ТЕОРЕТИЧЕСКАЯ НЕОРГАНИЧЕСКАЯ ХИМИЯ

УДК 544.227.022.343

ОПРЕДЕЛЕНИЕ ПАРНОГО ВЗАИМОДЕЙСТВИЯ АТОМОВ ПО ВЗАИМОДЕЙСТВИЮ АДАТОМА С ГРАФЕНОМ

© 2020 г. С. Ш. Рехвиашвили^{а, *}, М. М. Бухурова^а, А. А. Сокуров^а

^аИнститут прикладной математики и автоматизации КБНЦ РАН, ул. Шортанова, 89а, Нальчик, 360000 Россия

*e-mail: rsergo@mail.ru Поступила в редакцию 13.04.2020 г. После доработки 18.04.2020 г. Принята к публикации 27.04.2020 г.

Впервые рассмотрена задача об идентификации параметров парных межатомных потенциалов Ми–Леннарда–Джонса и Морзе по взаимодействию одиночного атома металла с идеальным однослойным графеном. Численные расчеты параметров проведены для различных гетероатомных пар. Параметры потенциалов вычисляли по равновесным значениям энергии адсорбции и расстояний в системе адатом–графен и данным численных расчетов, выполненных в рамках функционала электронной плотности. При этом использовали процедуру оптимизации Левенберга–Марквардта. Расчеты согласуются с имеющимися в литературе данными по температурам плавления карбидов металлов, ионным и ковалентным радиусам. Полученные результаты представляют значительный практический интерес, так как открывают новую возможность для оценки параметров потенциалов не используются эмпирические правила комбинирования.

Ключевые слова: межатомное взаимодействие, парные потенциалы, графен, континуальное приближение, метод Монте-Карло

DOI: 10.31857/S0044457X20090135

введение

В физико-химических расчетах наносистем [1, 2] при моделировании свойств наноматериалов [3] и различных химических и адсорбционных явлений [4] часто требуется знать потенциал взаимодействия между отдельными атомами [5]. В качестве наиболее распространенных примеров можно привести методы молекулярной динамики и Монте-Карло. В этих методах основная информация о свойствах моделируемого вещества содержится именно в форме и параметрах парных межатомных потенциалов взаимодействия. Еще одним важным примером является атомно-силовая микроскопия, которая используется в качестве одного из основных инструментов исследований в современном материаловедении. Главной теоретической задачей в атомно-силовой микроскопии является расчет сил взаимодействия между зондом и образцом в зависимости от расстояния сканирования и геометрии контактной зоны. Этот расчет проводится с учетом парных потенциалов взаимодействия [6-8]. В целом выбор конкретной формы парного потенциала зависит от специфики той или иной задачи.

Построение адекватных теоретических моделей наносистем и наноматериалов должно опираться на потенциалы взаимодействия, которые корректно учитывают все имеюшиеся типы взаимодействий в широком интервале межатомных расстояний. В расчетах межатомных и/или межмолекулярных взаимодействий ab initio в настоящее время широко применяется теория функционала плотности, основанная на приближении Кона-Шэма [9]. В физико-химических приложениях наиболее часто применяется уточненный вариант приближения Кона-Шэма – обменнокорреляционная модель Пердью-Бурка-Эрнзерхофа (Perdew-Burke-Ernzerhof, PBE) [10]. В качестве удобных приближений к обменно-корреляционной энергии могут, кроме того, использоваться гибридные функционалы, которые получаются на основе теорий Хартри-Фока, Кона-Шэма и др. [11, 12]. Здесь эффективное применение находит модель B3LYP (от англ. Becke, 3-раrameter, Lee-Yang-Parr) [11-16].

Углеродные наноматериалы имеют уникальные физико-химические свойства. Учитывая свойства графена как двумерного материала и особенности его взаимодействия с атомами металлов, открываются возможности для разработки нового поколения катализаторов [17, 18]. В этом отношении перспективным материалом является также и оксид графена [19]. Эксперимен-

Рис. 1. К расчету потенциала взаимодействия атома с графеном.

