ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ, 2021, том 66, № 1, с. 88–96

ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ

УДК 544.31:546.57.81'23

ДИАГРАММА ТВЕРДОФАЗНЫХ РАВНОВЕСИЙ СИСТЕМЫ SnSe-Sb₂Se₃-Se И ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА СЕЛЕНИДОВ ОЛОВА-СУРЬМЫ

© 2021 г. Э. Н. Исмайлова^{*a*}, Л. Ф. Машадиева^{*a*}, Д. М. Бабанлы^{*a*, *b*}, А. В. Шевельков^{*c*}, М. Б. Бабанлы^{*a*}, *

^аИнститут катализа и неорганической химии НАН Азербайджана, пр-т Г. Джавида, 113, Баку, AZ-1148 Азербайджан ^bAзербайджанский государственный университет нефти и промышленности, пр-т Азадлыг, 16/21, Баку, AZ-1010 Азербайджан ^cМосковский государственный университет им. М.В. Ломоносова, Ленинские горы, 1, Москва, 119991 Россия *e-mail: babanlymb@gmail.com Поступила в редакцию 06.07.2020 г. После доработки 31.08.2020 г. Принята к публикации 01.09.2020 г.

Методами электродвижущих сил (ЭДС) и рентгенофазового анализа изучена система SnSe–Sb₂Se₃–Se, построена диаграмма твердофазных равновесий при 400 К. Из данных измерений ЭДС концентрационных цепей относительно электрода SnSe в интервале температур 300–450 К вычислены парциальные термодинамические функции SnSe в различных фазовых областях исследуемой системы. На основании этих данных с использованием соответствующих термодинамических функций SnSe и Sb₂Se₃ рассчитаны парциальные молярные функции олова в сплавах и стандартные термодинамические функции SnSe₂, Sn₂Sb₆Se₁₁, SnSb₂Se₄ и Sn₂Sb₂Se₅.

Ключевые слова: селениды олова, селениды олова-сурьмы, фазовая диаграмма, метод ЭДС, термодинамические свойства

DOI: 10.31857/S0044457X21010049

введение

Бинарные и тройные соединения, образующиеся в системах $A^{IV}-B^V-X$ ($A^{IV} = Ge$, Sn, Pb; $B^V = Sb$, Bi; X = Se, Te), относятся к числу перспективных функциональных материалов [1–5]. Многие из этих соединений, в частности тетрадимитоподобные фазы типа $A^{IV}B_2^VTe_4$, $A^{IV}B_4^VTe_7$, $A^{IV}B_6^VTe_{10}$ и др., имеют высокие термоэлектрические характеристики [6–11]. Недавние исследования показали, что последние являются также трехмерными топологическими изоляторами и чрезвычайно перспективны для использования в спинтронике, квантовых вычислениях, медицине, системах безопасности и т.д. [12–19].

Для разработки методик и оптимизации условий синтеза и выращивания кристаллов многокомпонентных фаз необходимо наличие надежных данных по фазовым равновесиям в соответствующих системах и термодинамическим функциям образующихся в них фаз [20–27]. Ранее в работах [28–32] были проведены комплексные исследования фазовых равновесий в системах $A^{IV}-B^V-X$ и термодинамических свойств образующихся в них тройных соединений и твердых растворов методом электродвижущих сил (ЭДС).

В настоящей работе представлены результаты подобного комплексного исследования системы Sn—Sb—Se в области составов SnSe—Sb₂Se₃—Se.

Фазовые равновесия в тройной системе Sn– Sb–Se исследовали в работах [33–37]. Построены политермические разрезы $SnSe_2-Sb_2Se_3$ и SnSe–Sb₂Se₃, некоторые изотермические сечения фазовой диаграммы и проекция поверхности ликвидуса. Показано, что система $SnSe_2-Sb_2Se_3$ имеет диаграмму состояния простого эвтектического типа [33]. Результаты работ [34–37] по системе $SnSe-Sb_2Se_3$ существенно отличаются друг от друга. Согласно [34], в системе $SnSe-Sb_2Se_3$ образуется одно конгруэнтно плавящееся тройное соединение $Sn_2Sb_6Se_{11}$. Авторы [35] утверждают, что в данной системе образуются два соединения состава $Sn_2Sb_6Se_{11}$ и $Sn_2Sb_2Se_5$. В [36] показано

Рис. 1. Диаграмма твердофазных равновесий системы SnSe–Sb₂Se₃–Se. #1 и #2 – составы образцов, порош-ковые дифрактограммы которых приведены на рис. 2.

образование только одного тройного соединения $SnSb_2Se_4$. Авторы работы [37] предполагают, что соединения $Sn_2Sb_6Se_{11}$ и $SnSb_2Se_4$ лежат в области гомогенности одной фазы. К этому же заключению привело наше недавнее исследование по уточнению фазовой диаграммы системы $SnSe-Sb_2Se_3$ [38]. Было показано, что в системе $SnSe-Sb_2Se_3$ образуется тройное соединение $Sn_2Sb_2Se_5$ и промежуточная γ -фаза с областью гомогенности 48–60 мол. % Sb_2Se_3 . В эту область входят стехиометрические составы тройных соединений $SnSb_2Se_4$ и $Sn_2Sb_6Se_{11}$, ранее указанных в [34–37].

