тетра}}^6)$  ( $\text{L}_{\text{тетра}}^6$  = = N,N'-(3-тиапентан-1,5-диил)салицилальдиминат {OC<sub>6</sub>H<sub>4</sub>CHN(CH<sub>2</sub>)<sub>2</sub>}<sub>2</sub>S) два аналогичных периферийных хелатных цикла ReNC<sub>3</sub>O соединены с нетипичным центральным восьмичленным металлоциклом ReNC<sub>2</sub>SC<sub>2</sub>N.

#### СТРОЕНИЕ КОМПЛЕКСОВ

### [ReO(L<sup>n</sup><sub>тетра</sub>)(L<sub>моно</sub>)] С МОНОДЕНТАТНЫМИ ЛИГАНДАМИ В *цис*-ПОЗИЦИЯХ К О(ОКСО)

Во всех соединениях указанного в заголовке состава *цис*-положения к оксолигандам занимают лиганды  $L_{moho}$ , а в *транс*-положениях к лигандам O(ок-

со) расположены атомы кислорода лигандов  $L_{\text{тетра}}^{n}$ .

Комплекс [ $ReO(L_{mempa}^n)Cl_{uuc}$ )], n = 10-18

Известна кристаллическая структура 11 комплексов (XII–XXII) указанного в заголовке настоящей главы состава с хлоролигандами L<sub>моно</sub> в *цис*-позициях к O(оксо).

В двух сходных структурах [ $\text{ReO}(L_{\text{тетра}}^n)$ Cl] [27], где n = 10 (XIII, рис. 2) и 11 (XIV), Salen-лиганды  $L_{\text{тетра}}^{10} = 1,3-(N,N'-$ *бис*(хлорсалицилиден)диаминато)-2,2-диметилпропил (OC<sub>6</sub>H<sub>2</sub>Cl<sub>2</sub>CHNCH<sub>2</sub>)<sub>2</sub>CMe<sub>2</sub> и L<sup>11</sup><sub>тетра</sub> = 1,3-(N,N'-бис(салицилиден)диаминато)- $2,\dot{2}$ -диметилпропил (OC<sub>6</sub>H<sub>4</sub>CHNCH<sub>2</sub>)<sub>2</sub>CMe<sub>2</sub> различаются лишь наличием в XIII двух Cl-заместителей в позициях 3,5 обоих фенильных циклов. Транс-положения к оксолигандам занимают фенокси-атомы ОЗ лигандов L<sup>n</sup><sub>тетра</sub>, связи  $Re-O3(L^n_{Tetpa})_{mpahc}$  с которыми (средн. 1.995 ±  $\pm 0.001$  Å) в среднем всего на 0.016 Å длиннее, чем  $Re-O2(L_{Tetra}^n)_{uuc}$  (1.979 ± 0.003 Å). Две аналогичные половинки лигандов L<sup>n</sup><sub>тетра</sub> примерно взаимно перпендикулярны. Все три металлоцикла шестичленные — центральный ReNC<sub>3</sub>N и два периферийных ReNC<sub>3</sub>O.

В структуре [ReO(
$$L_{rerna}^{12}$$
)Cl] (XV) [28] (рис. 2)

лиганд — основание Шиффа  $L_{tetpa}^{12} = N, N'-3, 6$ -диоксаоктан-1,8-диил)-бис(салицилидениминато)  $(OC_6H_4CHNCH_2CH_2OCH_2)_2$  – потенциально гексадентатный (2N + 4O). Однако два эфирных атома О2,3, находящиеся от атома рения на расстояниях >4.2 Å и не входящие в типичный координационный октаэдр  $\text{ReO}_{\text{оксо}}(20,2N)$  ( $L_{\text{тетра}}$ )Cl( $L_{\text{моно}}$ ), участвуют в формировании необычно большого 11-членного центрального металлоцикла  $Re(NC_2OC)_2$ , связанного с двумя периферийными шестичленными хелатными циклами ReNC<sub>3</sub>O. В кристаллической структуре [ReO( $L_{Tetpa}^{13}$ )Cl] (XVI) [29] (рис. 2) лиганд – основание Шиффа  $L_{\text{тетра}}^{13} =$ = 1-салицилиденаминато-2-(салицилиденаминометил) бензол  $OC_6H_4CHNC_6H_4CH_2C_6H_4NCHC_6H_4O$ асимметричен. При координации с атомом рения лиганд L<sup>13</sup> замыкает три шестичленных металлоцикла: центральный ReNC<sub>3</sub>N и два периферийных ReNC<sub>3</sub>O. В структуре XVI атом Re, как обычно, смещен из экваториальной плоскости

