_____ КООРДИНАЦИОННЫЕ ___ СОЕДИНЕНИЯ

УДК 546.562'271:541.49

ОСОБЕННОСТИ ОБРАЗОВАНИЯ МОНО- И БИЯДЕРНЫХ КОМПЛЕКСОВ МЕДИ(II) С 2,2'-БИПИРИДИЛОМ И клозо-ДЕКАБОРАТНЫМ АНИОНОМ

© 2020 г. Е. А. Малинина^{*a*}, В. В. Авдеева^{*a*}, С. Е. Короленко^{*a*}, *, С. Е. Нефедов^{*a*}, Л. В. Гоева^{*a*}, Н. Т. Кузнецов^{*a*}

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский пр-т, 31, Москва, 119991 Россия

*e-mail: korolencko0110@yandex.ru Поступила в редакцию 19.03.2020 г. После доработки 09.04.2020 г. Принята к публикации 12.04.2020 г.

Изучена реакция комплексообразования меди(I) с 2,2'-бипиридилом в присутствии солей *клозо*-декаборатного аниона на воздухе в органических растворителях (1,2-дихлорэтане и ДМФА). Установлено, что в результате окислительно-восстановительной реакции из образующегося *in situ* комплек-

са меди(I) $[Cu_2^I(Bipy)_2[B_{10}H_{10}]]$ известного строения образуются координационные соединения Cu(II) с анионом $[B_{10}H_{10}]^{2-}$ и 2,2'-бипиридилом. Показано, что условия проведения реакции (температура процесса, природа растворителя) оказывают существенное влияние на ее протекание и, соответственно, на состав и строение образующихся комплексных соединений. Выделены и охарактеризованы моно- и биядерные комплексы Cu(II) состава $[Cu^{II}(Bipy)_2Cl]_2[B_{10}H_{10}]$ и $\{[Cu_2^{II}(Bipy)_2(\mu-OH)_2][B_{10}H_{10}]\}$. Согласно РСА, в комплексе $\{[Cu_2^{II}(Bipy)_2(\mu-OH)_2][B_{10}H_{10}]\}$ присутствуют дальние контакты Cu...H(B) между *клозо*-декаборатным анионом и атомом металла.

Ключевые слова: окислительно-восстановительные реакции, комплексообразование, кластерные анионы бора, координационные соединения

DOI: 10.31857/S0044457X20090111

введение

При комплексообразовании меди с кластерными анионами бора $[B_nH_n]^{2-}$ (n = 10, 12) в присутствии азагетеропиклических лигандов L (L = = 2,2'-бипиридил (Bipy), 1,10-фенантролин (Phen), 2,2'-бипиридиламин (BPA)) в зависимости от условий проведения процесса (растворителя, температуры, наличия/отсутствия кислорода воздуха, соотношения реагентов, порядка приливания реагентов) могут образовываться различные комплексы. Так, установлена возможность селективного получения моно-, би-, три-, тетраядерных и полимерных комплексов меди(II), моно- и биядерных комплексов меди(I), а также смешановалентных комплексов меди(I)/меди(II) [1-10].

Проведенные нами ранее исследования реакций комплексообразования меди(I) с *клозо*декаборатным анионом и 2,2'-бипиридилом (Віру) в ацетонитриле показали, что в зависимости от условий реакции образуется комплекс меди(I) [Cu^I₂(Bipy)₂[B₁₀H₁₀]] [10] или смешановалентный комплекс меди(I)/меди(II) $\{[Cu_4^{II}(Bipy)_4(OH)_4][Cu_2^{I}[B_{10}H_{10}]_3]\}$ · *n*CH₃CN [11], образование которого обусловлено частичным окислением Cu(I) до Cu(II) при кипячении раствора [Cu₂[B₁₀H₁₀]] с Віру в ацетонитриле на воздухе. Позднее были определены условия образования комплексов Cu(II) с Віру и анионом [B₁₀H₁₀]²⁻ (система [Cu₂[B₁₀H₁₀]]/Віру/(DMSO + CH₃CN)). В работе [12] описан синтез, рентгеноструктурные и магнитные исследования тетраядерного комплекса

Сu(II) состава [Cu^{II}₄(Bipy)₄(OH)₄[B₁₀H₁₀]₂(DMSO)₂], приведены ЭПР-спектры и температурная зависимость магнитной восприимчивости в диапазоне температур от комнатной до температуры кипения жидкого азота. Анализ полученных результатов показал, что на состав и строение конечных продуктов реакции комплексообразования в системе Cu(I)/[B₁₀H₁₀]^{2–}/Віру существенным образом влияют условия реакции, а именно природа растворителя и температура.

Среди возможных областей применения соединений с кластерными анионами бора можно отме-

тить борнейтронозахватную терапию [13–16], получение термостабильных полимерных соединений [17], радионуклидную диагностику и катализ [18–21]. Уникальные свойства кластеров бора позволяют использовать их в качестве фармакофоров, каркасов в молекулярном дизайне и модуляторов биоактивных соединений [22].