тальные и теоретические исследования графенометаллических систем являются чрезвычайно актуальными [20-27]. Взаимодействие атомов ряда металлов с графеном в приближении Пердью-Бурка-Эрнзерхофа изучалось в работах [26, 27]. В [26] вычислены равновесные параметры взаимодействия (расстояние и энергия) для 12 различных элементов. Было показано, что взаимодействие элементов I-III групп Периодической таблицы с графеном характеризуется ионным типом связи. Для переходных и благородных металлов и металлов IV группы имеет место ковалентный тип связи; взаимодействие в данном случае характеризуется достаточно сильной гибридизацией орбиталей адатомов и составляющих решетку графена атомов углерода. В [27] для атома алюминия и графена численно построены зависимости потенциала взаимодействия от расстояния. Отмечено, что при больших расстояниях между адатомом и графеном взаимодействие носит дисперсионный характер.

Представляет интерес рассмотреть задачу о вычислении параметров парного взаимодействия атомов исходя из взаимодействия атом-графен. Решению этой (по существу, обратной) задачи посвящена настоящая статья. В качестве парных межатомных потенциалов используются потенциалы Ми-Леннарда-Джонса и Морзе [3–5]. Указанные потенциалы во многих случаях приводят к простым и удобным для расчетов аналитическим соотношениям, которые описывают уравнения состояния и различные термодинамические свойства веществ. В качестве математической основы в предлагаемом подходе выступает континуальное приближение для атомов, согласно которому решеточные суммы заменяются на интегрирование по объему или атомному слою твердого тела [4, с. 45]. Расчеты в континуальном приближении сравниваются с расчетами по методу Монте-Карло.

РАСЧЕТ ПОТЕНЦИАЛА ВЗАИМОДЕЙСТВИЯ АДАТОМА С ГРАФЕНОМ

На рис. 1 показаны положения адатома A и атома углерода C, находящегося в плоскости графена. Элемент площади графена равен $dS = 2\pi x dx$. C учетом этого потенциальная энергия адатома, находящегося на расстоянии *z* от графена, вычисляется с помощью интеграла

$$U(z) = 2\pi n_s \int_0^\infty \phi(\sqrt{x^2 + z^2}) x dx,$$

$$n_s = \frac{4}{3\sqrt{3}a_0^2},$$
(1)

где $n_s = 38.177$ нм⁻² — поверхностная плотность атомов графена, $a_0 = 0.142$ нм — параметр решетки графена, $\phi(r)$ — парный потенциал, $r = \sqrt{x^2 + z^2}$ расстояние между двумя атомами. В расчетах будем использовать формулы Ми–Леннарда– Джонса и Морзе, которые записываются в виде:

$$\phi(r) = \frac{D}{b-a} \left[a \left(\frac{r_0}{r} \right)^b - b \left(\frac{r_0}{r} \right)^a \right], \tag{2}$$

$$\phi(r) = D \big[\exp(-2\alpha(r - r_0)) - 2\exp(-\alpha(r - r_0)) \big], \quad (3)$$

где D и r_0 – глубина потенциальной ямы и равновесное расстояние для взаимодействия между двумя атомами, a и b – параметры, отвечающие за силы притяжения и отталкивания, α – параметр, определяющий ширину потенциальной ямы. В области минимума и в небольшом интервале расстояний r парный потенциал взаимодействия представляется в виде параболической зависимости

$$U(r) = -D + \frac{k}{2}(r - r_0)^2, \qquad (4)$$

где k — коэффициент жесткости межатомной связи. Для потенциалов (2), (3) коэффициенты жесткости соответственно равны

$$k = \frac{abD}{r_0^2},\tag{5}$$

$$k = 2\alpha^2 D. \tag{6}$$

Формулы (5), (6) можно использовать для согласования потенциалов (2), (3). Например, используя формулы (5) и (6), из параметров потенциала Ми–Леннарда–Джонса, приведенных в [28], вычисляется параметр α для потенциала (3). В свою очередь, коэффициент *k* с помощью простых формул, известных из физики твердого тела,

Sn

Ti

Fe

Pd

Au

связывается с экспериментально измеряемыми физическими величинами, например с модулем Юнга.

