ТЕОРЕТИЧЕСКАЯ НЕОРГАНИЧЕСКАЯ ХИМИЯ

УДК 546.831+881

ТЕРМОДИНАМИЧЕСКАЯ ОЦЕНКА ПРОЦЕССА ХИМИЧЕСКОГО ТРАНСПОРТА VSe₂ И ZrSe₂ С Cl₂ И I₂ В КАЧЕСТВЕ ТРАНСПОРТНЫХ АГЕНТОВ

© 2020 г. К. С. Никонов^{а, *}, А. С. Ильясов^а, М. Н. Бреховских^а

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119071 Россия

*e-mail: Nikonov K.S@yandex.ru Поступила в редакцию 19.03.2020 г. После доработки 19.04.2020 г. Принята к публикации 30.04.2020 г.

С целью изучения процессов химического транспорта и оптимизации методик синтеза монокристаллы диселенидов V и Zr были выращены методом химических транспортных реакций с использованием I_2 и Cl_2 в качестве транспортных агентов. Проведена оценка термодинамических параметров процесса химического транспорта и установлено направление массопереноса в ростовой ампуле. Фазовый состав полученных образцов изучен методом РФА. Анализ дифрактограмм вещества, извлеченного из низкотемпературных и высокотемпературных зон ростовых ампул, подтвердил предположения, сделанные на основе термодинамических расчетов. Показано, что при транспорте ZrSe₂ в обоих случаях наблюдается перенос дихалькогенида из холодной в горячую зону ампулы. При транспорте VSe₂ направление переноса зависит от природы транспортного агента. При использовании I_2 транспорт протекает из горячей в холодную зону ампулы, а при использовании $Cl_2 - в$ обратном направлении. Микрофотографии полученных образцов подтверждают выводы, сделанные на основе термодия у в холодную зону ампулы, а при использовании $Cl_2 - в$ обратном направлении. Микрофотографии полученных образцов подтверждают выводы, сделанные на основе термодинамических расчетов и РФА. Полученные результаты могут быть использованы для оптимизации технических процессов получения слоистых дихалькогенидов переходных элементов.

Ключевые слова: ТМDC, химические транспортные реакции, диселенид ванадия, диселенид циркония **DOI:** 10.31857/S0044457X20090123

ВВЕДЕНИЕ

Слоистые дихалькогениды переходных элементов (TMDC) представляют собой группу бинарных соединений, обладающих общей характерной структурой и очень широким спектром физико-химических свойств. Слоистые дихалькогениды переходных элементов отличает многообразие наблюдаемых физических эффектов, каталитическая активность и обширные возможности для получения нано- и интеркаляционных материалов на их основе [1–3]. Эти качества позволяют применять TMDC и материалы на их основе в аккумуляторных батареях [4–6], для создания катализаторов [7] и наноразмерных электронных устройств [8].

Структура слоистых дихалькогенидов переходных элементов состоит из повторяющихся слоев, разделенных ван-дер-ваальсовыми промежутками так, что все ковалентные связи в структуре лежат в пределах одного слоя. В свою очередь, слои связаны между собой только слабыми межатомными взаимодействиями. Каждый тройной блок состоит из трех атомных слоев: двух, построенных из атомов халькогена, и расположенного между ними слоя атомов переходного элемента. Кристаллы такого строения относятся к структурному типу CdI₂. Слоистой природой кристаллов TMDC обусловлена легкость, с которой они образуют интеркаляционные соединения [9], и предрасположенность к образованию тонких пленок и 2D-материалов [10]. Монокристаллы TMDC могут заменить графен в качестве подложек при создании гетероструктур, описанных в работе [11].

Основным методом получения наноразмерных пленок различных материалов являются различные варианты молекулярно-лучевой эпитаксии [12]. Этот метод позволяет с высокой точностью контролировать толщину и стехиометрию синтезируемого слоя, но непригоден для получения отдельных макроскопических монокристаллов. Главным способом получения крупных монокристаллов VSe₂ и ZrSe₂ является метод химических транспортных реакций (**XTP**) [13, 14]. В основе этого метода лежит обратимая реакция между переносимым веществом (в данном случае