В настоящей работе изучено комплексообразование Cu(I)/Cu(II) с Віру в органических растворителях и бинарных системах в присутствии различных источников аниона $[B_{10}H_{10}]^{2-}$ и катионов меди(I) или меди(II). Проанализированы окислительно-восстановительные процессы и закономерности образования комплексов, а также особенности их строения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Декагидро-клозо-декаборатодимедь(I)

[Cu₂[B₁₀H₁₀]] синтезировали по методике [23] из декагидро-*клозо*-декабората триэтиламмония $(Et_3NH)_2[B_{10}H_{10}]$, который, в свою очередь, получали в результате многостадийного синтеза из декаборана-14 через стадию образования 1,6-*бис*(триэтиламин)декаборана [24]. Растворители 1,2-дихлорэтан, ацетонитрил, DMF фирмы Aldrich (HPLC) использовали без дополнительной очистки.

Синтез $[Cu^{II}(Bipy)_2CI]_2[B_{10}H_{10}] \cdot 2C_2H_4CI_2$ (1 · 2С₂H₄Cl₂). К раствору [Сu₂[B₁₀H₁₀]] (0.24 г, 1 ммоль) в 1,2-дихлорэтане (10 мл) приливали 2,2'-бипиридил (0.31 г, 2 ммоль), растворенный в горячем дихлорэтане (15 мл). Наблюдали мгновенное появление ярко-красной окраски реакционного раствора. Полученный реакционный раствор кипятили в течение 10 мин, охлаждали до комнатной температуры и оставляли под тягой. Изотермическое упаривание раствора на воздухе в течение 48 ч приводило к выделению кристаллов зеленого цвета. Кристаллы отфильтровывали и высушивали на воздухе. Выход ~60%. ИКспектр (NaCl, см⁻¹): v(BH) 2468; δ(BBH) 995; v(Bipy) 1600, 1594, 1573, 1557, 1491, 1472, 1352, 1315, 1246, 1171, 1159, 1102, 1062, 971, 737, 652; π(CH) 778.

	С	Η	Ν	Cu	В
Для 1 найдено, %:	54.67;	4.78;	12.72;	7.15;	11.8.
Для $C_{40}H_{42}N_8B_{10}CuCl_2$					
вычислено, %:	54.76;	4.82;	12.77;	7.24;	12.3.

Синтез $\{[Cu_2^{II}(Bipy)_2(\mu-OH)_2][B_{10}H_{10}]\}_n$ (2). К раствору $[Cu_2[B_{10}H_{10}]]$ (0.24 г, 1 ммоль) в ацетонитриле (10 мл), нагретом на воздухе до температуры кипения, приливали раствор 2,2'-бипиридила (0.31 г, 2 ммоль) в горячем ацетонитриле (10 мл). Наблюдали мгновенное появление яркокрасной окраски реакционного раствора. Полученный реакционный раствор кипятили в течение 10 мин. Изотермическое упаривание реакционного раствора на воздухе в течение 72 ч с добавлением в систему диметилформамида в соотношении CH₃CN : DMF = 1 : 1 приводило к выделению кристаллов темно-зеленого цвета. Кристаллы отфильтровывали и высушивали на воздухе. Выход ~50%. ИК-спектр (NaCl), см⁻¹: v(OH) 3495; v(BH) 2501, 2472, 2425; δ (BBH) 1020; v(Bipy) 1609, 1601, 1495, 1472, 1447, 1370, 1311, 1253, 1175, 1158, 1126, 1033, 900, 856, 732; π (CH) 766.

	С	Н	Ν	Cu	В
Для 2 найдено, %:	39.85;	6.29;	9.23;	20.97;	17.3.
Для $C_{20}H_{38}N_4B_{10}Cu_2O_2$					
вычислено, %:	39.92;	6.36;	9.31;	21.12;	17.9.

Элементный анализ на углерод, водород и азот осуществляли на автоматическом газовом анализаторе CHNS-3 FA 1108 Elemental Analyser (Carlo Erba). Перед проведением анализа образцы высушивали до постоянной массы. Бор определяли методом атомно-абсорбционной спектроскопии на спектрофотометрах Perkin–Elmer (США) модель 2100 с электротермическим атомизатором HGA-700, определение Си проводили на AAS-303 в пламени ацетилен-воздух.

ИК-спектры записывали на ИК-Фурье-спектрометре Инфралюм ФТ-02 (НПФ АП Люмекс) в области 4000–400 см⁻¹ с разрешением 1 см⁻¹. Образцы готовили в виде суспензии исследуемого вещества в вазелиновом масле (Aldrich); при проведении исследования использовали пластинки NaCl.