Подставляя (2) и (3) в (1) и выполняя интегрирование, находим

$$U(z) = \frac{2\pi n_s D r_0^2}{b-a} \left[\frac{a}{b-2} \left(\frac{r_0}{z} \right)^{b-2} - \frac{b}{a-2} \left(\frac{r_0}{z} \right)^{a-2} \right], \quad (7)$$

$$U(z) = \frac{\pi n_s D}{2\alpha^2} [(2\alpha z + 1) \exp(-2\alpha (z - r_0)) - (8)]$$

$$-8(\alpha z+1)\exp(-\alpha(z-r_0))].$$

Формулы (7) и (8) определяют усредненную потенциальную энергию взаимодействия внешнего атома с графеном. Равновесные параметры взаимодействия находятся с помощью уравнения:

$$\left(\frac{dU(z)}{dz}\right)_{z=z_0} = 0.$$
 (9)

Из уравнений (9) и (1) получаем $\phi(z_0) = 0$. Решения этого уравнения для потенциалов (2) и (3) имеют вид:

$$z_0 = \left(\frac{a}{b}\right)^{\frac{1}{b-a}} r_0,\tag{10}$$

$$z_0 = r_0 - \frac{\ln 2}{\alpha}.\tag{11}$$

В результате подстановки (10) и (11) в (7) и (8) получаем формулы для равновесной энергии связи адатома с графеном:

$$U_{0} = \frac{2\pi n_{s} D r_{0}^{2}}{b-a} \left[\frac{a}{b-2} \left(\frac{a}{b} \right)^{\frac{b-2}{a-b}} - \frac{b}{a-2} \left(\frac{a}{b} \right)^{\frac{a-2}{a-b}} \right], \quad (12)$$

$$U_0 = \frac{2\pi n_s D}{\alpha^2} (2\alpha r_0 - \ln 4 + 3).$$
(13)

Для потенциала Леннарда—Джонса (a = 6, b = 12) формулы (7), (10) и (12) заметно упрощаются. В этом случае для согласованного потенциала Морзе с учетом (5), (6) будем иметь: $\alpha = 6/r_0$, где r_0 соответствует потенциалу Леннарда—Джонса.

ЧИСЛЕННЫЕ РАСЧЕТЫ

Параметры взаимодействия зависят от положения адатома над поверхностью и, соответственно, от гексагональной структуры графена. Чтобы сравнить формулы (7) и (8) со структурнозависимым потенциалом взаимодействия адатом—графен, необходимо из первых принципов вычислить среднее значение потенциала в плоскости графена при заданном значении расстояния *z*. Численные расчеты взаимодействий адатома с графеном с учетом его атомной структуры принято проводить в трех положениях [26, 27]:

для взаимодействия атомов металлов с атомом углерода				
Атом	<i>U</i> ₀ , эВ	z_0 , HM	<i>D</i> , эВ	<i>r</i> ₀ , нм
Li	0.874	0.211	0.136	0.237
Na	0.415	0.261	0.042	0.293
K	0.758	0.287	0.064	0.322
Ca	0.531	0.257	0.056	0.288
Al	0.96	0.238	0.118	0.267
Ga	0.79	0.246	0.091	0.276
In	0.642	0.267	0.062	0.3

0.301

0.226

0.22

0.225

0.315

0.016

0.203

0.054

0.137

0.0063

0.208

1.49

0.376

0.992

0.09

Таблица 1. Параметры потенциала Леннарда-Джонса

центр гексагона (H, Hollow); середина отрезка, который соответствует ближайшему межатомному расстоянию в графене (B, Bridge); над узловым атомом углерода (T, Top). Для сравнения этих расчетов с рассмотренным выше континуальным приближением можно приближенно взять среднее арифметическое значение параметров взаимодействия для положений H, B и T.