Кристаллы	Навеска, г	Транспортный агент, ×10 ⁻⁴ моль	Температур	Browg u	
			t _{rop}	t _{хол}	время, ч
VSe ₂	2.0	1.97 I ₂	850	800	48
VSe ₂	0.4	1.32 Cl ₂	850	800	48
ZrSe ₂	1.0	2.75 Cl ₂	915	850	48
ZrSe ₂	0.4	1.77 I ₂	850	800	48

Таблица 1. Параметры роста кристаллов VSe₂ и ZrSe₂

 VSe_2 и ZrSe_2) и транспортным агентом, в результате которой образуется газообразная транспортируемая форма (например, VI₄), пары которой смещаются вдоль градиента температуры, пока равновесие не сдвинется в обратную сторону, что приводит к образованию кристаллов XSe₂ и высвобождению транспортного агента [15].

Стандартным выбором транспортного агента при использовании метода химических транспортных реакций для роста монокристаллов ТМDС является кристаллический I₂. Применение альтернативных транспортных агентов для получения монокристаллов дихалькогенидов Мо, Та, V и Zr рассмотрено в работах [16–18].

В отличие от тройных селенидов различных переходных элементов, термодинамические параметры которых подробно рассмотрены в работе [19], экспериментальные данные о термодинамических характеристиках слоистых дихалькогенидов V и Zr практически отсутствуют в литературе.

Цель настоящей работы — исследование процессов химического транспорта в системах MSe_2/I_2 , MSe_2/Cl_2 (M = V, Zr) для оптимизации методик синтеза и условий роста монокристаллов этих соединений методом XTP.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Кристаллы VSe₂ и ZrSe₂ выращены методом химических транспортных реакций с использованием Cl₂ и I₂ в качестве транспортного агента. Кристаллы VSe₂ и ZrSe₂ получали из простых вешеств путем отжига стехиометрической навески исходных простых веществ в вакуумированной ампуле. Затем полученные кристаллы вместе с источником транспортного агента загружали в кварцевую ампулу, которая была откачана до остаточного давления ~0.03 мБар, и помещали в трубчатую печь с температурным градиентом. Полученные кристаллы исследованы методом РФА при помощи дифрактометра Bruker D8 Advance. Микрофотографии кристаллов получены с использованием микроскопа МИМ-7. Условия роста кристаллов приведены в табл. 1.

Чтобы избежать потерь вещества при вакуумировании и отпайке ростовой ампулы, кристалли-

ческий I_2 вносили в тонкостенном капилляре из пирекса, который разрушался при нагревании ампулы до температуры роста, выпуская пары иода в объем ампулы. Галогениды VCl₃ и ZrCl₄ вносили в ампулу в сухом боксе в атмосфере азота в виде порошков. При нагревании в ростовой ампуле галогениды переходных элементов VCl₃ и ZrCl₄ разлагались до Cl₂ и VCl₂ или ZrCl₂ соответственно.

Реакции (1)-(4) демонстрируют процесс разложения вещества – источника транспортного агента:

$$2\text{VCl}_3 \rightarrow \text{VCl}_4 + \text{VCl}_2,\tag{1}$$

$$2\text{VCl}_4 \rightarrow 2\text{VCl}_3 + \text{Cl}_2,\tag{2}$$

$$2ZrCl_4 \rightarrow 2ZrCl_3 + Cl_2, \qquad (3)$$

$$2ZrCl_3 \rightarrow ZrCl_4 + ZrCl_2. \tag{4}$$

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Основываясь на данных, представленных в работах [13, 15], предполагаем, что в общем случае процесс химического транспорта в данных системах можно описать следующим образом: в высокотемпературной зоне печи дихалькогенид вступает в реакцию с транспортным агентом, т.е. с парами галогена, что приводит к образованию газообразного тетрагалогенида. В низкотемпературной области печи галогенид вступает в обратную реакцию с парами селена, в результате которой снова образуется дихалькогенид XSe₂ (X = V, Zr) и высвобождается транспортный агент (Cl₂ или I₂).