Соединения $Sn_2Sb_2Se_5$ и $SnSb_2Se_4$ кристаллизуются в орторомбической решетке [38—40].

Мы не обнаружили какие-либо данные по термодинамическим свойствам тройных соединений системы Sn—Sb—Se.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для проведения экспериментов сначала синтезировали бинарные соединения SnSe и Sb₂Se₃ методом прямого сплавления элементарных компонентов. Использовали олово, сурьму и селен высокой степени чистоты фирмы Evochem Advanced Materials GMBH (Германия). Синтез проводили в вакуумированных (~10⁻² Па) кварцевых ампулах при температуре несколько выше (20-30 К) температур плавления синтезируемых соединений. Учитывая высокую упругость паров селена при температуре плавления SnSe, синтез этого соединения проводили в двухзонном режиме. Температура горячей зоны составляла 1200 К, холодной – 900 К, что несколько ниже температуры кипения селена (958 К) [41]. Sb₂Se₃ синтезировали в однозонной печи при ~950 К. Полученные бинарные соединения идентифицировали методами ДТА (Netzsch 404 F1 Pegasus system) и РФА (дифрактометр D2 Phaser фирмы Bruker).

Для планирования исследований нами на основании литературных данных по фазовым равновесиям в системах Sn(Sb)-Se [42] и SnSe(SnSe₂)-Sb₂Se₃ [33, 38] построена диаграмма твердофазных равновесий системы SnSe-Sb₂Se₃-Se (рис. 1). Правильность построения этой диаграммы контролировали рентгенофазовым анализом выборочных сплавов, приготовленных сплавлением синтезированных и идентифицированных бинарных соединений SnSe, Sb₂Se₃ и элементарного селена в условиях вакуума (10⁻² Па). В качестве примера на рис. 2 приведены порошковые дифрактограммы равновесных сплавов из фазовых областей $Sn_2Sb_2Se_5 + SnSe + SnSe_2$ (сплав 1) и ($SnSb_2Se_4$) + + SnSe₂ (сплав 2). Видно, что фазовые составы этих сплавов находятся в соответствии с фазовой диаграммой (рис. 1). Отметим, что полученная нами картина твердофазных равновесий при 400 К отличается от результатов работы [36], согласно которой в подсистеме SnSe-Sb₂Se₃-Se при 673.2 К образуется только одно тройное соединение $SnSb_2Se_4$, которое сосуществует с бинарными соединениями SnSe, SnSe $_2$, Sb $_2$ Se $_3$ и образует трехфазные области $SnSe + SnSe_2 + SnSb_2Se_4$ и $SnSe_2 + SnSb_2Se_4 + Sb_2Se_3$.

Для термодинамического исследования системы SnSe—Sb₂Se₃—Se были составлены концентрационные цепи типа

$$(-)$$
SnSe(тв)|жидкий электролит,Sn²⁺|(Sn в сплаве)(тв)(+). (1)

Как и в работах [29, 30], концентрационные цепи относительно оловянного электрода оказались необратимыми — значения ЭДС непрерывно падали в течение опытов. По-видимому, это обусловлено химическим взаимодействием между электродами через электролит, приводящим к изменению их состава. Правыми электродами в цепях типа (1) служили равновесные сплавы из трехфазной области SnSe + SnSe₂ + Se и вдоль квазибинарного разреза SnSe-Sb₂Se₃ (составы 30, 35, 47, 50, 55, 62, 80 и 90 мол. % Sb₂Se₃ с 1 ат. % избытком селена), приготовленные вышеуказанным способом. Учитывая важность равновесности электрод-сплавов,

Рис. 2. Порошковые дифрактограммы сплавов 1 и 2 на рис. 1.

литые образцы подвергали термическому отжигу при 750 К (500 ч) и дополнительно при 400 К (100 ч). Фазовые составы отожженных сплавов контролировали методом РФА. Электроды готовили прессованием стертых в порошок SnSe (левый электрод) и отожженных сплавов из вышеуказанных фазовых областей (правые электроды) в виде таблеток диаметром ~5 мм и толщиной 2–3 мм на молибденовые проволоки, использованные в качестве токоотводов в электрохимической ячейке.

Электролитом служил глицериновый раствор KCl с добавлением 0.5 мас. % SnCl₂. Учитывая недопустимость присутствия влаги и кислорода в электролите, глицерин (ч. д. а.) тщательно обезвоживали и обезгаживали откачкой при температуре ~400 K, использовали безводные, химически чистые соли.

Следует отметить, что метод ЭДС с глицериновым электролитом успешно применяется для термодинамического исследования бинарных и более сложных металлических, полупроводниковых и др. систем [28–32, 43–46].