РСА. Наборы интенсивностей дифракционных отражений для кристаллов $1 \cdot 2C_2H_4Cl_2$ и 2 получены в ЦКП ИОНХ РАН на автоматическом дифрактометре Bruker SMART APEX2 (λ Mo K_{α} , графитовый монохроматор). Структуры 1 \cdot 2C₂H₄Cl₂ и 2 расшифрованы прямым методом. В структуре 1 · 2C₂H₄Cl₂ содержатся две молекулы дихлорэтана, одна из которых разупорядочена по двум поло-Cl(3)C(41)C(42)Cl(4)жениям: И Cl(3A)C(41A)C(42A)Cl(4A) с соотношением заселенностей 0.43(2): 0.57(2),другая (Cl(5)C(43)C(44)Cl(6)) упорядочена. Атомы углерода разупорядоченной молекулы растворителя уточнены в изотропном приближении, остальные неводородные атомы структуры – в анизотропном приближении при стремлении связей C-Cl и С-С молекул дихлорэтана к 1.78 и 1.50 Å соответственно. Атомы водорода полиэдрического аниона и молекул бипиридила локализованы в разностных синтезах. Положения атомов Н молекул дихлорэтана рассчитаны. Все атомы Н уточнены по модели наездника в идеализированных пози-

	Соединение			
Параметр	$1 \cdot 2C_2H_4Cl_2$	2		
Брутто-формула	$C_{44}H_{50}B_{10}N_8Cl_6Cu_2$	$C_{20}H_{28}B_{10}Cu_2N_4O_2$		
М	1138.80	591.64		
<i>Т</i> , К	296(2)	173(2)		
Сингония	Триклинная	Моноклинная		
Пр. гр.	<i>P</i> 1	C2/c		
<i>a</i> , Å	9.3076(6)	19.647(16)		
b, Å	14.0989(10)	8.975(7)		
<i>c</i> , Å	21.0875(15)	17.151(14)		
α, град	98.6360(10)	90		
β, град	94.5250(10)	120.237(12)		
γ, град	101.2510(10)	90		
V, Å ³	2666.5(3)	2613(4)		
Ζ	2	4		
$\rho_{pacy},$ г/см ³	1.418	1.504		
μ, мм ⁻¹	1.139	1.656		
<i>F</i> (000)	1160	1200		
Размеры кристалла, мм	$0.220 \times 0.060 \times 0.020$	$0.20\times0.08\times0.03$		
Излучение, λ, Å	0.71073	0.71073		
Интервал углов 20, град	1.966-23.255	2.40 -21.99		
Число отражений:				
измеренных независимых (<i>N</i>) [<i>R</i> _{int}]	18754 7655 [0.0670]	4272 1547 [0.0776]		
<i>R</i> ₁ , <i>wR</i> ₂ по <i>N</i> ₀	0.0590, 0.1323	0.0422, 0.0908		
<i>R</i> ₁ , <i>wR</i> ₂ по <i>N</i>	0.1203, 0.1579	0.0681, 0.0987		
$\Delta \rho_{\rm max} / \Delta \rho_{\rm min}, e / {\rm \AA}^3$	0.662/-0.372	0.427/-0.425		

Таблица 1. Основные кристаллографические данные, параметры эксперимента и уточнения структур $1 \cdot 2C_2H_4Cl_2$ и **2**

циях с изотропными тепловыми параметрами, превышающими $U_{_{3KB}}$ или $U_{_{и30}}$ соответствующего неводородного атома в 1.2 раза. Основные кристаллографические данные, параметры эксперимента и уточнения структур $1 \cdot 2C_2H_4Cl_2$ и 2 приведены в табл. 1, некоторые длины связей и валентные углы в структурах $1 \cdot 2C_2H_4Cl_2$ и 2 – в табл. 2 и 3 соответственно. При сборе и обработке массива $1 \cdot 2C_2H_4Cl_2$ использовали программы АРЕХ2, SAINT и SADABS [25]. Расчеты проведены по комплексу программ SHELX97 [26].

Кристаллографические данные для соединений $1 \cdot 2C_2H_4Cl_2$ и 2 депонированы в Кембриджском банке структурных данных (№ 1989968 и 1978901 соответственно).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Систематическое исследование реакций комплексообразования в системах $Cu(I)/[B_{10}H_{10}]^{2-}/L$ (L = Bipy, BPA или Phen) показало, что образование комплексов Cu(II) наблюдается в результате окисления меди(I) до меди(II) на воздухе и зависит от природы азагетероциклического лиганда L. Так, для BPA этот процесс протекает в ацетонитриле при комнатной температуре [6]; для Phen комплексы Cu(II) получали окислением меди(I)