обычно, смещен из экваториальной плоскости  $ON_2Cl: \Delta_{Re} = 0.15 \text{ Å}.$ В структуре комплекса [ReO( $L_{Terpa}^{14}$ )Cl] (XVII) [30] (рис. 2), где  $L_{Terpa}^{14} = N, N-\delta uc$ (2-оксибензил)-2-пиколиламин (OC<sub>6</sub>H<sub>4</sub>CH)<sub>2</sub>NCH<sub>2</sub>(NC<sub>5</sub>H<sub>4</sub>), есть две независимые молекулы сходного строения (здесь описана одна из них). Атом Cl1 находится в *транс*-позиции к *sp*<sup>3</sup>-гибридизованному атому N1. Связи типа Re–(*sp*<sup>3</sup>-N1) (средн. 2.158 ± 0.003 Å) на 0.023 Å длиннее, чем Re–(*sp*<sup>2</sup>-N2) (средн. 2.135 Å).

Связи типа Re–O1( $L_{Tetpa}^{14}$ )<sub>*mpahc*</sub> (обе 1.964 Å) в среднем на 0.022 Å короче, чем Re–O2( $L_{Tetpa}^{14}$ )<sub>*цuc*</sub> (1.986 ±  $\pm 0.001$  Å). Центральный металлоцикл ReNC<sub>2</sub>N пятичленный, два периферийных металлоцикла ReN<sub>3</sub>O (в конформации "твист-ванны") шестичленные. Средний параметр  $\Delta_{Re} = 0.124$  Å.

В структурах [ReO( $L_{rerna}^{14}$ )Cl] · CHCl<sub>3</sub> · H<sub>2</sub>O (XVIII) [31], [ReO(L<sup>15a</sup><sub>тетра</sub>)Cl] · CHCl<sub>3</sub> (XIX) [31] и [ReO(L<sup>156</sup><sub>тетра</sub>)Cl] (**XX**) (рис. 2) [31] в комплексных молекулах [ReO( $L_{Tetpa}^{n}$ )Cl] тетрадентатно-*mpuc*(хелатные) лиганды  $L_{Tetpa}^{15} = N, N-\delta uc$  (2-оксибензил)-N,N'-R<sub>2</sub>-этилендиамин (OC<sub>6</sub>H<sub>4</sub>CH)<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>NR<sub>2</sub>, R = Me (15a) и Et (15б), имеют близкое строение, особенно L<sup>15a</sup><sub>гетра</sub> и L<sup>156</sup><sub>тетра</sub>, различающиеся только заместителями R<sub>2</sub> при атоме N2. Во всех трех структурах XVIII-XX, как и в описанной выше структуре XVII, связи Re–O2( $L_{\text{тетра}}^{n}$ )<sub>*тетра*</sub> (средн. 1.949 ± 0.016 Å) короче, а не длиннее (в среднем на 0.034 Å), чем Re-O3( $L_{retroa}^{n}$ )<sub>иис</sub> (средн. 1.983 ±  $\pm$  0.006 Å). В структуре XVIII связь Re–N1( $L_{Tetpa}^{14}$ ), *транс* к Re-Cl (2.162 Å), на 0.024 Å длиннее, чем Re–N2( $L_{terpa}^{14}$ ), *транс* к Re–O3( $L_{terpa}^{14}$ ) (2.138 Å), тогда как в структурах XIX, XX, наоборот, первая из этих связей (средн.  $2.184 \pm 0.006$  Å) в среднем на 0.069 Å короче, чем вторая (средн.  $2.253 \pm 0.016$  Å). Этот факт, по мнению авторов [31], определяется более слабым связыванием группы NR<sub>2</sub> с атомом рения и более сильным трансвлиянием атома О-(феноксид) по сравнению с хлоролигандом. Более длинную связь Re-N1, чем Re-N2, в структуре XVIII авторы [31] объясняют разной гибридизацией двух атомов азота ( $sp^3$  для N1 и  $sp^2$  для N2). Во всех трех структурах пятичленный металлоцикл ReNC<sub>2</sub>N соединен одной связью Re-N1 с двумя шестичленными хелатными циклами ReNC<sub>3</sub>O. Параметр  $\Delta_{Re}$  в трех структурах близок к 0.1 Å.