Методики сборки электрохимической ячейки и измерений ЭДС подробно описаны в [43, 47]. Измерения ЭДС проводили в ячейке с инертной атмосферой с помощью высокоомного цифрового вольтметра Keithley 2100 6 1/2 Digit Multimeter в интервале температур 300–450 К.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Измерения ЭДС цепей типа (1) привели к воспроизводимым результатам, находящимся в полном соответствии с диаграммой твердофазных равновесий системы $SnSe-Sb_2Se_3-Se$. В пределах каждой трехфазной области при заданной температуре численные значения ЭДС одинаковы (с точностью ± 0.5 мВ) независимо от общего состава

Рис. 3. Зависимость ЭДС цепей типа (1) при температуре 400 К от состава в системе SnSe–Sb₂Se₃.

сплавов – правых электродов. Зависимость Е-х вдоль разреза $SnSe-Sb_2Se_3$ представлена на рис. 3, из которого видно, что на границе раздела двухфазных областей SnSe + Sn₂Sb₂Se₅ и Sn₂Sb₂Se₅ + γ ЭДС меняется скачкообразно, в пределах области гомогенности у-фазы является функцией состава. а в двухфазных полях остается постоянной. Для всех изученных электрод-сплавов температурные зависимости ЭДС имеют линейный характер (рис. 4). Учитывая это, полученные экспериментальные данные были обработаны с помощью компьютерной программы Microsoft Office Excel 2003 методом наименьших квадратов в приближении линейной температурной зависимости ЭДС. Ход расчетов для трехфазной области γ + SnSe₂ + + Sb₂Se₃ приведен в табл. 1. Полученные линейные уравнения представлены в табл. 2 в виде

$$E = a + bT \pm t \left[\frac{S_E^2}{n} + \frac{S_E^2 (T - \overline{T})^2}{\sum (T_i - \overline{T})^2} \right]^{\frac{1}{2}},$$
 (2)

рекомендованном в современной литературе [44]. В уравнении (2) n — число пар значений E (мВ) и T (K); S_E и S_b — дисперсии отдельных измерений ЭДС и постоянной b; \overline{T} — средняя температура; t критерий Стьюдента. При доверительном уровне 95% и числе экспериментальных точек $n \ge 20$ критерий Стьюдента $t \le 2$.

Из данных табл. 2 по соотношениям [43, 44]:

$$\Delta G_{\text{SnSe}} = -zFE,$$

$$\Delta \overline{S}_{\text{SnSe}} = zF\left(\frac{\partial E}{\partial T}\right)_{P} = zFb,$$

. =

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 1 2021

Рис. 4. Зависимости ЭДС цепей типа (1) от температуры в некоторых фазовых областях системы Sn–Sb– Se: $1 - \text{SnSe}_2 + \text{Sb}_2\text{Se}_3 + \text{Se}; 2 - \gamma(60 \text{ мол. }\% \text{ Sb}_2\text{Se}_3) +$ $+ \text{SnSe}_2 + \text{Sb}_2\text{Se}_3; 3 - \gamma(55 \text{ мол. }\% \text{ Sb}_2\text{Se}_3) + \text{SnSe}_2; 4 -$ $\gamma(50 \text{ мол. }\% \text{ Sb}_2\text{Se}_3) + \text{SnSe}_2; 5 - \text{Sn}_2\text{Sb}_2\text{Se}_5 + \text{SnSb}_2\text{Se}_4 +$ $+ \text{SnSe}_2.$

$$\Delta \overline{H}_{\text{SnSe}} = -zF\left[E - T\left(\frac{\partial E}{\partial T}\right)_{P}\right] = -zFa$$

были рассчитаны парциальные молярные термодинамические функции компонента SnSe в сплавах при 298 К (табл. 3).

Комбинированием данных табл. 3 с относительными парциальными термодинамическими функциями Sn в SnSe [48] (табл. 4) рассчитаны значения парциальных молярных функций олова в указанных фазовых областях, которые приведены в табл. 4.

Нетрудно показать, что парциальные молярные функции олова в трехфазных областях $SnSe_2 + Sb_2Se_3 + Se$, $\gamma(Sn_2Sb_6Se_{11}) + SnSe_2 + Sb_2Se_3$ и $Sn_2Sb_2Se_5 + \gamma(SnSb_2Se_4) + SnSe_2$ являются термодинамическими функциями следующих потенциалообразующих реакций (все вещества кристаллические):

$$Sn + 2Se = SnSe_2, \tag{3}$$

$$Sn + SnSe_2 + 3Sb_2Se_3 = Sn_2Sb_6Se_{11},$$
 (4)

$$\operatorname{Sn} + \operatorname{SnSe}_2 + 2\operatorname{SnSb}_2\operatorname{Se}_4 = 2\operatorname{Sn}_2\operatorname{Sb}_2\operatorname{Se}_5.$$
(5)

В соответствии с этими реакциями интегральные термодинамические функции соединений $SnSe_2$, $Sn_2Sb_6Se_{11}$ и $Sn_2Sb_2Se_5$ были вычислены по соотношениям:

$$\Delta_f Z^{\circ}(\mathrm{SnSe}_2) = \Delta \overline{Z}_{\mathrm{Sn}},\tag{6}$$

$$S^{\circ}(\mathrm{SnSe}_2) = \Delta \overline{S}_{\mathrm{Sn}} + S^{\circ}(\mathrm{Sn}) + 2S^{\circ}(\mathrm{Se}), \qquad (7)$$

ИСМАЙЛОВА и др.