Связь	<i>d</i> , Å	Связь	<i>d</i> , Å
Cu(1)–N(2)	2.000(5)	Cu(2)–N(5)	1.991(6)
Cu(1) - N(4)	2.015(5)	Cu(2)–N(8)	1.991(5)
Cu(1) - N(1)	2.033(5)	Cu(2)–N(7)	2.079(5)
Cu(1)–N(3)	2.209(5)	Cu(2)–N(6)	2.140(5)
Cu(1)-Cl(1)	2.2602(17)	Cu(2)–Cl(2)	2.2735(18)
Угол	ω, град	Угол	ω, град
N(2)Cu(1)N(4)	173.24(19)	N(5)Cu(2)N(8)	172.2(2)
N(2)Cu(1)N(1)	81.4(2)	N(5)Cu(2)N(7)	94.1(2)
N(4)Cu(1)N(1)	92.6(2)	N(8)Cu(2)N(7)	80.5(2)
N(2)Cu(1)N(3)	99.53(19)	N(5)Cu(2)N(6)	79.1(2)
N(4)Cu(1)N(3)	78.1(2)	N(8)Cu(2)N(6)	96.9(2)
N(1)Cu(1)N(3)	99.41(19)	N(7)Cu(2)N(6)	105.8(2)
N(2)Cu(1)Cl(1)	95.24(15)	N(5)Cu(2)Cl(2)	92.19(16)
N(4)Cu(1)Cl(1)	91.34(14)	N(8)Cu(2)Cl(2)	95.60(16)
N(1)Cu(1)Cl(1)	163.88(14)	N(7)Cu(2)Cl(2)	135.10(15)
N(3)Cu(1)Cl(1)	96.69(14)	N(6)Cu(2)Cl(2)	119.02(15)

Таблица 2. Длины связей и валентные углы в соединении $1 \cdot 2C_2H_4Cl_2$

до меди(II) при температуре кипения растворителя с последующим добавлением в реакционный раствор DMF или DMSO в соотношении 1 : 1 [7]. В настоящей работе для получения комплексов Cu(II) с Віру и $[B_{10}H_{10}]^{2-}$ реакции комплексообразования проводили в C₂H₄Cl₂ и в системе CH₃CN/DMF с использованием методики, описанной в [7]. Предварительное нагревание на воздухе раствора, содержащего [Cu₂[B₁₀H₁₀]] и Віру в ацетонитриле или дихлорэтане, до температуры кипения растворителя приводит к получению реакционного раствора, содержащего комплекс меди(I) с Віру *in situ* оранжевого цвета [6].

Как оказалось, природа используемого в реакции комплексообразования растворителя существенно влияет на скорость процесса окисления $Cu(I) \rightarrow Cu(II)$ под действием кислорода воздуха. Так, для 1,2-дихлорэтана образование моноядерного комплекса меди(II) [Cu^{II}(Bipy)₂Cl]₂[B₁₀H₁₀] · $\cdot 2C_{2}H_{4}Cl_{2}$ (1 $\cdot 2C_{2}H_{4}Cl_{2}$) происходило при длительном изотермическом упаривании на воздухе. В ацетонитриле окисление Cu(I) удавалось провести только при добавлении в реакционный раствор DMF, при этом происходило образование биядерного комплекса состава {[Cu^{II}₂(Bipy)₂(µ-OH)₂][B₁₀H₁₀]} (2) (схема 1). В отсутствие DMF в ацетонитриле реакция окисления Cu(I) протекает частично, и из реакционного раствора вылеляется вышеописанный смешановалентный комплекс $\{[Cu_4^{II}(Bipy)_4(OH)_4][Cu_2^{I}[B_{10}H_{10}]_3]\} \cdot 4CH_3CN [11].$

Связь	<i>d</i> , Å	Связь	d, Å
Cu(1)–O(1) ^{#1}	1.937(4)	Cu(1)–O(1)	1.938(4)
Cu(1)–N(2)	1.987(4)	Cu(1)–N(1)	2.003(4)
$Cu(1)-Cu(1)^{#1}$	2.848(2)	$O(1)-Cu(1)^{\#1}$	1.937(4)
Угол	ω, град	Угол	ω, град
$O(1)^{#1}Cu(1)O(1)$	85.40(15)	$O(1)^{#1}Cu(1)N(2)$	177.74(18)
O(1)Cu(1)N(2)	95.77(16)	$O(1)^{#1}Cu(1)N(1)$	97.74(16)
O(1)Cu(1)N(1)	176.22(16)	N(2)Cu(1)N(1)	81.16(17)
O(1) ^{#1} Cu(1)Cu(1) ^{#1}	42.72(11)	O(1)Cu(1)Cu(1) ^{#1}	42.69(10)
N(2)Cu(1)Cu(1) ^{#1}	138.43(13)	N(1)Cu(1)Cu(1) ^{#1}	140.42(13)
$Cu(1)^{#1}O(1)Cu(1)$	94.60(15)	C(1)N(1)C(5)	119.0(5)
C(1)N(1)Cu(1)	126.4(4)	C(5)N(1)Cu(1)	114.5(3)
C(10)N(2)C(6)	119.2(5)	C(10)N(2)Cu(1)	125.9(4)
C(6)N(2)Cu(1)	115.0(3)	B(3)B(1)B(3) ^{#2}	100.3(6)

Таблица 3. Длины связей и валентные углы в соединении 2

Атомы, отмеченные надстрочными индексами #1 и #2, связаны с исходными атомами симметрическими преобразованиями: -x + 1, -y + 1, -z + 1 и -x + 1, y, -z + 3/2 соответственно.