В [26] приведены численные расчеты энергий связи и равновесных расстояний для атомов различных металлов, адсорбированных на поверхности графена. По данным [26] и формулам (10)—(13) могут быть рассчитаны параметры потенциала Леннарда—Джонса. Результаты расчета представлены в табл. 1. Если допустить, что параметры Dи r_0 для потенциалов Леннарда—Джонса и Морзе имеют одинаковые значения, то параметр α можно оценить из условия равенства коэффициентов жесткости межатомных связей в области минимума (формулы (5), (6)).

Анализ полученных данных показывает, что глубина потенциальной ямы для парного взаимодействия атомов по порядку величины составляет $D \sim k_{\rm B}T_m/q$ (эВ), где T_m – температура плавления соответствующего карбида металла, $k_{\rm B}$ и q – постоянная Больцмана и заряд электрона. Равновесное расстояние r_0 приблизительно равно сумме ионных или ковалентных радиусов. Все это находится в согласии с общепринятыми подходами к оценкам параметров парных потенциалов [3, 5].

Для совместного определения параметров потенциалов Ми–Леннарда–Джонса (2) и Морзе (3) одних только данных по равновесным значениям энергии адсорбции и расстояния в системе адатом–графен недостаточно. Однако эти параметры могут быть определены с помощью сравнения численных расчетов по формулам (7) и (8) с

0.338

0.254

0.247

0.252

0.354

Рис. 2. Потенциал взаимодействия атома Al с графеном: *1* – формула (7), *2* – формула (8), кружки – усредненные данные [27].

имеющимися потенциальными кривыми адатом-графен, которые изучались в [27]. Данная задача в настоящей работе решалась с использованием алгоритма оптимизации Левенберга-Марквардта (Levenberg-Marquardt) [29]. Исходные данные были получены путем усреднения потенциальных кривых, построенных в [27] модифицированным методом PBE-D2 [30] для атома Al в положениях H, B и T над графеном. В результате вычислительного эксперимента было выявлено, что для потенциала Ми-Леннарда-Джонса с хорошей точностью выполняется равенство a = 6. Физически это означает, что при больших расстояниях между сторонним атомом металла и графеном преобладают дисперсионные силы Ван-дер-Ваальса. При этом из (7) на больрасстояниях получается асимптотика ших $U(z) \sim 1/z^4$, в отличие от зависимости $U(z) \sim 1/z^3$, которая имеет место в теории электромагнитных флуктуаций Е.М. Лифшица для объемного образца. Таким образом, задача оптимизации упрощается — значение параметра а можно зафиксировать и варьировать значения всех остальных параметров.

На рис. 2 результаты расчетов по формулам (7) и (8) сопоставлены с усредненными данными из [27]. Получены следующие значения параметров: для потенциала Ми–Леннарда–Джонса a = 6, b == 7.032, $r_0 = 0.261$ нм, D = 0.053 эВ; для потенциала Морзе $r_0 = 0.27$ нм, $\alpha = 1.411$ нм⁻¹, D = 0.033 эВ. Проведенные расчеты показывают, что формула (7) описывает взаимодействие атома металла с графеном значительно лучше, чем формула (8). В расчетах обнаруживаются слишком "мягкие" силы отталкивания. Здесь основной причиной, по-видимому, является то, что в [27] участки, соответствующие силам притяжения и отталкивания, та-

Рис. 3. Потенциал взаимодействия атома Al с графеном: кривая — расчет по формуле (7), кружки — моделирование по методу Монте-Карло.