В кристаллической структуре [ReO( $L_{Terpa}^{16}$ )Cl] (XXI) [32] (рис. 2),  $L_{Terpa}^{16} = N$ -(пиридин-2-ил)-N-(2-окси-5-нитробензил)лейцинат OC(=O)C(CH<sub>2</sub> · · *изо*-Pr)N[CH<sub>2</sub>(NC<sub>5</sub>H<sub>4</sub>)]CH<sub>2</sub>C<sub>6</sub>H<sub>3</sub>(NO<sub>2</sub>)O, три металлоцикла – два пятичленных (ReNC<sub>2</sub>N, ReNC<sub>2</sub>O) и шестичленный (ReNC<sub>3</sub>O) – сочленены по одной связи Re–N. Связь Re–O1( $L_{Terpa}^{16}$ )<sub>*транс*</sub> (2.001 Å) всего на 0.008 Å короче, чем Re– O4( $L_{Terpa}^{16}$ )<sub>*иис*</sub> (1.993 Å).

В структуре соединения [ReO( $L_{\text{тетра}}^{17}$ )Cl] · 3CHCl<sub>3</sub> (**XXII**) [33] в комплексной молекуле (рис. 2) две половинки лиганда  $L_{\text{тетра}}^{17} = 2,2'$ -(2-метилпропан-



**Рис. 2.** Строение комплексов [ReO ( $L_{\text{тетра}}^{10}$ )Cl] (XIII), [ReO( $L_{\text{тетра}}^{12}$ )Cl] (XII), [ReO( $L_{\text{тетра}}^{13}$ )Cl] (XVI), [ReO( $L_{\text{тетра}}^{13}$ )Cl] (XVI), [ReO( $L_{\text{тетра}}^{16}$ )Cl] (XXI), [ReO( $L_{\text{тетра}}^{16}$ )Cl] (XXI), [ReO( $L_{\text{тетра}}^{17}$ )Cl] (XXII).

1,2-диил)-бис(нитрило)метилидендифенолят ОС<sub>6</sub>H<sub>4</sub>CHNCH<sub>2</sub> · ОС<sub>6</sub>H<sub>4</sub>CHNCMe<sub>2</sub> различаются только наличием в одной из них двух Ме-заместителей при атоме азота. Центральный пятичленный хелатный цикл ReNC<sub>2</sub>N соединен с двумя периферийными шестичленными металлоциклами ReNC<sub>3</sub>O двумя связями Re–N. Связь Re–O2( $L_{TeTPa}^{17}$ )<sub>*mpahc*</sub> (2.009 Å) на 0.016 Å длиннее, чем Re–O4( $L_{TeTPa}^{17}$ )<sub>*uuc*</sub> (1.993 Å).



Рис. 3. Строение комплексов [ReO ( $L_{TeTDa}^{18}$ )(NCS)] (XXIV), [ReO( $L_{TeTDa}^{20}$ )(PPh<sub>3</sub>)] (XXVII), [ReO( $L_{TeTDa}^{22}$ )(PPh<sub>3</sub>)] (XXIX).

Комплексы [ReO(
$$L_{mempa}^{n}$$
)( $L_{моно}$ )<sub>цис</sub>],  
n = 17–19,  $L_{uuc} = NCS$ , CN

Известна кристаллическая структура четырех комплексов указанного в заголовке данной главы состава, содержащих тиоцианатные и цианатный лиганды в *цис*-позициях к кратносвязанным лигандам O(оксо).