Схема 1. Синтез комплексов 1, 2.

В ИК-спектре комплекса 1 присутствует интенсивная уширенная полоса v(BH) свободных BHгрупп при 2468 см⁻¹. Отсутствие в спектре полос v(BH)_{MHB} в интервале 2350–2100 см⁻¹ свидетельствует о нахождении аниона $[B_{10}H_{10}]^{2-}$ во внешней сфере комплекса. Окружение центрального атома металла составляют молекулы Віру, об этом свидетельствует незначительное повышение полосы v(C–H) с одновременным перераспределением интенсивностей полос колебаний гетероцикла в интервале 1600–700 см⁻¹.

Пригодные для PCA монокристаллы $1 \cdot 2C_2H_4Cl_2$ получены в результате изотермического упаривания реакционного раствора. Кристалл $1 \cdot 2C_2H_4Cl_2$ построен из комплексных катионов [Cu^{II}(Bipy)₂Cl]⁺, анионов $[B_{10}H_{10}]^{2-}$ и разупорядоченных молекул $C_2H_4Cl_2$ (рис. 1). В структуре содержатся два независимых комплексных катиона с близким, но не идентичным строением. Пятикоординационное окружение атомов Cu(1) и Cu(2) образуют четыре атома N двух молекул Віру и атом Cl. В комплекcax Cu(1) и Cu(2) уплощенные молекулы Віру образуют двугранные углы 80.2° и 75.4° соответственно. Атомы Cl(1) и Cl(2) расположены поразному относительно атомов N в координационном полиэдре. Как видно из табл. 2, позицию атома Cl(1) можно описать как *транс* относительно

атома N(1) (угол N(1)Cu(1)Cl(1) 163.9°) и иис относительно остальных атомов N (N(2,3,4)Cu(1)Cl(1) 91.3°-96.7°). Полиэдр атома Cu(1) наилучшим образом аппроксимируется тетрагональной пирамидой с атомом N(3) в апикальной вершине. Атомы N(1), N(2), N(4) и Cl(1), образующие основание пирамиды, копланарны в пределах ±0.18 Å $(\Delta_{cp} = 0.166 \text{ Å})$. В окружении атома Cu(2) положение атома Cl(2) относительно атомов N(8) и N(6)характеризуется углами 135.0° и 119.0° соответственно. Кроме того, угол N(6)Cu(2)N(8) (105.9°) заметно увеличен по сравнению с соответствующим углом N(1)Cu(1)N(3) (99.4°). Таким образом, форма полиэдра атома Cu(2) наиболее близка к тригональной бипирамиде, основание которой образуют атомы N(6), N(8) и Cl(2), а апикальные вершины занимают атомы N(5) и N(7). В структуре комплексы Cu(1) и Cu(2) попарно связаны слабыми взаимодействиями Cl(2)...Cu(1) (3.181(2) Å). Атом Cl(2) достраивает полиэдр Cu(1) до асимметрично вытянутой бипирамиды (угол N(3)Cu(1)Cl(2) 174.13(14)°). В кристалле димерные катионы упакованы в диагональные слои [11], стабилизированные слабыми Н-связями C-H...Cl и π - π -взаимодействиями между молекулами Віру. Анионы [B₁₀H₁₀]²⁻ расположены в пустотах между слоями в окружении атомов Н молекул Віру (Н...Н 2.28–2.43 Å). Моле-

Рис. 1. Фрагмент структуры комплекса $1 \cdot 2C_2H_4Cl_2$, молекулы растворителя не показаны. Тепловые эллипсоиды атомов приведены с вероятностью 30%.

кулы дихлорэтана также расположены между слоями.

Источником атома хлора, присутствующего в структуре комплекса $1 \cdot 2C_2H_4Cl_2$, является используемый в реакции растворитель 1,2-дихлорэтан. Это не единственный пример участия дихлорэтана в реакциях с кластерными анионами бора в качестве реагента. Так, при изучении взаимодействия солей $Cat_2[B_{10}H_{10}]$ или $Cat_2[B_{12}H_{12}]$ с галогеноводородами (HCl, HBr и HI) в дихлорэтане [27, 28] установлено образование моно- и дихлорзамещенных производных $[B_{10}H_{10-n}Cl_n]^{2-}$ или $[B_{12}H_{12-n}Cl_n]^{2-}$ (n = 1, 2), при этом источником атомов хлора в составе продуктов реакции служил именно дихлорэтан, который первоначально использовали в реакциях в качестве растворителя.