булированы неодинаково: сравнительно небольшое количество численных данных в области действия сил отталкивания (при $z < z_0$ на рис. 2) не позволяет определить в полной мере надежные значения параметров *b* и α для потенциалов Ми– Леннарда–Джонса и Морзе. В связи с этим представляет интерес из первых принципов изучить зависимость U = U(z) в более широком диапазоне расстояний. Это необходимо сделать еще и потому, что по равновесным параметрам взаимодействия результаты работ [26, 27] разнятся между собой.

Континуальная модель была проверена методом Монте-Карло. Проводился расчет взаимодействия атома Al с идеальной решеткой графена прямым суммированием парного потенциала Леннарда-Джонса, параметры которого взяты из таблицы. Размер решетки составлял 8×8 ячеек, что оказалось достаточно для исключения краевых эффектов. Координаты атома Al на плоскости выбирались случайным образом в пределах одного гексагона и вычислялось среднее значение потенциала взаимодействия. Количество испытаний для каждой точки по высоте атома N = 100. Результаты моделирования сравнивались с расчетом по формуле (7) при a = 6 и b = 12. Результаты показаны на рис. 3. Можно видеть, что расчет в континуальной модели очень хорошо согласуется с расчетами усредненного потенциала взаимодействия по методу Монте-Карло.

ЗАКЛЮЧЕНИЕ

Рассмотрено взаимодействие атомов некоторых металлов с графеном с использованием континуального приближения. В качестве парных потенциалов выбраны потенциалы Ми–Леннарда—Джонса и Морзе. На основании формул (7), (8) и численных данных [26, 27] рассмотрена задача по определению параметров парных потенциалов взаимодействия адатом—графен. Показано, что для описания взаимодействия наиболее подходящим является потенциал Ми—Леннарда— Джонса. Проблема с потенциалом Морзе заключается в том, что экспоненциальная функция не может одинаково корректно описывать силы притяжения и отталкивания.

Полученные результаты можно рекомендовать для применения в методах молекулярной динамики и Монте-Карло. Формулы (7), (8) могут оказаться полезными при построении теории рассеяния нейтральных атомов на графене.

БЛАГОДАРНОСТЬ

Авторы признательны М.Н. Магомедову за ценные замечания по данной работе.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Сергеев Г.Б.* Нанохимия. М.: Изд-во Моск. ун-та, 2003. 288 с.
- Суздалев И.П. Нанотехнология: физико-химия нанокластеров, наноструктур и наноматериалов. М.: КомКнига, 2006. 592 с.
- 3. *Rieth M.* Nano-engineering in science and technology: An introduction to the world of nano-design. World Scientific Pub. Co Inc., 2003. 164 p. https://doi.org/10.1142/5026
- 4. *Товбин Ю.К.* Молекулярная теория адсорбции в пористых телах. М.: Физматлит, 2013. 624 с.
- 5. *Kaplan I.G.* Intermolecular interactions: Physical picture, computational methods and model potentials. Wiley, 2006. 380 p.
- Gould S.A.C., Buke K., Hansma P.K. // Phys. Rev. B. 1989. V. 40. № 8. P. 5363. https://doi.org/10.1103/PhysRevB.40.5363
- 7. *Hartmann U.* // Phys. Rev. B. 1990. V. 42. № 20. P. 1541.
 - https://doi.org/10.1103/PhysRevB.42.1541
- Ciraci S., Tekman E., Baratoff A., Batra I.P. // Phys. Rev. B. 1992. V. 46. № 16. P. 10411. https://doi.org/10.1103/PhysRevB.46.10411
- 9. *Parr R.G., Yang W.* Density-functional theory of atoms and molecules. Oxford University Press, 1989. 333 p.
- Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. № 18. P. 3865. https://doi.org/10.1103/PhysRevLett.77.3865
- 11. Becke A.D. // Phys. Rev. A. 1988. V. 38. № 6. P. 3098. https://doi.org/10.1103/PhysRevA.38.3098
- 12. *Becke A.D.* // J. Chem. Phys. 1993. V. 98. P. 1372. https://doi.org/10.1063/1.464304