Реакции (5)–(8) приближенно описывают ход процесса химического транспорта в системах MSe_2/CI_2 и MSe_2/I_2 (M = Zr, V).

$$ZrSe_{2(rB)} + 2Cl_{2(r)} \leftrightarrow ZrCl_{4(r)} + Se_{2(r)}, \qquad (5)$$

$$\operatorname{ZrSe}_{2(\mathrm{TB})} + 2l_{2(\mathrm{r})} \leftrightarrow \operatorname{Zrl}_{4(\mathrm{r})} + \operatorname{Se}_{2(\mathrm{r})}, \tag{6}$$

$$VSe_{2(rB)} + 2Cl_{2(r)} \leftrightarrow VCl_{4(r)} + Se_{2(r)},$$
(7)

$$VSe_{2(rB)} + 2l_{2(r)} \leftrightarrow Vl_{4(r)} + Se_{2(r)}.$$
 (8)

Для создания более полного представления о природе процессов, протекающих в ходе синтеза и роста кристаллов ZrSe₂ и VSe₂ методом XTP,

Система	$\Delta_r H^0_{298},$ кДж/моль	∆, <i>S</i> ⁰ ₂₉₈ , кДж/(моль К)	Δ _r G ⁰ ₂₉₈ , кДж/моль	$K_{p}^{(298)}$	$\Delta_r G^0_{1188},$ кДж/моль	$K_{p}^{(1188)}$	Δ _r G ₁₁₂₃ , кДж/моль	$K_{p}^{(1123)}$
$ZrSe_2/Cl_2$	-414.3	-0.10	-382.31	1.17	-287.7	1.029	—	_
$ZrSe_2/I_2$	-41.4	0.18	-95.59	1.04	-257.7	1.026	_	_
VSe_2/Cl_2	-259.9	0.28	-344.20	1.15	_	_	-606.6	1.06
VSe_2/I_2	49.5	0.14	5.09	0.10	_	—	-117.9	1.01

Таблица 2. Приближенные термодинамические параметры реакций химического транспорта

проведена оценка термодинамических параметров реакций (5)—(8) и значений констант равновесия в интервале температур от 298 до 1400 К.

При расчете $\Delta_r G^0$ и K_p предполагалось, что $\Delta_f H$ реакций в интервале 298—1400 К не зависит от температуры. Для VI₄ и ZrI₄ были использованы приближенные значения энтропии образования S_{298}^0 , экстраполированные на основе известных значений для родственных галогенидов. Необходимость ввода этих значений связана с отсутствием надежных экспериментальных данных о тер-

модинамических параметрах этих веществ в литературных источниках [17–24]. Результаты вычислений приведены в табл. 2.

Зависимость K_p от температуры представлена на рис. 1. Согласно нашим оценкам, поведение константы равновесия реакции (8) при изменении температуры отличается от такового для реакций (5)–(7). На отрезке 300–1400 К K_p убывает для реакций (5)–(7) и возрастает для реакции (8). Во всех четырех случаях с повышением температуры скорость изменения K_p уменьшается.

Рис. 2. Зависимости $\Delta_r G$ транспорта ZrSe₂ (а) и VSe₂ (б) от *T*.

Зависимость свободной энергии Гиббса $\Delta_r G$ реакции от температуры приведена на рис. 2. Приближенные расчеты показывают, что значение $\Delta_r G$ уменьшается с ростом температуры для реакций (5), (7) и (8). Для реакции (6) значение $\Delta_r G$ увеличивается, и при T = 3889.7 К становится

больше нуля. Для реакции (8) $\Delta_r G_{298}^{\circ}$ незначительно >0, но $\Delta_r G$ уменьшается с ростом температуры.

Взаимные соотношения $\Delta_r G$, $\Delta_r H$ и $\Delta_r S$ позволяют спрогнозировать поведение транспортной

реакции в каждом конкретном случае согласно правилам, приведенным в работе [15]. Эти закономерности представлены в табл. 3.

Результаты экспериментов совпадают с прогнозируемым ходом транспортного процесса. В случаях $ZrSe_2/Cl_2$, $ZrSe_2/I_2$ и VSe_2/Cl_2 наблюдается рост кристаллов в высокотемпературной области ампулы и незначительное образование мелких кристалликов в низкотемпературной зоне, свидетельствующее о сосуществовании несколь-

Таблица 3. Оценка возможности протекания транспортной реакции и направления переноса

Система	$\Delta_r S_{298}^0$	$\Delta_r H_{298}^0$	$\Delta_r G_{298}^0$	Возможность протекания	Направление транспорта
ZrSe ₂ /Cl ₂	<0	<0	<0	Ограничена сверху по Т	$T_{\rm xon} \rightarrow T_{\rm rop}$
$ZrSe_2/I_2$	>0	<0	<0	Возможна	$T_{\rm XOJ} \rightarrow T_{\rm rop}$
VSe_2/Cl_2	>0	<0	<0	Возможна	$T_{\rm XOJ} \rightarrow T_{\rm rop}$
VSe_2/I_2	>0	>0	>0	Ограничена снизу по Т	$T_{\rm rop} \rightarrow T_{\rm xon}$