По данным РСА, комплекс 2 построен из димерных катионов $[Cu^{II}(\mu-OH)(Bipy)]_2^{2^+}$ и анионов $[B_{10}H_{10}]^{2^-}$. Фрагмент структуры 2 показан на рис. 2. Комплексный катион имеет уплощенное центросимметричное строение. Окружение атома Cu²⁺ в форме искаженного квадрата образуют два атома N молекулы Віру и атомы O двух групп (OH)⁻. Анионы $[B_{10}H_{10}]^{2^-}$ участвуют во взаимодействиях с ионами Cu²⁺ через атомы водорода BH-групп полиэдра с образованием удлиненных связей Cu²⁺...H(B). ВН-группы двух полиэдрических анионов достраивают квадрат атома Cu (2N + + 2O) до вытянутой тетрагональной бипирамиды (Cu...H 2.37 и 2.63 Å). В структуре **2** за счет этих взаимодействий катионы и анионы объединены в полимерные цепочки, в которых наблюдаются контакты OH...HB (H...H 2.26, H...B 2.61 Å, OHH 143°, OHB 120°). Строение комплекса **2** аналогично строению соединения [Cu₂(BPA)₂(µ-OH)₂][B₁₀H₁₀] [6], однако в отсутствие NH-группы в лиганде цепочки не связаны в слои.

В ИК-спектре 2 присутствует интенсивная полоса валентных колебаний "свободных" ВНгрупп v(BH) с максимумами при 2486 и 2434 см⁻¹. Кроме того, в спектре 2 проявляются полосы, соответствующие колебаниям координированных молекул Віру, чему соответствует незначительное повышение полос валентно-деформационных колебаний v(CN) с одновременным перераспределением интенсивностей полос колебаний гетероцикла в интервале 1605–700 см⁻¹; также в спектре проявляется узкая полоса валентных колебаний v(OH) гидроксогрупп средней интенсивности с максимумом при 3495 см⁻¹.

В настоящей работе изучено комплексообразование меди(I) с азагетероциклическим лигандом Віру на воздухе в присутствии солей кластер-

Рис. 2. Фрагмент структуры комплекса 2.

ного аниона бора $[B_{10}H_{10}]^{2-}$. Кластерные анионы бора отличаются большим разнообразием структур. В состав борного остова могут входить не только атомы бора, но и гетероатомы: азот, углерод, а также атомы металлов (карбораны, металлобораны, металлокарбораны [29-35]). При этом их химическое поведение существенно отличается от поведения родственных структур. В частности, известны комплексы меди(II) с другими кластерными анионами бора, которые содержат катионный комплекс $[Cu^{II}L_2CI]^+$ (L = Bipy, Phen), обнаруженный в $1 \cdot 2C_{2}H_{4}Cl_{2}$: [Cu^{II}(Phen)₂Cl]₂[B₁₂H₁₂] [4], $[Cu^{II}(Phen)_2Cl]_2[mpahc-B_{20}H_{18}]$ [36]. $[Cu^{II}(Bipy)_{2}Cl]_{2}[B_{10}Cl_{10}]$ [37]. [Cu^{II}(Phen)₂Cl]₂[B₁₀Cl₁₀] [37]. Перечисленные соединения были получены при взаимодействии хлорида меди(I) с Віру в присутствии солей соответствующего кластерного аниона бора. В этом случае источником атома хлора в катионной части соединений являлся исходный реагент CuCl. Видно, что перечисленные кластерные анионы бора не стабилизируют медь(I) в реакционном растворе в присутствии азагетероциклов, и происходит быстрое окисление меди(I) до меди(II) на воздухе.

Химическое поведение другого представителя кластерных анионов бора — аниона $[B_{11}H_{14}]^-$ [38] в присутствии меди(I) или меди(II) существенно

отличается — образуется сэндвичевый комплекс меди $[1,1'-Cu(B_{11}H_{11})_2]^{3-}$, который может быть выделен в виде тетраметиламмониевой или тетрабутиламмониевой соли [39].