Строение комплексной молекулы [ReO(L<sup>17</sup><sub>тетра</sub>)(NCS)] (**XXIII**) [33] сходно со струквышеописанного турой комплекса [ReO(L<sup>17</sup><sub>тетра</sub>)Cl)] соединения XXII. Связь Re-O(L<sup>17</sup><sub>тетра</sub>)<sub>транс</sub> (1.992 Å) на 0.022 Å короче, чем Re- $O(L_{Tetpa}^{17})_{uuc}$  (2.014 Å). Параметр  $\Delta_{Re}$  в комплексах XXII, XXIII равен 0.2 Å. Два комплекса  $[\text{ReO}(L_{\text{тетра}}^n)(\text{NCS})]$  [34] имеют сходное строение и содержат близкие по составу лиганды  $L_{\text{тетра}}^{n} =$ = N,N'-R-*бис*(ацетилацетонимин)  $[OC(Me)CHC(Me)NCH_2]_2CH_2$  (XXIV, R = пропилен, n = 18, рис. 3) и [OC(Me)CHC(Me)NCH<sub>2</sub>]<sub>2</sub> (**XXV**, R =этилен, n = 19). Эти комплексы различаются лишь длиной мостика между двумя атомами N(имин) – соответственно C<sub>2</sub> и C<sub>3</sub>. Связи Re-N(NCS)<sub>uuc</sub> (2.086–2.100 Å) в структуре XXIII–XXV несколько короче (или сопоставимы) с аналогичной связью в мономерном комплексе [Re(L<sup>n</sup><sub>тетра</sub>)(NCS)(PPh<sub>3</sub>)] [33] (2.100 Å) и короче, чем в димерном соединении [Re(L<sup>17</sup><sub>тетра</sub>)(NCS)](μ-O) [33] (2.130 Å). Лиганды NCS в структурах XXIII–XXV практически линейные. В двух структурах пары периферийных шестичленных металлоциклов ReNC<sub>3</sub>O соединены двумя связями Re-N с центральными шести- и пятичленным циклами ReNC<sub>3</sub>N и ReNC<sub>2</sub>N соответственно в  $L_{Tetpa}^{18}$  и  $L_{Tetpa}^{19}$ .

В структуре [ReO( $L_{terpa}^{18}$ )(CN)] (XXVI) [34] в *цис*-позиции к оксолиганду расположен атом углерода цианатного лиганда. Связи Re–O( $L_{terpa}^{18}$ ) в *транс-* и *цис*-позициях к лиганду O(оксо) соизмеримы по длине (соответственно 2.038 и 2.039 Å). Связь Re–C(CN) в структуре XXVI (2.138 Å) попадает в интервал значений 2.102–2.140 Å комплексов Re(V) с цианатными лигандами ([35] и ссылки в ней).

Строение комплексов [
$$ReO(L_{mempa}^n)(PR_3)$$
]<sup>+</sup>,  
 $n = 18-20, R = Ph, Et$ 

Во всех четырех описанных в данной главе структурно исследованных соединениях, содержащих нейтральные фосфиновые лиганды  $PR_3$  (R = Ph, Et), есть однозарядные комплексные катионы и противионы  $PF_6^-$ . Отметим, что ранее описанные комплексы, содержащие однозарядные лиганды  $L_{моно}$  в *цис*-позициях к O(оксо) (Cl<sup>-</sup>, NCS<sup>-</sup>, CN<sup>-</sup>), нейтральные.

В комплексном катионе структуры [ReO( $L_{reтpa}^{20}$ )(PPh<sub>3</sub>)](PF<sub>6</sub>) (**XXVII**) [36] (рис. 3) лиганд  $L_{reтpa}^{20} = (N,N'-$ *бис*(ферроценилметил)-4,7-диазадекан-2,9-диксо) [OC(Me)CH<sub>2</sub>N(CH<sub>2</sub>CpFeCp)CH<sub>2</sub>](Cp = C<sub>5</sub>H<sub>5</sub>) замыкает с атомом рения три пятичленных металлоцикла: центральный ReNC<sub>2</sub>N(A) и сочлененные с ним по связям Re–N двахелатных кольца ReNC<sub>2</sub>O (Б1, Б2). Конформация $цикла A – <math>\delta$ , колец Б1, Б2 –  $\lambda$  по номенклатуре [37]. Как обычно, связи Re–O( $L_{reтpa}^{20}$ ) в *транс-* и *цис*-положениях к O(оксо) соизмеримы по длине (соответственно 1.929 и 1.922 Å,  $\Delta = 0.007$  Å). Следует отметить существенную разницу длин связей рений—азот: Re–N1( $L_{Tetpa}^{20}$ ), *транс* к Re–P (2.177 Å), на 0.115 Å короче, чем Re–N2( $L_{Tetpa}^{20}$ ) (2.292 Å). По мнению авторов [36], это различие определяется разной величиной трансвлияния атомов кислорода и фосфора.