Рис. 3. Дифрактограммы образцов VSe₂ (a), образованных в высокотемпературной области ампулы с Cl₂ (*I*) и I₂ (*2*) и в низкотемпературной области ампулы с Cl₂ (*J*) и I₂ (*4*). *a* – характеристические пики VSe₂ (PDF 01-074-1411). Дифрактограммы образцов ZrSe₂ (б), образованных в высокотемпературной области ампулы с Cl₂ (*I*) и I₂ (*2*) и в низкотемпературной области ампулы с Cl₂ (*J*) и Cl₂ (*A*) и Cl₂ (*A*): *a* – ZrSe₂ (PDF 03-065-3376), δ – ZrSe₃ (PDF 00-036-1338), *b* – ZrCl₂ (PDF 01-072-1904), *c* – Zr₄Se₃ (PDF 00-015-0221), ∂ – Se (PDF 00-027-0603).

ких механизмов переноса в ростовой ампуле. В случае ZrSe₂ в низкотемпературной зоне ампулы наблюдается накопление примесных фаз различного состава. В случае VSe₂/I₂ наблюдается образование многочисленных крупных монокристаллов в низкотемпературной зоне.

Дифрактограммы полученных образцов представлены на рис. 3. При рассмотрении диселенида ванадия в обоих случаях наблюдается образование чистого VSe₂ в высоко- и низкотемпературных областях, что говорит об эффективной работе механизмов переноса. Различия в интенсивности пиков объясняются размером кристаллов и текстурой полученного материала.

В случае ZrSe₂ дифрактограмма свидетельствует об образовании ZrSe₂ и отсутствии заметных примесей в высокотемпературной зоне, в то время как в низкотемпературной области происходит накопление ZrSe₃ и других примесей, что подтверждает тезис о протекании химического транспорта в направлении более горячей зоны.

Рис. 4. Микрофотографии вещества, извлеченного из высокотемпературной (гор.) и низкотемпературной (хол.) зон ростовых ампул: VSe₂/Cl₂: а – хол., б – гор.; VSe₂/I₂: в – хол., г – гор.; ZrSe₂/Cl₂: д – хол., е – гор.; ZrSe₂/I₂: ж – хол., з – гор. Все изображения получены при одинаковом увеличении.

На микрофотографиях образцов вещества, извлеченного из высокотемпературной и низкотемпературной зон ростовых ампул, хорошо видна слоистая структура синтезированных кристаллов (рис. 4г и 4е). Наличие характерных углов, равных 120°, подтверждает, что в основе полученных кристаллов лежит гексагональная структура. На рис. 4ж можно видеть кристалл ZrSe₃, относящийся к основной примесной фазе в этом образце.

ЗАКЛЮЧЕНИЕ

Рассмотрены процессы химического транспорта слоистых дихалькогенидов VSe_2 и $ZrSe_2$ с участием I_2 и Cl_2 в качестве транспортного агента.

Методом химического транспорта получены образцы VSe_2 и $ZrSe_2$ с I_2 и Cl_2 в качестве транспортных агентов.