ЗАКЛЮЧЕНИЕ

Изучена реакция комплексообразования меди(I) с Віру на воздухе в присутствии солей кластерного аниона бора $[B_{10}H_{10}]^{2-}$ в дихлорэтане и в системе ацетонитрил/DMF. Установлено, что окисление комплекса меди(I) состава [Cu^I₂(Bipy)₂[B₁₀H₁₀]], образованного in situ, приводит к получению координационных соединений Cu(II) с анионом $[B_{10}H_{10}]^{2-}$ и Віру с достаточно высоким выходом. Обнаружено, что существенное влияние на состав и строение конечных продуктов оказывают условия проведения реакции комплексообразования, которая сопровождается окислительновосстановительной реакцией (температура процесса, природа растворителя, наличие кислорода воздуха, выступающего в роли окислителя). Реакция комплексообразования в системе ацетонитрил/DMF привела к получению комплекса меди(II) { $[Cu^{II}_{2}(Bipy)_{2}(\mu-OH)_{2}][B_{10}H_{10}]$ }, тогда как проведение реакции комплексообразования в дихлорэтане показало возможность его участия в качестве реагента – источника атомов хлора. Большее сродство атомов меди(II) к образованию связи с ионами Cl⁻ по сравнению с клозо-декаборатным анионом привело к образованию комплексного катиона [Cu^{II}(Bipy)₂Cl]⁺ и его выделению в составе соединения $[Cu^{II}(Bipy)_2Cl]_2[B_{10}H_{10}]$ с клозо-декаборатным анионом в качестве противоиона. Полученный результат можно объяснить с позиций принципа ЖМКО: анион $[B_{10}H_{10}]^{2-}$, будучи "мягким" основанием, охотнее координируется к "мягким" кислотам, чем к "жестким" кислотам или кислотам, находящимся в промежуточной группе. В частности, в литературе нет ни одного примера комплекса меди(I) с кластерными анионами бора $[B_n H_n]^{2-}$, которые выступали бы в качестве противоионов (в таких соединениях всегда присутствует связь металла с борным кластером), как нет примеров комплексов металлов, относящихся к "жестким" кислотам, с кластерными анионами $[B_nH_n]^{2-}$ во внутренней сфере.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Avdeeva V.V., Malinina E.A., Churakov A.V. et al. // Polyhedron. 2019. V. 169. P. 144. https://doi.org/10.1016/j.poly.2019.05.018
- Kochneva I.K., Avdeeva V.V., Goeva L.V. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 5. Р. 591. [Кочнева И.К., Авдеева В.В., Гоева Л.В. и др. // Журн. неорган. химии. 2018. Т. 63. № 5. С. 559.] https://doi.org/10.1134/S0036023618050066
- Malinina E.A., Kochneva I.K., Polyakova I.N. et al. // Inorg. Chim. Acta. 2018. V. 479. P. 249. https://doi.org/10.1016/j.ica.2018.04.059
- Malinina E.A., Kochneva I.K., Polyakova I.N. et al. // Inorg. Chim. Acta. 2018. V. 477. P. 284. https://doi.org/10.1016/j.ica.2018.03.024
- Malinina E.A., Kochneva I.K., Avdeeva V.V. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 10. Р. 1210. [Малинина Е.А., Кочнева И.К., Авдеева В.В. и др. // Журн. неорган. химии. 2019. Т. 64. № 10. С. 1031.] https://doi.org/10.1134/S0036023619100085
- 6. *Dziova A.E., Avdeeva V.V., Polyakova I.N. et al.* // Dokl. Chem. 2011. V. 440. Р. 253. [*Дзиова А.Э., Авдеева В.В., Полякова И.Н. и др.* // Докл. АН. 2011. Т. 440. № 3. C. 351.]

https://doi.org/10.1134/S0012500811090035

- Avdeeva V.V., Dziova A.E., Polyakova I.N. et al. // Russ. J. Inorg. Chem. 2013. V. 58. № 6. Р. 657. [Авдеева В.В., Дзиова А.Э., Полякова И.Н. и др. // Журн. неорган. химии. 2013. Т. 58. № 6. С. 746.] https://doi.org/10.1134/S003602361306003X
- Avdeeva V.V., Malinina E.A., Zhizhin K.Yu. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 4. Р. 514. [Авдеева В.В., Малинина Е.А., Жижин К.Ю. и др. // Журн. неорган. химии. 2020. Т. 65. № 4. С. 495.] https://doi.org/10.1134/S0036023620040026
- Avdeeva V.V., Malinina E.A., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2020. V. 65. № 3. Р. 335. [Авдеева В.В., Малинина Е.А., Кузнецов Н.Т. // Журн. неорган. химии. 2020. Т. 65. № 3. С. 334.] https://doi.org/10.1134/S003602362003002X
- Vologzhanina A.V., Korlyukov A.A., Avdeeva V.V. et al. // J. Phys. Chem. Part A. 2013. V. 117. № 49. P. 13138. https://doi.org/10.1021/jp405270u
- Avdeeva V.V., Dziova A.E., Polyakova I.N. et al. // Dokl. Chem. 2011. V. 437. Part 2. P. 79. [Авдеева В.В., Дзиова А.Э., Полякова И.Н. и др. // Докл. АН. 2011. T. 437. № 4. С. 488.] https://doi.org/10.1134/S001250081104001X
- 12. Dziova A.E., Avdeeva V.V., Polyakova I.N. et al. // Dokl. Chem. 2012. V. 442. № 1. Р. 1. [Дзиова А.Э., Авдеева В.В., Полякова И.Н. и др. // Докл. АН. 2012. Т. 442. № 1. С. 57.]
- https://doi.org/10.1134/S0012500812010016 13. Boron Science: New Technologies and Applications /
- Ed. Hosmane N.S. CRC Press, 2011. 14. *Mi P., Yanagie H., Dewi N. et al.* // J. Control. Release.
- 2017. V. 254. P. 1. https://doi.org/10.1016/j.jconrel.2017.03.036
- 15. *Hawthorne M.F., Lee M.W.* // J. Neuro-Oncol. 2003. V. 62. P. 33.
- Barth R.F., Coderre J.A., Vicente M.G. et al. // Clin. Cancer Res. 2005. V. 11. P. 3987. https://doi.org/10.1158/1078-0432
- 17. Plešek J. // Chem. Rev. 1992 V. 92. P. 269.