Определена кристаллическая структура трех соединений [38]: [ReO(L<sup>19</sup><sub>тетра</sub>)(PEt<sub>3</sub>)](PF<sub>6</sub>) (**XXVIII**),  $[\text{ReO}(\text{L}_{\text{Tetpa}}^{18})(\text{PR}_3)](\text{PF}_6) \cdot \text{Solv}, \text{ } \text{R}_3 = \text{PPh}_3, \text{ Solv} =$ =  $CH_2Cl_2$  (XXIX);  $R_3$  = PhEt<sub>2</sub>, Solv = 0.5CH<sub>3</sub>OH (XXX), содержащих близкие по составу комплексы [ReO( $L_{Tetpa}^{n}$ )(PR<sub>3</sub>)] (n = 19, R = Et; n = 18, R = Ph (рис. 3); n = 18, R<sub>3</sub> = Et<sub>2</sub>Ph). В структурах XVIII и XXX есть по две независимые молекулы сходного состава. Параметр  $\Delta_{\mathrm{Re}}$  в трех структурах близок к 0.20 Å. В соединении XXVIII связь Re-O2(L<sup>19</sup><sub>тетра</sub>)<sub>*транс*</sub> (средн. 2.079 Å) на 0.054 Å длиннее, чем Re–O1( $L_{\text{тетра}}^{19}$ )<sub>*uuc*</sub> (средн. 2.025 Å). В структурах XXIX, XXX, наоборот, связи Re-O1(L<sup>18</sup><sub>тетра</sub>)<sub>иис</sub> (2.026, средн. 2.028 Å) не короче, а несколько длиннее (соответственно на 0.028, в среднем на 0.013 Å), чем Re-O2(L<sup>18</sup><sub>тетра</sub>)<sub>тетра</sub>) (1.998, средн. 2.015 Å). В отличие от структуры XVII, в структурах XVIII–XXX два типа связей  $\text{Re-N}(\text{L}^{n}_{\text{тетра}})$  (в *транс*-позициях к  $\text{Re}-O(L_{\text{тетра}}^n)$  и к Re-P) соизмеримы по длине: интервал средних значений составляет соответственно 2.030-2.081 и 2.065-2.095 Å, т.е. первые не длиннее вторых, как в структуре XVII, а наоборот, несколько короче. Расстояния Re–P в четырех описанных выше структурах (2.472–2.525 Å) попадают в интервал аналогичных расстояний рений-фосфор в оксокомплексах Re(V): 2.39–2.55 Å [39, 40 и ссылки в них].

#### ОСОБЕННОСТИ СТРОЕНИЯ МОНОМЕРНЫХ ОКТАЭДРИЧЕСКИХ МОНООКСОКОМПЛЕКСОВ РЕНИЯ(V) С ТЕТРАДЕНТАТНО-ХЕЛАТНЫМИ ЛИГАНДАМИ (20, 2N)

В табл. 1 приведены средние значения основных геометрических параметров в структурах I–XXX.

Следует отметить две особенности стереохимии октаэдрических монооксокомплексов металлов V–VII групп, в том числе рения.

1. Выбор *транс*-партнера (при наличии конкурирующих лигандов) определяется "правилом самосогласованности" [2]: в *транс*-положении к кратносвязанному лиганду O(оксо), как правило, располагается наименее поляризуемый нейтральный σ-донорный лиганд (атом), связь с которым легче ослабить, а не отрицательно заряженный (ацидо) лиганд (атом). 2. Связи Re–L, *транс* к O(оксо), удлиняются из-за структурного проявления трансвлияния кратносвязанного оксолиганда.

В 22 соединениях в *транс*-положениях к кратносвязанным оксолигандам расположены ацидоатомы кислорода тетрадентатно-хелатных лиган-

дов  $L_{\text{тетра}}^{n}$ . В двух комплексах *транс*-позиции к лигандам O(оксо) занимают нейтральные атомы O(H<sub>2</sub>O), в трех соединениях — однозарядные атомы O(OR), еще в трех комплексах — лиганды Cl<sup>-</sup>.

Второе из вышеупомянутых правил реализуется в трех соединениях: I, II, VI (табл. 2): связи Re– O(H<sub>2</sub>O) и Re–O(OReO<sub>3</sub>) (2.247–2.276 Å) существенно удлинены, как и связи Re–Cl<sub>транс</sub> в комплексах IX–XI (2.466–2.518 Å). В этих двух случаях можно говорить о СПТВ кратносвязанного оксолиганда.