- Becke A.D. // J. Chem. Phys. 1992. V. 96. P. 2155. https://doi.org/10.1063/1.462066
- 14. *Becke A.D.* // J. Chem. Phys. 1993. V. 97. P. 9173. https://doi.org/10.1063/1.463343
- Becke A.D. // J. Chem. Phys. 1993. V. 98. P. 5648. https://doi.org/10.1063/1.464913
- Lee Ch., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. N
 № 2. P. 785. https://doi.org/10.1103/PhysRevB.37.785
- 17. *Ioni Yu.V., Voronov V.V., Naumkin A.V. et al.* // Russ. J. Inorg. Chem. 2015. V. 60. № 6. Р. 709. [*Иони Ю.В., Воронов В.А., Наумкин А.В. и др.* // Журн. неорган. химии. 2015. Т. 60. № 6. С. 783.] https://doi.org/10.1134/S0036023615060066
- Buslaeva E.Yu., Kraevskii S.V., Groshkova Yu.A. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 1. Р. 5. [Буслаева Е.Ю., Краевский С.В., Грошкова Ю.А. и др. // Журн. неорган. химии. 2020. Т. 65. № 1. С. 8.] https://doi.org/10.1134/S0036023620010040
- 19. Зиатдинов А.М., Саенко Н.С., Скрыльник П.Г. // Журн. неорган. химии. 2020. Т. 65. № 1. С. 131. [Ziatdinov A.M., Saenko N.S., Skrylnik P.G. // Russ. J. Inorg. Chem. 2020. V. 65. № 1. Р. 133.] https://doi.org/10.1134/S0036023620010210
- Lee J., Novoselov K.S., Shin H.S. // ACS Nano. 2011. V. 5. № 1. P. 608. https://doi.org/10.1021/nn103004c
- Liu X., Wang C.-Zh., Hupalo M. et al. // Crystals. 2013. V. 3. № 1. P. 79. https://doi.org/10.3390/cryst3010079
- 22. Sessi V., Stepanow S., Rudenko A.N. et al. // New J. Phys. 2014. V. 16. P. 062001. https://doi.org/10.1088/1367-2630/16/6/062001
- 23. *Chu M., Liu X., Sui Y. et al.* // Molecules. 2015. V. 20. № 10. P. 19540. https://doi.org/10.3390/molecules201019540
- 24. Arkhipov V.E., Guselnikov A.V., Ророv К.М. et al. // J. Struct. Chem. 2018. V. 59. № 4. Р. 759. [Архипов В.Е., Гусельников А.В., Попов К.М. и др. // Журн. структур. химии. 2018. Т. 59. № 4. С. 792.] https://doi.org/10.1134/S0022476618040029
- 25. *Galashev A.Y., Katin K.P., Maslov M.M.* // Phys. Lett. A. 2019. V. 383. № 2-3. P. 252. https://doi.org/10.1016/j.physleta.2018.10.025
- 26. Chan K.T., Neaton J.B., Cohen M.L. // Phys. Rev. B. 2008. V. 77. P. 235430. https://doi.org/10.1103/PhysRevB.77.235430
- Rossi Fernandez A.C., Domancich N.F., Ferullo R.M., Castellani N.J. // J. Theoret. Computat. Chem. 2019. V. 18. № 4. P. 1950019. https://doi.org/10.1142/S0219633619500196
- Magamedov M.N. // High Temperature. 2006. V. 44. № 4.
 P. 513. [*Mazomedos M.H.* // TBT. 2006. T. 44. № 4.
 C. 518.] https://doi.org/10.1007%2Fs10740-006-0064-5
- 29. *Gill Ph.E., Murray W., Wrigh M.H.* Practical optimization. Emerald Group Publ. Limited, 1982. 418 p.
- Grimme S. // J. Comput. Chem. 2006. V. 27. № 15. P. 1787. https://doi.org/10.1002/jcc.20495