- Reed C.A. // Chem. Commun. 2005. P. 1669. https://doi.org/10.1039/B415425H
- 19. *Teixidor F., Viñas C., Demonceau A. et al.* // Pure Appl. Chem. 2003. V. 75. P. 1305.
- 20. Sivaev I.B., Bregadze V.I. // Organomet. Chem. Research Perspectives / Ed. Irwin R.P. Nova Publ., 2007.
- Sivaev I.B., Bregadze V.I. // Eur. J. Inorg. Chem. 2009. V. 11. P. 1433. https://doi.org/10.1002/ejic.200900003
- 22. Leśnikowski Z.J. // J. Med. Chem. 2016. V. 59. P. 7738. https://doi.org/10.1021/acs.jmedchem.5b01932
- 23. Malinina E.A., Zhizhin K.Yu., Mustyatsa V.N. et al. // Russ. J. Inorg. Chem. 2003. V. 48. № 7. Р. 993. [Малинина Е.А., Жижин К.Ю., Мустяца В.Н. и др. // Журн. неорган. химии. 2003. Т. 48. № 7. С. 1102.]
- 24. *Miller H.C., Miller N.E., Muetterties E.L.* // J. Am. Chem. Soc. 1963. V. 85. № 23. P. 3885.
- APEX2 (V. 2008, 6-1), SAINT (V7.60A), SADABS (2008/1). Bruker AXS Inc., Madison, Wisconsin, USA, 2008–2009.
- 26. *Sheldrick G.M.* // Acta Crystallogr. A. 2008. V. 64. № 1. P. 112.
- 27. Drozdova V.V., Malinina E.A., Polyakova I.N. et al. // Russ. J. Inorg. Chem. 2007. V. 52. № 1. Р. 52. [Дроздова В.В., Малинина Е.А., Полякова И.Н. и др. // Журн. неорган. химии. 2007. Т. 52. № 1. С. 57.] https://doi.org/10.1134/S003602360701010X
- 28. Drozdova V.V., Zhizhin K.Yu., Malinina E.A. et al. // Russ. J. Inorg. Chem. 2007. V. 52. № 7. Р. 996. [Дроздова В.В., Жижин К.Ю., Малинина Е.А. и др. // Журн. неорган. химии. 2007. Т. 52. № 7. С. 1072.] https://doi.org/10.1134/S0036023607070042
- Cotton F.A., Wilkinson G., Murillo C.A., Bochmann M. // Adv. Inorg. Chem. New York: Wiley-Interscience, 1999.
- 30. *Muetterties E.L., Knoth W.H.* Polyhedral Boranes. New York: Dekker, 1968.
- 31. Greenwood N.N., Earnshaw A. Chemistry of the Elements. Butterworth-Heinemann, 1997.
- Sivaev I.B., Bregadze V.I., Sjöberg S. // Collect. Czech. Chem. Commun. 2002. V. 67. P. 679. https://doi.org/10.1135/cccc20020679
- Sivaev I.B., Prikaznov A.V., Naoufal D. // Collect. Czech. Chem. Commun. 2010. V. 75. P. 1149. https://doi.org/10.1135/cccc2010054
- 34. *Zhizhin K.Yu., Zhdanov A.P., Kuznetsov N.T.* // Russ. J. Inorg. Chem. 2010. V. 55. № 14. P. 2089. https://doi.org/10.1134/S0036023610140019
- 35. *Shmal'ko A.V., Sivaev I.B.* // Russ. J. Inorg. Chem. 2019. V. 64. № 14. P. 1726. https://doi.org/10.1134/S0036023619140067
- 36. Avdeeva V.V., Buzin M.I., Dmitrienko A.O. et al. // Chem. Eur. J. 2017. V. 23. № 66. P. 16819. https://doi.org/10.1002/chem.201703285
- Avdeeva V.V., Kravchenko E.A., Malinina E.A. et al. // Polyhedron. 2017. V. 127. P. 238. https://doi.org/10.1016/j.poly.2017.02.015
- 38. *Sivaev I.B.* // Russ. J. Inorg. Chem. 2019. V. 64. № 8. P. 955.

https://doi.org/10.1134/S003602362003002X

 Kester J.C., Keller D., Huffman J.C. et al. // Inorg. Chem. 1994. V. 33. P. 5438. https://doi.org/10.1021/ic00102a015