В остальных 24 соединениях с отрицательно

заряженными атомами кислорода лигандов  $L_{\text{тетра}}^{n}$ (22 структуры: IV, V, VIII, XII–XXX), OPhOMe (III) и OMe (VII) в *транс*-позициях к O(оксо) реализуется принципиально другой вариант. В этих комплексах связи  $\operatorname{Re-O}(L)_{mpahc}$ ,  $\operatorname{Re-O}(OR)$ (1.911–2.079 Å) сопоставимы по длине, несколько длиннее или заметно короче, чем Re-O(L), иис (1.922-2.046 Å,  $\Delta = -0.050...+0.054$  Å, средн. -004 Å). На первый взгляд, этот факт противоречит "правилу самосогласованности" [2]. Однако на самом деле вышеупомянутые связи Re–O(L) и Re-O(OR)<sup>-</sup> в *транс*-позициях к оксолигандам можно рассматривать как имеющие повышенную кратность, так как они соизмеримы по длине (а не удлинены вследствие СПТВ) с величинами  $Re-O(L, OR)_{uuc}$ , т.е. в данном случае можно говорить о псевдодиоксокомплексах, содержащих два лиганда (O(оксо) и O(L, OR)<sub>транс</sub>) повышенной кратности. Напомним, что в  $d^2$ -комплексах металлов V-VII групп, в том числе рения, два кратносвязанных лиганда всегда располагаются в транс-позициях друг к другу.

Следует отметить весьма широкий интервал средних значений длин связей  $\text{Re-N}_{uuc}$  (2.007–2.235 Å). При этом в ряде структур, например в XVII–XX, XVII, два индивидуальных расстояния Re-N существенно различаются в зависимости от *транс*-партнера (хлор, фосфор,  $O(L_{\text{тетра}})$ ), подробнее об этих фактах см. при описании конкретных структур.

#### ЗАКЛЮЧЕНИЕ

Рассмотрены особенности строения трех десятков моноядерных октаэдрических монооксокомплексов  $d^2$ -Re(V), [ReO( $L_{reтpa}^n$ )( $L_{моно}$ )] с тетрадентатно-хелатными (2O, 2N) ( $L_{reтpa}^n$ ) и моноден-

| Параметр                                                                   | Интервалы значений (Å), число примеров (в фигурных скобках)<br>и средние значения с их разбросом (в круглых скобках) |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Re-O(оксо)                                                                 | $1.664 - 1.721 \{30\} (1.689 \pm 0.032)$                                                                             |
| $\operatorname{Re-O}(\operatorname{L}^{n}_{\operatorname{terpa}})_{mpahc}$ | $1.929-2.079$ {22} ( $1.992 \pm 0.087$ )                                                                             |
| $\operatorname{Re-O}(\operatorname{L}^{n}_{\operatorname{rerpa}})_{uuc}$   | 1.922 - 2.046 (30) (2.001 ± 0.079)                                                                                   |
| $\Delta \{ \text{Re-O}(L^n_{\text{Tetpa}}) \}$                             | $-0.0500.054$ {22} ( $-0.004 \pm 0.058$ )                                                                            |
| Re–O(H <sub>2</sub> O) <sub>mpahc</sub>                                    | $2.247, 2.276 \{2\} (2.262 \pm 0.015)$                                                                               |
| Re–O(OR) <sub>mpahc</sub>                                                  | 1.911, 1.989 {2} (1.950 $\pm$ 0.039)                                                                                 |
| Re–O(OR) <sub>uuc</sub>                                                    | $1.946 - 1.955$ {3} ( $1.951 \pm 0.005$ )                                                                            |
| $\Delta \{\text{Re-O(OR)}\}_{\text{средн.}}$                               | -0.001                                                                                                               |
| Re–O(OReO <sub>3</sub> ) <sub>mpahc</sub>                                  | 2.271 {1}                                                                                                            |
| $\text{Re-N}(L^n_{\text{Tetpa}})_{uc}$                                     | $2.007-2.235$ {30} ( $2.097 \pm 0.147$ )                                                                             |
| Re–Cl <sub>mpahc</sub>                                                     | $2.466-2.518$ {3} ( $2.493 \pm 0.027$ )                                                                              |
| Re-Cl <sub>uuc</sub>                                                       | $2.342 - 2.440$ {11} ( $2.388 \pm 0.052$ )                                                                           |
| $\Delta \{\text{Re-Cl})_{\text{средн}} \}$                                 | 0.101                                                                                                                |
| Re–N(NCS) <sub>uuc</sub>                                                   | $2.086 - 2.100$ {3} ( $2.091 \pm 0.009$ )                                                                            |
| Re-P <sub>uuc</sub>                                                        | $2.472 - 2.525$ {4} ( $2.492 \pm 0.033$ )                                                                            |
| Re-C(CN) <sub>uuc</sub>                                                    | 2.131 {1}                                                                                                            |