Составляющие уравнения $E = a + bT \pm t \left[(S_E^2/n) + S_b^2 (T - \overline{T})^2 \right]^{1/2}$							
<i>T_i</i> , K	<i>Е</i> _{<i>i</i>} , мВ	$T_i - \overline{T}$	$E_i(T_i - \overline{T})$	$(T_i - \overline{T})^2$	$ ilde{E}$	$E_i - \tilde{E}$	$\left(E_i - \tilde{E}\right)^2$
299.2	144.62	-77.77	-11247.58	6048.69	143.63	0.99	0.99
305.8	144.71	-71.17	-10299.49	5065.64	143.74	0.97	0.95
312.6	143.64	-64.37	-9246.59	4143.93	143.85	-0.21	0.04
316.1	143.22	-60.87	-8718.28	3705.56	143.91	-0.69	0.47
321.7	144.55	-55.27	-7989.76	3055.14	144.00	0.55	0.30
325.6	143.27	-51.37	-7360.26	2639.22	144.06	-0.79	0.63
333.4	144.43	-43.57	-6293.30	1898.64	144.19	0.24	0.06
340.3	143.55	-36.67	-5264.46	1344.93	144.31	-0.76	0.58
347.5	144.61	-29.47	-4262.14	868.68	144.43	0.18	0.03
352.7	143.68	-24.27	-3487.59	589.19	144.51	-0.83	0.70
356.3	144.83	-20.67	-2994.12	427.39	144.57	0.26	0.07
361.8	145.02	-15.17	-2200.44	230.23	144.67	0.35	0.13
367.9	144.31	-9.07	-1309.37	82.33	144.77	-0.46	0.21
372.1	144.96	-4.87	-706.44	23.75	144.84	0.12	0.02
376	144.14	-0.97	-140.30	0.95	144.90	-0.76	0.58
380.2	144.77	3.23	467.12	10.41	144.97	-0.20	0.04
384.5	145.81	7.53	1097.46	56.65	145.04	0.77	0.59
390	144.81	13.03	1886.39	169.69	145.13	-0.32	0.11
393.3	145.92	16.33	2382.39	266.56	145.19	0.73	0.53
398.4	144.68	21.43	3100.01	459.10	145.27	-0.59	0.35
404.3	145.14	27.33	3966.19	746.75	145.37	-0.23	0.05
410.7	145.03	33.73	4891.38	1137.49	145.48	-0.45	0.20
415.9	145.22	38.93	5652.93	1515.29	145.56	-0.34	0.12
420.1	145.44	43.13	6272.34	1859.91	145.63	-0.19	0.04
425.4	146.48	48.43	7093.54	2345.14	145.72	0.76	0.57
430.1	145.51	53.13	7730.46	2822.44	145.80	-0.29	0.08
434.7	146.37	57.73	8449.45	3332.37	145.88	0.49	0.24
438.8	145.81	61.83	9014.95	3822.54	145.94	-0.13	0.02
444.3	146.88	67.33	9888.94	4532.88	146.04	0.84	0.71
449.5	146.12	72.53	10597.60	5260.12	146.12	0.00	0.00
$\overline{T} = 376.97$	$\overline{E} = 144.92$		$\sum \left(T_i - \overline{T}\right) = 971.05$	$\sum \left(T_i - \overline{T}\right)^2 = 58461.60$			$\sum \left(E_i - \tilde{E} \right)^2 = 9.41$

Таблица 1. Результаты компьютерной обработки данных измерений ЭДС в фазовой области γ + SnSe₂ + Sb₂Se₃ для получения линейного уравнения температурной зависимости ЭДС типа (2)

$$\Delta_f Z(\mathrm{Sn}_2 \mathrm{Sb}_6 \mathrm{Se}_{11}) =$$

$$= \Delta \overline{Z}_{\mathrm{Sn}} + \Delta_f Z^{\circ}(\mathrm{SnSe}_2) + 3\Delta_f Z^{\circ}(\mathrm{Sb}_2 \mathrm{Se}_3), \qquad (8)$$

$$S^{\circ}(Sn_{2}Sb_{6}Se_{11}) = \Delta S_{Sn} + S^{\circ}(Sn) + + S^{\circ}(SnSe_{2}) + 3S^{\circ}(Sb_{2}Se_{3}),$$
(9)

$$\Delta_f Z(\operatorname{Sn}_2 \operatorname{Sb}_2 \operatorname{Se}_5) = 0.5 \Delta Z_{\operatorname{Sn}} + + 0.5 \Delta_f Z^{\circ}(\operatorname{SnSe}_2) + \Delta_f Z^{\circ}(\operatorname{SnSb}_2 \operatorname{Se}_4),$$
(10)