Термодинамическая оценка направления и возможности протекания процесса при разных температурах предсказывает, что транспорт вещества должен протекать из низкотемпературной области ампулы в высокотемпературную область в случае VSe_2/Cl_2 и в случае $ZrSe_2$ независимо от природы транспортного агента. В случае VSe_2/I_2 транспорт вещества должен протекать в направлении низкотемпературной области. Исследования фазового состава вещества, извлеченного из высоко- и низкотемпературных областей ростовых ампул, подтверждают это предположение. Проведена оценка термодинамических параметров процессов химического транспорта, но, учитывая допущения, принятые при расчетах, значения этих величин следует считать приближенными.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследования выполнены в рамках госзадания в области фундаментальных научных исследований ИОНХ РАН с использованием оборудования ЦКП ИОНХ РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Wang Q.H., Kalantar-Zadeh K., Kis A. et al. // Nat. Nanotech. 2012. V. 7. P. 699. https://doi.org/10.1038/nnano.2012.193
- Das S., Robinson J.A., Dubey M. et al. // Annu. Rev. Mater. Res. 2015. V. 45. P. 1. https://doi.org/10.1146/annurev-matsci-070214-021034
- 3. *Rao C.N.R., Ramakrishna Matte H.S.S., Maitra U. //* Angew. Chem. Int. Ed. 2013. V. 9. № 50. P. 13162. https://doi.org/10.1002/anie.201301548
- Lee Y.Y., Park G.O., Choi Y.S. et al. // RSC Adv. 2016.
 V. 6. P. 14253. https://doi.org/10.1039/C5RA19799F
- 5. Onuki Y., Inada R., Tanuma S., Yamanaka S. et al. // Solid State Ionics. 1983. V. 8. № 2. P. 141. https://doi.org/10.1016/0167-2738(83)90075-9
- 6. *Thompson A.H., Scanlon J.C., Symon C.R.* // Solid State Ionics. 1980. V. 1. № 1–2. P. 47. https://doi.org/10.1016/0167-2738(80)90021-1

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 65 № 9 2020

- Li H., Jia X., Zhang Q., Wang X. // Chem. 2018. V. 7. № 12. P. 1510. https://doi.org/10.1016/j.chempr.2018.03.012
- Roy T., Tosun M., Kang J.S. et al. // ACS Nano. 2014. V. 8. № 6. P. 6259. https://doi.org/10.1021/nn501723y
- 9. *Rouxel J.* // Physica B+C. 1980. V. 99. № 1–4. P. 3. https://doi.org/10.1016/0378-4363(80)90203-X
- Zhang Zh., Yang P., Hong M. et al. // Nanotechnology. 2019. V. 30. P. 182002. https://doi.org/10.1088/1361-6528/aaff19
- 11. Buslaeva E.Yu., Kraevskii S.V., Groshkova Yu.A. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 1. P. 5. https://doi.org/10.1134/S0036023620010040
- Ril' I., Kochura A.V., Marenkin S.F. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 9. P. 1087. https://doi.org/10.1134/S0036023618090139
- Tsukio O., Hideaki N., Mitsuoki N., Motohiko I. // J. Less Common Met. 1981. V. 77. № 2. P. 185. https://doi.org/10.1016/0022-5088(81)90169-7
- Mleczko M.J., Zhang C., Lee H.R. et al. // Sci. Adv. 2017. V. 3. № 8. P. e1700481. https://doi.org/10.1126/sciadv.1700481
- Шефер Г. Химические транспортные реакции / Пер. с нем. под ред. Лужной Н.П. М.: Мир, 1964. 194 с.

- 16. *Ubaldini A., Jacimovic J., Ubrig N., Giannini E.* // Cryst. Growth Des. 2013. V. 13. № 10. P. 4453. https://doi.org/10.1021/cg400953e
- 17. Nikonov K.S., Brekhovskikh M.N., Egorysheva A.V. et al. // Inorg. Mater. 2017. V. 53. № 11. P. 1126. https://doi.org/10.1134/S0020168517110061
- Nikonov K.S., Brekhovskikh M.N., Menshchikova T.K., Fedorov V.A. // Inorg. Mater. 2019. V. 55. № 9. P. 898. https://doi.org/10.1134/S0020168519090097
- Babanly M.B., Mashadiyeva L.F., Babanly D.M. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 13. P. 1649. https://doi.org/10.1134/S0036023619130035
- 20. *Blinder A.V., Bolgar A.S., Trofimova Zh.A.* // Powder Metall. Met. Ceram. 1993. V. 32. № 3. P. 234. https://doi.org/10.1007/BF00559756
- Mills K.C. Thermodynamic data for inorganic sulphides, selenides and tellurides. L.: Butterworths, 1974. 845 p.
- 22. Термические константы веществ: Вып. 1–10 / Под ред. Глушко В.П. М.: ВИНИТИ, 1965–1982.
- McTaggart F.K., Wadsley A.D. // Aust. J. Chem. 1958. V. 11. № 4. P. 445. https://doi.org/10.1071/CH9580445
- Hooley J.G. Preparation and Crystal Growth of Materials with Layered Structures / Ed. Lieth R.M.A. Dordrecht: Springer, 1977. 285 p. https://doi.org/10.1007/978-94-017-2750-1

1228