**Таблица 2.** Основные геометрические параметры (Å) мономерных октаэдрических монооксокомплексов [ReO(L<sup>n</sup><sub>тетра</sub>)(L<sub>моно</sub>)] с тетрадентатно-хелатными (2O, 2N) лигандами

татными ( $L_{MOHO}$ ) лигандами. Показано, что в *транс*-положениях к кратносвязанным оксолигандам располагаются преимущественно (в 22 из 30 случаев) атомы O( $L_{TeTPA}^{n}$ ) и существенно реже монодентатные лиганды  $L_{MOHO}$  ( $H_2O$ , OR<sup>-</sup>, Cl<sup>-</sup> – соответственно 2, 3 и 3 примера). Изучены случаи геометрической (*транс, цис*) изомерии в двух тройках комплексов [ReO( $L_{TeTPA}^{n}$ )( $L_{MOHO}$ )],  $L_{MOHO} = OR^{-}$ или Cl<sup>-</sup>.

#### ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований.

#### КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

#### СПИСОК ЛИТЕРАТУРЫ

- Порай-Кошиц М.А., Гилинская Э.А. Кристаллохимия. М.: ВИНИТИ. Итоги науки и техники, 1966. С. 126.
- Порай-Кошиц М.А., Атовмян Л.О. // Коорд. химия. 1975. Т. 1. № 8. С. 1271.
- 3. *Griffith F., Wicing C.* // J. Chem. Soc. A. 1968. № 3. P. 379.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 1 2021

- 4. *Порай-Кошиц М.А.* // Изв. Югосл. кристаллогр. центра. 1974. Т. 9. С. 19.
- 5. Порай-Кошиц М.А., Атовмян Л.О. Кристаллохимия координационных соединений молибдена. М.: Наука, 1974. 231 с.
- 6. Shustorovich E.M., Porai-Koshits M.A., Buslaev Yu.A. // Coord. Chem. Rev. 1975. V. 17. № 1. P. 1.
- 7. Порай-Кошиц М.А., Сергиенко В.С. // Успехи химин. 1990. Т. 59. № 1. С. 86.
- 8. *Allen F.H.* // Acta Crystallogr. 2002. V. 58B. № 2. P. 380.
- 9. Sergienko V.S., Churakov A.V. // Russ. J. Inorg. Chem. 2016. V. 61. № 14. P. 1708. https://doi.org/10.1134/S0036023616140047
- Sergienko V.S. // Russ. J. Inorg. Chem. 2017. V. 62. № 6. Р. 751. [Сергиенко В.С. // Журн. неорган. химии. 2017. Т. 62. № 6. С. 766.] https://doi.org/10.1134/S0036023617060195
- 11. Sergienko V.S., Churakov A.V. // Russ. J. Inorg. Chem. 2017. V. 62. № 10. С. 1326. [Сергиенко В.С., Чураков А.В. // Журн. неорган. химии. 2017. Т. 62. № 10. С. 1337.]

https://doi.org/10.1134/S0036023617100151

- Sergienko V.S., Churakov A.V. // Russ. J. Inorg. Chem. 2018. V. 63. № 5. Р. 631. [Сергиенко В.С., Чураков А.В. // Журн. неорган. химии. 2018. Т. 63. № 5. С. 601.] https://doi.org/10.1134/S0036023618050121
- 13. Sergienko V.S., Churakov A.V. // Russ. J. Inorg. Chem. 2018. V. 63. № 6. Р. 753. [Сергиенко В.С., Чураков А.В.