 $S^{\circ}(\operatorname{Sn}_{2}\operatorname{Sb}_{2}\operatorname{Se}_{5}) = 0.5\Delta\overline{S}_{\operatorname{Sn}} + 0.5S^{\circ}(\operatorname{Sn}) + 0.5S^{\circ}(\operatorname{SnSe}_{2}) + S^{\circ}(\operatorname{SnSb}_{2}\operatorname{Se}_{4}).$ (11)

В уравнениях (6), (8), (10) Z=G, Н. Стандартные интегральные термодинамические функции γ-фазы стехиометрического состава SnSb₂Se₄ вычислены интегрированием уравнения Гиббса– Дюгема по лучевой прямой, исходящей из вершины Sn концентрационного треугольника и проходящей через состав SnSb₂Se₄ [43]. ДИАГРАММА ТВЕРДОФАЗНЫХ РАВНОВЕСИЙ СИСТЕМЫ SnSe-Sb₂Se₃-Se

Фазовая область	$E, \mathbf{MB} = a + bT \pm 2\tilde{S}_{E}(T)$
$SnSe_2 + Sb_2Se_3 + Se$	$296.41 - 0.0825T \pm 2 \left[\frac{0.49}{30} + 8.4 \times 10^{-6} \left(T - 376.97 \right)^2 \right]^{1/2}$
$\gamma + SnSe_2 + Sb_2Se_3$	$138.66 + 0.0166T \pm 2\left[\frac{0.31}{30} + 5.4 \times 10^{-6} \left(T - 376.97\right)^2\right]^{1/2}$
$\gamma + SnSe_2$	$136.68 - 0.0240T \pm 2\left[\frac{0.31}{30} + 5.5 \times 10^{-6} \left(T - 374.28\right)^2\right]^{1/2}$
$SnSb_2Se_4 + SnSe_2$	$121.42 - 0.0252T \pm 2\left[\frac{0.33}{30} + 6.0 \times 10^{-6} \left(T - 374.28\right)^2\right]^{1/2}$
$Sn_2Sb_2Se_5 + SnSb_2Se_4 + SnSe_2$	$105.70 - 0.0402T \pm 2\left[\frac{0.30}{30} + 5.4 \times 10^{-6} \left(T - 374.28\right)^2\right]^{1/2}$

Таблица 2. Уравнения температурной зависимости ЭДС (*T* = 300–450 K) для сплавов системы Sn–Sb–Se

Таблица 3. Парциальные термодинамические функции SnSe в сплавах системы Sn-Sb-Se при 298.15 К

Фазовая область	$-\Delta \overline{G}_{SnSe}$	$-\Delta \overline{H}_{ m SnSe}$	$\Delta \overline{S}_{SnSe},$
	кДж/	Дж K^{-1} моль $^{-1}$	
$SnSe_2 + Sb_2Se_3 + Se$	52.45 ± 0.10	57.20 ± 0.43	-15.93 ± 1.12
$\gamma + SnSe_2 + Sb_2Se_3$	27.71 ± 0.08	26.76 ± 0.34	3.21 ± 0.89
$\gamma + SnSe_2$	24.99 ± 0.08	26.38 ± 0.34	-4.64 ± 0.90
$SnSb_2Se_4 + SnSe_2$	21.98 ± 0.08	23.43 ± 0.36	-4.85 ± 0.94
$Sn_2Sb_2Se_5 + SnSb_2Se_4 + SnSe_2$	18.09 ± 0.08	20.40 ± 0.34	-7.75 ± 0.90

Таблица 4. Парциальные термодинамические функции олова в сплавах системы Sn-Sb-Se при 298.15 К

Фазовая область	$-\Delta \overline{G}_{ m Sn}$	$-\Delta \overline{H}_{ m Sn}$	$K\Delta\overline{S}_{Sn},$
	кДж,	Дж К ⁻¹ моль ⁻¹	
$SnSe + SnSe_2$ [43]	67.51 ± 0.10	65.00 ± 0.44	8.39 ± 1.16
$SnSe_2 + Sb_2Se_3 + Se$	119.96 ± 0.20	122.20 ± 0.87	-7.54 ± 2.28
$\gamma + SnSe_2 + Sb_2Se_3$	95.22 ± 0.18	91.76 ± 0.78	11.60 ± 2.05
$\gamma + SnSe_2$	92.20 ± 0.18	91.38 ± 0.78	3.76 ± 2.06
$SnSb_2Se_4 + SnSe_2$	89.49 ± 0.18	88.43 ± 0.80	3.56 ± 2.10
$Sn_2Sb_2Se_5 + SnSb_2Se_4 + SnSe_2$	85.60 ± 0.18	85.40 ± 0.78	0.67 ± 2.06

При расчетах интегральных термодинамических функций тройных фаз использованы литературные данные по соответствующим термодинамическим характеристикам Sb₂Se₃ (табл. 5), а также значения стандартных энтропий олова (51.55 \pm 0.21 Дж K⁻¹ моль⁻¹) и селена (42.13 \pm \pm 0.21 Дж K⁻¹ моль⁻¹), приведенные в [49]. Использованные при расчетах стандартные интегральные термодинамические функции Sb₂Se₃ являются взаимосогласованными и вполне надежными. Значения стандартных теплоты образования и энтропии (табл. 5), рекомендованные в различных справочниках [49—53], согласуются между собой и практически совпадают с калориметрическими данными [54], а стандартная свободная энергия образования Гиббса рассчитана нами из этих величин.