// Журн. неорган. химии. 2018. Т. 63. № 6. С. 718.] https://doi.org/10.1134/S0036023618060219

- Sergienko V.S. // Russ. J. Inorg. Chem. 2018. V. 63. № 14. P. 1757.
  - https://doi.org/10.1134/S0036023618140048
- 15. Sergienko V.S., Churakov A.V. // Russ. J. Coord. Chem. 2019. V. 45. № 5. Р. 332. [Сергиенко В.С., Чураков А.В. // Коорд. химия. 2019. Т. 45. № 5. С. 276.] https://doi.org/10.1134/S1070328419030072
- 16. *Sergienko V.S.* // Russ. J. Coord. Chem. 2019. V. 45. № 6. P. 439. https//doi.org/10.1134/S1070328419060071 [*Сергиенко В.С.* // Коорд. химия. 2019. Т. 45. № 6. С. 378.
- 17. Sergienko V.S., Churakov A.V. // Russ. J. Coord. Chem. 2019. V. 45. № 9. C. 651. https//doi.org/10.1134/S1070328419080074 [Сергиенко В.С., Чураков А.В. // Корд. химия. 2019. Т. 45. № 9. С. 553.
- Sergienko V.S., Churakov A.V. // Crystallography Rep. 2014. V. 59. № 3. Р. 300. [Сергиенко В.С., Чураков А.В. // Кристаллография. 2014. Т. 59. № 3. С. 341.] https://doi.org/10.7868/S0023476114030199
- Sergienko V.S., Churakov A.V. // Crystallography Rep. 2013. V. 58. № 1. Р. 5. [Сергиенко В.С., Чураков А.В. // Кристаллография. 2013. Т. 58. № 1. С. 3.] https://doi.org/10.1134/S106377451301010112
- Sergienko V.S. // Russ. J. Inorg. Chem. 2019. V. 64. № 9. С. 1127. [Сергиенко В.С. // Журн. неорган. химии. 2019. Т. 64. № 9. С. 945.] https://doi.org/10.1134/S0036023619090183
- Ison E.A., Cessarich J.E., Du G. et al. // Inorg. Chem. 2006. V. 45. № 6. P. 2385.
- 22. Benny P.D., Barnes C.L., Piekarski P.M. et al. // Inorg. Chem. 2003. V. 42. № 20. P. 6516.
- 23. Jurison S., Lindoy L.F., Dancey K.P. et al. // Inorg. Chem. 1984. V. 23. № 1. P. 227.

- 24. van Bommel K.J., Verboom W., Kooijman H. et al. // Inorg. Chem. 1998. V. 37. № 17. P. 4197.
- 25. Banbery H.J., McQuillan F., Hamor T.A. et al. // Polyhedron. 1989. V. 8. № 4. P. 559.
- 26. Zwettler N., Schachner J.A., Belay F., Mösch-Zanetti N.C. // Inorg. Chem. 2016. V. 55. № 27. P. 5973.
- 27. Hermann W.A., Rauch M.U., Artus G.R.J. // Inorg. Chem. 1996. V. 35. № 7. P. 1988.
- 28. Banbery H.J., McQuillan F., Hamor T.A. et al. // J. Chem. Soc., Dalton Trans. 1989. № 7. P. 1405.
- 29. Gerber T.I.A., Luzipo D., Mayer P. // J. Coord. Chem. 2005. V. 58. № 16. P. 1505.
- 30. *Mayer P., Yumata N.C., Gerber T.I.A., Abrahams A. //* S. Afr. Chem. 2010. V. 63. № 1. P. 40.
- 31. *Mondal A., Sarcar S., Chopra D. et al.* // Dalton Trans. 2004. № 17. P. 3244.
- 32. Basak S., Rajak K.K. // Inorg. Chem. 2008. V. 47. P. 8813.
- 33. *Rotsch D.A., Reining K.M., Weis E.M. et al.* // Dalton Trans. 2013. V. 42. P. 1164.
- Green J.L., Benny P.D., Engelbrecht H.P. et al. // Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2005. V. 35. № 1. P. 35.
- 35. *Battistuzzi R., Saladini M.* // Acta Crystallogr. 1991. V. 47C. № 3. P. 501.
- 36. Knoesen O., Wessels P.L., Görls R., Lotz S. // Inorg. Chem. 2001. V. 40. № 6. P. 1199.
- Cremer D., Pople J.A. // J. Am. Chem. Soc. 1975. V. 97. P. 1354.
- 38. *Benny P.D., Green J.L., Engelbercht H.P. et al.* // Inorg. Chem. 2005. V. 44. № 7. P. 2381.
- Volkert W.A., Offman T.J. // J. Chem. Rev. 1999. V. 93. P. 1137.
- 40. Bolzati C., Porchia M., Bandoli G. et al. // Inorg. Chim. Acta. 2001. V. 315. P. 205.