В расчетах по соотношениям (10) и (11) использованы полученные нами данные для γ -фазы состава SnSb₂Se₄ (табл. 5).

Погрешности находили методом накопления ошибок.

	$-\Delta_{\!f}G^{\circ}$	$-\Delta_{\!f} H^{\circ}$	$\Delta_{f}S^{\circ}$	S°	
Соединение		Источник			
	кДж/моль		Дж К ⁻¹ моль ⁻¹		
Sb ₂ Se ₃	125.9 ± 3.0	127.6 ± 1.3	_	212.1 ± 3.3	[44-47]
		127.6 ± 1.1			[48]
SnSe ₂	120.0 ± 0.3	122.2 ± 0.9	-7.5 ± 2.3	128.3 ± 3.0	Наст. работа
	119.7 ± 0.1	121.3 ± 0.4		130.4 ± 1.7	[43]
	119.7 + 0.2	124.7 + 1.2	—		[49]
		119.0 ± 4.2			[50]
	110.0	117.2		111.7	[46]
		124.7 ± 8.4		118.0	[45]
		82.4			[44]
	91.4	82.4		119.0 ± 4.2	[47]
$Sn_2Sb_6Se_{11}$	592.9 ± 9.4	596.9 ± 5.2	-13.1 ± 5.5	827.8 ± 15.2	Наст. работа
SnSb ₂ Se ₄	232.8 ± 3.2	234.9 ± 2.4	-6.7 ± 3.9	306.5 ± 6.0	Наст. работа
$Sn_2Sb_2Se_5$	335.4 ± 3.4	338.6 ± 3.3	-3.5 ± 6.1	396.8 ± 8.6	Наст. работа

Таблица 5. Стандартные интегральные термодинамические функции бинарных и тройных соединений в подсистеме SnSe–Sb₂Se₃–Se

Результаты, полученные нами для $SnSe_2$, находятся в соответствии с данными [48, 50, 51, 54] и значительно выше величин, приведенных в [49, 52], которые, по-видимому, являются заниженными.

ЗАКЛЮЧЕНИЕ

Представлены результаты комплексного исследования твердофазных равновесий в системе SnSe-Sb₂Se₃-Se и термодинамических свойств промежуточных фаз методами ЭДС и РФА. Построена диаграмма твердофазных равновесий исследуемой системы при комнатной температуре, отличающаяся от результатов недавно опубликованной работы [36]. Измерением ЭДС обратимых концентрационных относительно электрода SnSe цепей в интервале температур 300-450 К получены линейные уравнения температурной зависимости ЭДС в некоторых трехфазных областях и вычислены парциальные термодинамические функции SnSe в сплавах. На основании этих данных с использованием соответствующих термодинамических функций SnSe и Sb₂Se₃ рассчитаны парциальные молярные функции олова в сплавах и стандартные термодинамические функции образования, а также стандартные энтропии соединений SnSe₂, Sn₂Sb₆Se₁₁, SnSb₂Se₄ и Sn₂Sb₂Se₅. Полученные результаты для SnSe₂ дополняют имеющиеся в литературе данные, а термодинамические функции тройных фаз определены нами впервые.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках международной совместной научно-исследовательской лаборатории "Перспективные материалы для спинтроники и квантовых вычислений", созданной на базе Института катализа и неорганической химии НАН Азербайджана и Международного физического центра Donostia (Испания), и при частичной финансовой поддержке Фонда развития науки при Президенте Азербайджанской Республики (грант EİF-BGM-4-RFTF-1/2017-21/11/4-M-12).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

1. *Alonso-Vante N.* // Springer Inter. Publish. AG, 2018. P. 226.

https://doi.org/10.1007/978-3-319-89612-0

- Applications of Chalcogenides: S, Se, and Te / Ed. Ahluwalia G.K. Cham. Springer, 2016. P. 461. https://doi.org/10.1007/978-3-319-41190-3
- Sanghoon X.L., Tengfei L.J., Zhang L.Y-H. Chalcogenide. From 3D to 2D and Beyond. Elsevier, 2019. P. 398. https://doi.org/10.1016/C2017-0-03585-1
- Chalcogenides: Advances in Research and Applications / Ed. Nova P.W. 2018. P. 111.
- Greenberg E., Hen B., Layek S. et al. // J. Phys. Rev. B. 2017. V. 95. № 6. P. 064514-5. https://doi.org/10.1103/PhysRevB.95.064514

- Matsumoto R., Hou Z., Hara H. et al. // Appl. Phys. Express. 2018. V. 11. № 9. P. 093101-4. https://doi.org/10.7567/APEX.11.093101
- Kosuga A., Nakai K., Matsuzawa M. et al. // J. Alloys Compd. 2015. V. 618. P. 463. https://doi.org/10.1016/j.jallcom.2014.08.183
- Zemskov V.S., Shelimova L.E., Konstantinov P.P. et al. // Inorg. Mater. Appl. Res. 2013. V. 4. P. 77. https://doi.org/10.1134/S2075113313020196
- Von R.F., Schilling A., Cava R.J. // J. Phys.: Condens. Matter. 2013. V. 25. № 7. P. 075804. https://doi.org/10.1088/0953-8984/25/7/075804
- Quang T.V., Kim M. // J. Korean Phys. Soc. 2019. V. 74. № 3. P. 256. https://doi.org/10.3938/jkps.74.256
- Kuropatwa B.A., Kleinke H. // Z. Anorg. Allg. Chem. 2012. V. 638. № 15. P. 2640. https://doi.org/10.1002/zaac.201200284
- Babanly M.B., Chulkov E.V., Aliev Z.S. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 13. P. 1703. https://doi.org/10.1134/S0036023617130034
- Shvets I.A., Klimovskikh I.I., Aliev Z.S. et al. // J. Phys. Rev. B. 2019. V. 100. P. 195127-5. https://doi.org/10.1103/PhysRevB.100.195127
- Vergniory M.G., Menshchikova T.V., Silkin I.V. et al. // J. Phys. Rev. B. 2015. V. 92. № 4. https://doi.org/10.1103/physrevb.92.045134
- Pacile D., Eremeev S.V., Caputo M. et al. // J. Phys. Stat. Sol. (RRL) - Rapid Research Letters. 2018. P. 1800341-8. https://doi.org/10.1002/pssr.201800341
- Papagno M., Eremeev S., Fujii J. et al. // ACS Nano. 2016. V. 10. P. 3518. https://doi.org/10.1021/acsnano.5b07750
- 17. *Hattori Y., Tokumoto Y., Kimoto K. et al.* // Sci. Rep. 2020. V. 10. № 1. https://doi.org/10.1038/s41598-020-64742-6
- Shvets I.A., Klimovskikh I.I., Aliev Z.S. et al. // J. Phys. Rev. B. 2017. V. 96. P. 235124 -7. https://doi.org/10.1103/physrevb.96.235124
- Mal P., Bera G., Turpu G.R. et al. // J. Phys. Chem. Chem. Phys. 2019. V. 21. P. 15030. https://doi.org/10.1039/c9cp01494b
- Matsushita T., Mukai K. Chemical Thermodynamics in Materials Science: From Basics to Practical Applications. Springer, 2018. P. 257. https://doi.org/10.1007/978-981-13-0405-7
- Воронин Г.Ф., Герасимов Я.И. Термодинамика и полупроводниковое материаловедение. М.: МИЭТ, 1980. С. 3–10.
- Babanly M.B., Mashadiyeva L.F., Babanly D.M. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 13. P. 1649. https://doi.org/10.1134/S0036023619130035
- Imamaliyeva S.Z., Babanly D.M., Tagiev D.B. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 13. P. 1703. https://doi.org/10.1134/S0036023618130041
- 24. Asadov M.M., Mustafaeva S.N., Tagiyev D.B. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 5. P. 733. https://doi.org/10.1134/S0036023620050022
- Исмаилова Э.Н., Машадиева Л.Ф., Бахтиярлы И.Б. и др. // Журн. неорган. химии. 2019. Т. 64. № 6. С. 646. [Ismailova E.N., Mashadieva L.F., Bakhtiyarly I.B.

et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 6. P. 801. https://doi.org/10.1134/S0036023619060093] https://doi.org/10.1134/S0044457X19060096

- Бахтиярлы И.Б., Курбанова Р.Д., Абдуллаева А.С. и др. // Журн. неорган. химии. 2019. Т. 64. № 7. С. 736. [Bakhtiyarly I.B., Kurbanova R.D., Abdullaeva A.S. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 7. P. 890. https://doi.org/10.1134/S0036023619070039] https://doi.org/10.1134/S0044457X19070031
- Кертман А.В. // Журн. неорган. химии. 2019. Т. 64. № 1. С. 93. [Kertman A.V. // Russ. J. Inorg. Chem. 2019. V. 64. P. 130. https://doi.org/10.1134/S0036023619010133] https://doi.org/10.1134/S0044457X19010136
- Гусейнов Ф.Н., Бабанлы К.Н., Алиев И.И. и др. // Журн. неорган. химии. 2012. Т. 57. № 1. С. 107. [Guseinov F.N., Babanly K.N., Aliev I.I. et al. // Russ. J. Inorg. Chem. 2012. V. 57. P. 100. https://doi.org/10.1134/S003602361201010X]
- Гусейнов Ф.Н., Сеидзаде А.Э., Юсибов Ю.А. и др. // Неорган. материалы. 2017. Т. 53. № 4. С. 347. [Guseinov F.N., Seidzade A.E., Yusibov Yu.A. et al. // Inorg. Mater. 2017. V. 53. P. 354. https://doi.org/10.1134/S0020168517040057]
- Бабанлы М.Б., Гусейнов Ф.Н., Дашдыева Г.Б. и др. // Неорган. материалы. 2011. Т. 47. № 3. С. 284. [Babanly M.B., Guseinov F.N., Dashdyeva G.B. et al. // Inorg. Mater. 2011. V. 47. № 3. Р. 235. https://doi.org/10.1134/S0020168511030022]
- Бабанлы М.Б., Шевельков А.В., Гусейнов Ф.Н. и др. // Неорган. материалы. 2011. Т. 47. № 7. С. 796. [Babanly M.B., Shevelkov A.V., Guseinov F.N. et al. // Inorg. Mater. 2011. V. 47. № 7. Р. 712. https://doi.org/10.1134/S002016851107003X]
- 32. Mansimova Sh.H., Mirzoeva R.J., Mashadiyeva L.F. et al. // J. Appl. Sol. Stat. Chem. 2018. № 4. P. 104. https://doi.org/10.18572/2619-0141-2018-4-5-104-111
- Ostapyuk T.A., Yermiychuk I.M., Zmiy O.F. et al. // Chem. Met. Alloys. 2009. V. 2. P. 164. https://doi.org/10.30970/cma2.0100
- Wobst W. // J. Less Common Metals. 1968. V. 14. № 1. P. 77.
- 35. Господинов Г.Г., Один И.И., Новоселова А.В. // Неорган. материалы. 1975. Т. 11. № 7. С. 1211.
- 36. Chang J., Chen S. // Metall. Mater. Trans. E. 2017. V. 4. № 2–4. P. 89. https://doi.org/10.1007/s40553-017-0110-8
- 37. *Shen J., Blachnik R.* // J. Therm. Acta. 2003. V. 399. № 1–2. P. 245. https://doi.org/10.1016/s0040-6031(02)00461-6
- 38. *Ismailova E.N., Bakhtiyarly I.B., Babanly M.B.* // J. Chem. Probl. 2020. № 2. P. 250. https://doi.org/10.32737/2221-8688-2020-2-250-256
- 39. Smith P.K., Parise J.B. // Acta Crystallogr., Sect. B. 1985. V. 41. P. 84. https://doi.org/10.1107/S0108768185001665
- 40. Mukherjee A. // Jpn. J. Appl. Physics. 1982. V. 20. P. 681.
- 41. *Emsley J.* The Elements, third ed. Clarendon Press, 1998.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 66 № 1 2021

- Massalski T.B. Binary Alloys Phase Diagrams, Second Edition // ASM International. Mat. Park. Ohio, 1990.
- Бабанлы М.Б., Юсибов Ю.А. Электрохимические методы в термодинамике неорганических систем. Баку: ЭЛМ, 2011. С. 306.
- 44. Морачевский А.Г., Воронин Г.Ф., Гейдерих В.А., Куценок И.Б. Электрохимические методы исследования в термодинамике металлических систем. М.: ИЦК Академкнига, 2003. С. 334.
- Vassiliev V.P., Lysenko V.A. // Electrochimica Acta. 2016. V. 222. P. 1770. https://doi.org/10.1016/j.electacta.2016.11.075
- 46. Sidorko V.R., Goncharuk L.V., Antonenko R.V. // Powder Metal. Metal Ceramics. 2008. V. 47. P. 234. https://doi.org/10.1007/s11106-008-9009-3
- 47. *Imamaliyeva S.Z., Musayeva S.S., Babanly D.M. et al.* // Thermochimica Acta. 2019. V. 679. P. 178319-7. https://doi.org/10.1016/j.tca.2019.178319

- 48. Ismayilova E.N., Babanly D.M., Zlomanov V.P. et al. // J. New Mater. Comp. Appl. 2020. № 3.
- 49. База данных термических констант веществ / Электронная версия под ред. Йориша В.С., Юнгмана В.С. 2006. http://www.chem.msu.su/cgi-bin/tkv
- Kubaschewski O., Alcock C.B., Spenser P.J. Materials Thermochemistry. 6-th ed. Pergamon Press, England. 1993. P. 363.
- 51. *Barin I.* Thermochemical Data of Pure Substances. Third Edition. VCH. 2008.
- Герасимов Я.И., Крестовников А.Н., Горбов С.И. Химическая термодинамика в цветной металлургии. Справочник. М.: Металлургия, 1974. Т. 6. С. 312.
- 53. *Howlett B.W., Misra S., Bever M.* // Trans. Metall. Soc. AIME. 1964. V. 230. P. 1367.
- 54. Мелех Б.Т., Степанова Н.Б., Фомина Т.А. // Журн. физ. химии. 1971. Т. 45. С. 2018.